Adaptive finite element methods and a posteriori error estimation

Speaker: 

Ryan Szypowski

Institution: 

UCSD

Time: 

Monday, May 17, 2010 - 4:00pm

Location: 

RH 306

Adaptive finite element methods have been used for the solution of linear and non-linear elliptic partial differential equations since the 70s. However, only recently have rigorous convergence and (even stronger) contraction results been developed for a large class of interesting problems. In this talk, the basic adaptive finite element framework will be presented along with an overview of some convergence results. Also, a new efficient, reliable, and robust error estimator for problems in three dimensions will be presented along with numerical computations supporting its use.

On the existence and position of the farthest peaks of a family of stochastic heat and wave equations.

Speaker: 

Professor Davar Khoshnevisan

Institution: 

University of Utah

Time: 

Tuesday, April 20, 2010 - 11:00am

Location: 

RH 306

We study the stochastic heat equation ∂tu = u+σ(u)w in (1+1) dimensions, where w is space-time white noise, σ:R→R is Lipschitz continuous, and is the generator of a Lvy process. We assume that the underlying Lvy process has finite exponential moments in a neighborhood of the origin and u0 has exponential decay at ∞. Then we prove that under natural conditions on σ: (i) The νth absolute moment of the solution to our stochastic heat equation grows exponentially with time; and (ii) The distances to the origin of the farthest high peaks of those moments grow exactly linearly with time. Very little else seems to be known about the location of the high peaks of the solution to the stochastic heat equation. Finally, we show that these results extend to the stochastic wave equation driven by Laplacian.
This is joint work with Daniel Conus (University of Utah)

Convexity estimates for level sets of solutions to nonlinear PDEs

Speaker: 

Professor Pengfei Guan

Institution: 

McGill University

Time: 

Tuesday, May 25, 2010 - 4:15pm

Location: 

AP&M 6402, UCSD

This is a joint work with Lu Xu. We establish a geometric lower bound for the principal curvature of the level surfaces of solutions to $F(D^2u, Du, u, x)=0$ in convex ring domains, under a refined structural condition introduced by Bianchini-Longinetti-Salani.

Pages

Subscribe to UCI Mathematics RSS