Hodge groups of superelliptic jacobians

Speaker: 

Yuri Zarhin

Institution: 

Pennsylvania State University

Time: 

Thursday, May 7, 2009 - 2:00pm

Location: 

RH 306

The Hodge group (aka special Mumford-Tate group) of a complex abelian variety $X$ is a certain linear reductive algebraic group over the rationals that is closely related to the endomorphism ring of $X$. (For example, the Hodge group is commutative if and only if $X$ is an abelian variety of CM-type.) In this talk I discuss" lower bounds" for the center of Hodge groups of superelliptic jacobians. (This is a joint work with Jiangwei Xue.)

Divisibility properties of values of partial zeta functions at non-positive integers

Speaker: 

Barry Smith

Institution: 

UCI

Time: 

Thursday, April 9, 2009 - 3:00pm

Location: 

RH 306

The values of the partial zeta functions for an abelian extension of number fields at non-positive integers are rational numbers with known bounds on their denominators. David Hayes conjectured that when the associated fields satisfy certain algebraic conditions, the bound at s=0 can be sharpened. I will present a counterexample to Hayes's conjecture. I will then propose a new conjecture sharpening the bounds at arbitrary non-positive integers that implies a weaker version of Hayes conjecture at s=0. I will conclude by proving that the new conjecture is a consequence of the Coates-Sinnott conjecture.

Conformal Equivalence of Triangle Meshes

Speaker: 

Professor Ulrich Pinkall

Institution: 

TU Berlin

Time: 

Tuesday, March 10, 2009 - 4:00pm

Location: 

RH 306

We define a notion of conformal equivalence for discrete surfaces (surfaces composed of euclidean triangles). For example, multiplying the lengths of all edges incident with a single vertex by the same factor is considered to be a conformal change of metric. It turns out that finding a conformally equivalent flat metric on a given discrete surface amounts to minimizing a globally convex functional on the space of all metrics. This functional involves the Lobachevski function (known in the context of computing the volume of hyperbolic tetrahedra). This is not an accident, since surprisingly the whole theory is stongly related to hyperbolic geometry. There are important practical applications of our method to Computer Graphics in the context of texture mapping.

Polymer Depinning Transitions with Loop Exponent One

Speaker: 

Professor Ken Alexander

Institution: 

USC

Time: 

Tuesday, April 28, 2009 - 11:00am

Location: 

RH 306

We consider a polymer with configuration modeled by the trajectory of a Markov chain, interacting with a potential of form u+V_n when it visits a particular state 0 at time n, with V_n representing i.i.d. quenched disorder. There is a critical value of u above which the polymer is pinned by the potential. Typically the probability of an excursion of length n for the underlying Markov chain is taken to decay as a power of n (called the loop exponent), perhaps with a slowly varying correction. A particular case not covered in a number of previous studies is that of loop exponent one, which includes simple random walk in two dimensions. We show that in this case, at all temperatures, the critical values of u in the quenched and annealed models are equal, in contrast to all other loop exponents, for which these critical values are known to differ at least at low temperatures. The work is joint with N. Zygouras.

Kinetic evolution of multi-linear particle interactive dynamics

Speaker: 

Irene Gamba

Institution: 

University of Texas at Austin

Time: 

Thursday, May 14, 2009 - 4:00pm

Location: 

RH 306

We shall revisit the Boltzmann equation for rarefied non-linear particle dynamics, of conservative or dissipative nature, and on the stochastic N-particle model, introduced by M. Kac.
Related to this equation, we consider a a probabilistic dynamics from generalizations to N-particle model which includes multi-particle interactions. From basic symmetries and invariances for a general class of stochastic interactions, we show existence and uniqueness of states and recover the longtime dynamics and decay rates approaching stable laws characterized by self-similar rescaling, with finite or infinity energy initial data. We classify the moments integrability and see that broad tails (Pareto type) attractors are possible.

There is a large class of applications to these models including classical elastic or inelastic Maxwell type interactions with or without a thermostat, and social dynamics such as information percolation models, or wealth distributions models with Pareto tail formation.

This is work in collaboration with A. Bobylev, C. Cercignani and H. Tharkabhushanam.

Pages

Subscribe to UCI Mathematics RSS