Flows, bumps, and flexibility: fish fins, whale flippers, and more

Speaker: 

Silas Alben

Time: 

Wednesday, January 17, 2007 - 2:00pm

Location: 

MSTB 254

I will discuss a few recent studies on how organisms propel themselves through water, focusing on the appendages that allow them to do so efficiently. I will begin with fish fins, which have evolved over millions of years in a convergent fashion, leading to a highly-intricate fin-ray structure that is found in half of all fish species. This fin ray structure gives the fin flexibility plus one degree of freedom for shape control. I will present a linear elasticity model of the fin ray, based on experiments performed in the Lauder Lab in Harvard's Biology department.
In conjunction with this work, I will present numerical simulations of a fully-coupled fin-fluid model, based on a new method for computing the dynamics of a flexible bodies and vortex sheets in 2D flows. The simulations are applied to the most common mode of fish swimming, based on tail fin oscillations. In the passive case, an optimal flexibility for thrust is identified, and we consider also the optimal distribution of flexibility, with reference to recent measurements of tapering of insect wings and fish fins. We also briefly present work on fundamental
instabilities of a flexible body aligned with a flow (the "flapping flag" problem).
I will then discuss work on the role of bumps on the leading edge of humpback whale flippers, in collaboration with Ernst van Nierop and Michael Brenner at Harvard. Bumps have been shown in wind tunnels to increase the angle of attack at which flippers lose lift dramatically, or "stall." This stall-delay is thought to enable greater agility. In this study we propose an aerodynamic mechanism which explains why the lift curve flattens out as the amplitude of the bumps is increased, leading to potentially desirable control properties.
Finally, I will briefly describe results on a recent problem in self-assembly: the formation of 3D structures from flat elastic sheets with embedded magnets. The ultimate utility of this method for assembly depends on whether it leads to incorrect, metastable structures. We examine how the number of metastable states depends on the sheet shape and thickness. Using simulations and the theory of dislocations in elastic media we identify out-of-plane buckling as the key event leading to metastability. The number of metastable states increases rapidly with increasing variability in the boundary curvature and decreasing sheet thickness.

Local and global results for Schroedinger Maps

Speaker: 

Ioan Bejenaru

Time: 

Tuesday, January 16, 2007 - 2:00pm

Location: 

MSTB 254

We introduce the Schroedinger Maps which can be thought as free Solutions of the geometric Schroedinger equation. More exactly, while the classical Schroedinger equation is written for functions taking values in $\mathhb{C} (complex plane), the range of a Schroedinger Map is a manifold (with a special structure). We explain the importance of these Maps and what are the fundamental aspects one would like to understand about them. Then we focus on the particular case when the target manifold is $\mathbb{S}^2$ (the two dimensional sphere) and review the most recent results along with our contribution to the field.

Polar actions on Hilbert spaces

Speaker: 

Professor Ernst Heintze

Institution: 

University of Augsburg, Germany

Time: 

Tuesday, February 20, 2007 - 4:00pm

Location: 

MSTB 254

An isometric action of a Lie group is called polar if it admits
sections, i.e. submanifolds which meet all orbits and always
perpendicularly. Polarity is a very restrictive condition. For example,
in case of linear actions on *R^*n polarity characterizes the isotropy
representations of symmetric spaces (Dadok).

The aim of this talk is to report on work in progress to prove an
infinite dimensional analogue of Dadok's theorem. C.-L. Terng has
constructed interesting examples of polar actions on Hilbert spaces by
affine isometries, the so called P(G,H) actions. Here G is a compact Lie
group, H a closed subgroup of G \times G, and P(G,H) consists of all
paths in G with end points in H. The action of P(G,H) on the Hilbert
space of L^2-curves in the Lie algebra of G is by gauge transformations.
Surprisingly the actions correspond also to isotropy actions of
symmetric spaces which are now infinite dimension and quotients of a
Kac-Moody group by the fixed point set of an involution. We conjecture
that the P(G,H) actions exhaust all polar actions on a Hilbert space.

Reaction-diffusion equations and biological invasions

Speaker: 

Professor Henri Berestycki

Institution: 

Ecole des hautes etudes en sciences sociales, Paris.

Time: 

Tuesday, February 6, 2007 - 4:00pm

Location: 

MSTB 254

Diffusion, along with transport and reaction effects, is the main factor explaining changes
or transitions in a wide array of situations such as flames, some phase transitions, tumours
or other biological invasions. In these systems, two or several possible states coexist, and
one observes certain states expanding or receding or patterns being formed.

This lecture, meant for a general audience, will describe some mathematical properties of
reaction-diffusion equations as an approach to spatial propagation and diffusion. After
describing the mechanism of reaction and diffusion and giving several illustrations, I will
review some classical results. In the context of ecology of populations, I will then mention
some recent works dealing with non homogeneous media. In this framework, I will describe a
model addressing the question of how a species keeps pace with a shifting climate.

Modelling dynamics of T cells in Type 1 Diabetes

Speaker: 

Professor Leah Keshet

Institution: 

UBC

Time: 

Friday, February 2, 2007 - 3:00pm

Location: 

MSTB 254

Type 1 diabetes (T1D) is an autoimmune disease in which immune cells
target and kill the insulin-secreting pancreatic beta cells.
Recent investigation of diabetes-prone (NOD) mice reveals large cyclic
fluctuations in the levels of T cells (cells of the adaptive
immune system) weeks before the onset of the disease. We extend
a previous mathematical model for T-cell dynamics to account for the
gradual killing of beta cells, and show how such cycles can arise
as a natural consquence of feedback between self-antigen and T-cell
populations. The model has interesting nonlinear dynamics
including Hopf and homoclinic bifurcations in biologically reasonable
regimes of parameters. The model fits into a larger program of
investigation of type 1 diabetes, and suggests experimental tests.

Pages

Subscribe to UCI Mathematics RSS