Moment problems, exchangeability, and the Curie-Weiss model

Speaker: 

Professor Tom Liggett

Institution: 

UCLA

Time: 

Wednesday, October 26, 2005 - 11:00pm

Location: 

MSTB 256

The Curie-Weiss model is an exchangeable probability measure $\mu$ on $\{0,1\}^n.$
It has two parameters -- the external magnetic field $h$ and the interaction $J$.
A natural problem is to determine when this measure extends to an exchangeable measure
on $\{0,1\}^{\infty}$. We will discuss two approaches to the following result:
$\mu$ can be (infinitely) extended if and only if $J\geq 0$. One of these
approaches relies on the classical Hausdorff moment problem. When $Jn$ can $\mu$ be extended to an exchangeable measure on $\{0,1\}^l$. Our approach
to this question involves an apparently new type of moment problem, which we will
solve. We then take $J=-c/l$, and determine the values of $c$ for which $l$-extendibility
is possible for all large $l$. This is joint work with Jeff Steif and Balint Toth.

Local martingale functions of Brownian motion

Speaker: 

Professor Patrick Fitzsimmons

Institution: 

University of California, San Diego

Time: 

Tuesday, April 26, 2005 - 11:00am

Location: 

MSTB 254

ABSTRACT: A harmonic function of the Brownian path is a local martingale. Is the converse true? We show that the class of local martingale functions of Brownian motion is co-extensive with the class of finely harmonic functions, and then use a results of Fuglede and Gardiner to answer this question in the negative, in dimensions bigger than 2.

Renormalized self-intersection local time and the range of random walks.

Speaker: 

Professor Richard Bass

Institution: 

University of Connecticut

Time: 

Tuesday, February 15, 2005 - 11:00am

Location: 

MSTB 254

Self-intersection local time $\beta_t$ is a measure of how often
a Brownian motion (or other process) crosses itself. Since Brownian
motion in the plane intersects itself so often, a renormalization
is needed in order to get something finite. LeGall proved that
$E e^{\gamma \beta_1}$ is finite for small $\gamma$ and infinite
for large $\gamma$. It turns out that the critical value is related
to the best constant in a Gagliardo-Nirenberg inequality. I will discuss
this result (joint work with Xia Chen) as well as large deviations
for $\beta_1$ and $-\beta_1$ and LILs for $\beta_t$ and $-\beta_t$.
The range of random walks is closely related to self-intersection
local times, and I will also discuss joint work with Jay Rosen
making this idea precise.

Small ball probablities and the quantization problem for Gaussian measures.

Speaker: 

Professor Michael Scheutzow

Institution: 

Technische Universitat, Berlin

Time: 

Tuesday, March 1, 2005 - 11:00pm

Location: 

MSTB 254

Let $\mu$ be a probability measure on a metric space $(E,d)$ and $N$ a positive integer.
The {\em quantization error} $e_N$ of $\mu$ is defined as the infimum over all subsets ${\cal{E}}$
of $E$ of cardinality $N$ of the average distance w.~r.~t.~$\mu$ to the closest point in the set
${\cal{E}}$. We study the asymptotics of $e_N$ for large $N$. We concentrate on the
case of a Gaussian measure $\mu$ on a Banach space. The asymptotics of $e_N$ is closely related to
{\em small ball probabilities} which have received considerable interest in the past decade.
The quantization problem is motivated by the problem of encoding a continuous signal
by a specified number of bits with minimal distortion. This is joint work with Steffen Dereich,
Franz Fehringer, Anis Matoussi and Michail Lifschitz.

Pages

Subscribe to RSS - Combinatorics and Probability