Holomorphic isometries from the Poincare disc into bounded symmetric domains

Speaker: 

Yuan Yuan

Institution: 

Syracuse University

Time: 

Tuesday, September 26, 2017 - 4:00pm to 5:00pm

Location: 

RH 306

I will first overview the classical holomorphic isometry problem between complex manifolds, in particular between bounded symmetric domains. When the source is the unit ball, in general the characterization of holomorphic isometries to bounded symmetric domains is not quite clear. With Shan Tai Chan, we recently characterized the holomorphic isometries from the Poincare disc to the product of the unit disc with the unit ball and it  provided new examples of holomorphic isometries from the Poincare disc into irreducible bounded symmetric domains of rank at least 2.

 

 

Stability in the homology of configuration spaces

Speaker: 

Jennifer Wilson

Institution: 

Stanford University

Time: 

Monday, November 20, 2017 - 4:00pm

Host: 

Location: 

RH 306

This talk will illustrate some topological properties of the space F_k(M) of ordered k-tuples of distinct points in a manifold M. For a fixed manifold M, as k increases, we might expect the topology of the configuration spaces F_k(M) to become increasingly complicated. Church and others showed, however, that when M is connected and open, there is a representation-theoretic sense in which these configuration spaces stabilize. In this talk I will explain these stability patterns, and describe a higher-order “secondary representation stability” phenomenon among the unstable homology classes. These results may be viewed as a representation-theoretic analogue of current work of Galatius–Kupers–Randal-Williams. The project is joint with Jeremy Miller.

Unexpected quadratic points on random hyperelliptic curves

Speaker: 

Joseph Gunther

Institution: 

University of Wisconsin/Université Paris-Sud

Time: 

Thursday, October 19, 2017 - 3:00pm to 4:00pm

Host: 

Location: 

RH 306

On a hyperelliptic curve over the rationals, there are infinitely many points defined over quadratic fields: just pull back rational points of the projective line through the degree two map. But for a positive proportion of genus g odd hyperelliptic curves, we show there can be at most 24 quadratic points not arising in this way.  The proof uses tropical geometry work of Park, as well as results of Bhargava and Gross on average ranks of hyperelliptic Jacobians.  This is joint work with Jackson Morrow.

Professor Trogdon and his collaborator used mathematical and statistical tools to assess the efficiency of New York City's subway system

Professor Trogdon and his collaborator used random matrix theory to model the New York subway system (MTA). Much of random matrix theory concerns understanding spacing distributions of the eigenvalues.  These distributions have been found to accurately describe spacings in real-world systems. They are able to use random matrix theory to describe stops within the MTA system where train arrivals are more regularly spaced, and efficient.

The realization problem of prism manifolds

Speaker: 

Yi Ni

Institution: 

Caltech

Time: 

Monday, October 9, 2017 - 4:00pm

Location: 

RH 340P

Prism manifolds are spherical 3-manifolds with D-type finite fundamental
groups. They can be parametrized by a pair of relatively prime integers p>1
and q. The realization problem of prism manifolds asks which prism manifolds
can be obtained by positive Dehn surgery on a knot in S^3. This problem has
been solved in the cases q<0 and q>p. We will discuss the basic idea of the
proof. This talk is based on joint work with Ballinger, Hsu, Mackey, Ochse
and Vafaee, and with Ballinger, Ochse and Vafaee.

Pages

Subscribe to UCI Mathematics RSS