Spiky and transition layer steady states of chemotaxis systems

Speaker: 

Xuefeng Wang

Institution: 

Tulane University

Time: 

Monday, November 18, 2013 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

 
Chemotaxis is the biased motion of cells under the influnce of chemicals that attract the cells.
The most important phenomenon about chemotaxis is cell aggregation, for which we use non- constant, especially spiky or transition-layer (step function-like) steady states to model. In the case of 1D spatial domains, we present two methods to establish the existence of such steady states: (i) global bifurcation theory combined with Helly's compactness theorem and Sturm oscillation theorem; (ii) singular perturbation method. We also prove local asymptotic stability and uniqueness of these steady states

Existence and non-existence of traveling waves in isothermal chemical reaction systems

Speaker: 

Yuanwei Qi

Institution: 

University of Central Florida

Time: 

Friday, November 8, 2013 - 11:00am to 12:00pm

Host: 

Location: 

RH340P

Traveling waves arises in many important physics and biology models.
They play an important role in
explaining many interesting biological phenomena.
In this talk I shall present
some recent results on the existence
and non-existence of traveling waves for a class of
chemical reaction systems.

 

Shock Reflection, von Neumann conjectures, and free boundary problems

Speaker: 

Mikhail Feldman

Institution: 

University of Wisconsin-Madison

Time: 

Tuesday, May 6, 2014 - 3:00pm to 4:00pm

Host: 

Location: 

RH 306

We discuss shock reflection problem for compressible gas dynamics, and von Neumann conjectures on transition between regular and Mach reflections. Then we will talk about recent results on existence of regular reflection solutions for potential flow equation up to the detachment angle, and discuss some techniques. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear equation of mixed elliptic-hyperbolic type. Open problems will also be discussed. The talk is based on joint work with Gui-Qiang Chen.

Viscosity solutions of Hamilton-Jacobi equations in metric spaces

Speaker: 

Andrzej Swiech

Institution: 

Georgia Institute of Technology

Time: 

Tuesday, January 14, 2014 - 3:00pm to 4:00pm

Host: 

Location: 

RH306

 

The theory of Hamilton-Jacobi equations in Hilbert and some
Banach spaces is relatively well developed. Much less is known about equations in spaces of measures, and more general metric spaces. We will present a notion of metric viscosity solution which applies to a class of Hamilton-Jacobi equations in geodesic metric spaces and gives well posedness for such equations. We will also discuss other approaches to Hamilton-Jacobi equations in metric spaces, in particular in the Wasserstein space, and discuss some applications of such equations.

 

Reaction-Diffusion Models for Biological Systems: Cell Polarization and Tissue Pattern Formation

Speaker: 

Jon Lo

Institution: 

Mathematical Biosciences Institute, The Ohio State Univeristy

Time: 

Monday, October 28, 2013 - 4:00pm to 5:00pm

Host: 

Location: 

RH 306

 
Reaction-diffusion model is one of the attractive models used to study pattern formation in different biological systems, from individual cell components to developing tissues. In this talk, I will introduce several reaction-diffusion models arising from the studies of cell polarization and tissue pattern formation.
In the first part, I will present a two-equation reaction-diffusion model for studying cell polarization, which is central to carry out processes such as differentiation, migration and development. I will perform linear stability analysis, in particular Turing stability analysis to the model to derive conditions of parameters for which cell polarity emerges without any spatial cue. I will apply live cell imaging and mathematical modeling to understand how diploid daughter cells in budding yeasts establish polarity preferentially at the pole distal to the previous division site.
In the second part, I will introduce several morphogen-mediated patterning models to study how tissue pattern formation is robust to the environmental noises and perturbations. Morphogens are important signaling molecules governing the pattern formation of multicellular organisms during embryo development. In this talk, I will discuss how two mechanisms, the expansion-repression mechanism and presence of non-signaling receptors, play a role for overcoming the effect of the fluctuations in morphogen and receptor production rates.

Lowering the consistency strength of square principles at singular cardinals

Speaker: 

Ryan Holben

Institution: 

UC Irvine, Math. Department

Time: 

Thursday, August 8, 2013 - 1:30pm

Location: 

Rowland Hall 340P

Committee members: Matthew Foreman, Penelope Maddy, Martin Zeman (chair)

Abstract: Jensen's square principle is an important combinatorial object.
The failure of this principle is independent of ZFC and at singular
cardinals this has high consistency strength. We outline two results in
which we greatly lower the known consistency strengths using Prikry-type
forcings.

On four-manifolds with positive scalar curvature

Speaker: 

Xiping Zhu

Institution: 

Sun Yat-sen University

Time: 

Monday, August 5, 2013 - 4:00pm to 5:00pm

Host: 

Location: 

RH 340P

It is well known that there exist several differentiable or topological obstructions to compact manifolds admitting metrics of positive scalar curvature. On the other hand, the family of manifolds with positive scalar curvature is quite large since any finite connected sum of them is still a manifold admitting a metric of positive scalar curvature. This talk is concerned with the classification question to this family.
         The classical uniformization theorem implies that a two-dimensional compact manifold with positive scalar curvature is diffeomorphic to the sphere or the real projective space. The combination of works of Scheon-Yau and Perelman gives a complete classification to compact three-dimensional manifolds with positive scalar curvature. In this talk we will discuss how to extend Schoen-Yau-Perelman's classification to four-dimension. This is based on the joint works with Bing-Long Chen and Siu-Hung Tang.

Pages

Subscribe to UCI Mathematics RSS