Surface metrics that maximize the first eigenvalue after Nadirashvili

Speaker: 

Andrejs Treibergs

Institution: 

Utah and UCI

Time: 

Monday, March 5, 2007 - 3:00pm

Location: 

MSTB 254

I'll discuss the papers "Berger's isoperimetric problem and minimal
immersions of surfaces" by Nadirashvili, "Extremal metric for the first
eigenvalue on a Klein Bottle" by Jakobson, Nadirashvili and Polterovich
and "How large can the first eigenvalue be on a surface of genus two?" by
Jakobson, Levitin, Nadirashvili, Nigam and Polterovich. The authors find
among metrics of fixed area one that maximizes the fundamental frequency
of the torus and Klein Bottle.

The 16th Hilbert problem, a story of mystery, mistakes and solution

Speaker: 

Professor Oleg Viro

Institution: 

Uppsala University

Time: 

Thursday, March 8, 2007 - 4:00pm

Location: 

MSTB 254

Hilbert's problem of the topology of algebraic curves and surfaces (the
16th problem from the famous list presented at the second International
Congress of Mathematicians in 1900) was difficult to formulate. The way it
was formulated made it difficult to anticipate that it has been solved. I
believe it has, and this happened more than thirty years ago, although the
World Mathematical Community missed to acknowledge this.

Dynamic Depletion of Vortex Stretching and Dynamic Stability of 3D Incompressible Flow

Speaker: 

Professor Thomas Hou

Institution: 

Caltech

Time: 

Thursday, February 22, 2007 - 11:00am

Location: 

MSTB 254

Whether the 3D incompressible Euler or Navier-Stokes equations
can develop a finite time singularity from smooth initial data has been
an outstanding open problem. Here we review some existing computational
and theoretical work on possible finite blow-up of the 3D Euler equations.
We show that the local geometric properties of vortex filaments can lead
to dynamic depletion of vortex stretching, thus avoid finite time blowup
of the 3D Euler equations. Further, we perform large scale computations of
the 3D Euler equations to re-examine the two slightly perturbed anti-parallel
vortex tubes which is considered as one of the most attractive candidates
for finite time blowup of the 3D Euler equations. We found that there is
tremendous dynamic depletion of vortex stretching and the maximum vorticity
does not grow faster than double exponential in time. Finally, we present
a new class of solutions for the 3D Euler and Navier-Stokes equations,
which exhibit very interesting dynamic growth property. By exploiting
the special nonlinear structure of the equations, we can prove the global
regularity of this class of solutions.

Pages

Subscribe to UCI Mathematics RSS