The 2014-2015 Distinguished Lecture Series begins in November with Professor Emmanuel Candes, Stanford University.

The Department of Mathematics will begin the 2014-2015 Distinguished Lecture Series on November 5-6, 2014 with Professor Emmanuel Candès.

Professor Emmanuel Candès
Barnum-Simona Chair Professor in Mathematics and Statistics, Stanford University

 

Public Lecture

Robust Principal Component Analysis
Wednesday, November 5, 2014
4:00-5:00pm
Natural Sciences I, Room 1114
Reception to Follow

Abstract

Topological simplification of biomolecular data

Speaker: 

Guowei Wei

Institution: 

Michigan State University

Time: 

Monday, April 27, 2015 - 4:00pm to 5:00pm

Host: 

Geometric apparatuses are frequently inundated with too much structural detail to be computationally tractable, while traditional topological tools often incur too much simplification of the original data to be practically useful. Persistent homology, a new branch of algebraic topology, is able to bridge the gap between geometry and topology. In this talk, I will discuss a few new developments in persistent homology. First, we introduce multiscale-multiresolution persistent homology to describe the topological fingerprints and topological transitions of nano-bio materials. Additionally, multidimensional persistence is developed for topological denoising and revealing the topology-function relationship in biomolecular data. Moreover, molecular topological fingerprints are utilized to resolve ill-posed inverse problems in cryo-EM structure determination. Finally, objective-oriented persistent homology is constructed via the variational principle and differential geometry for proactive feature extracting from big data sets, which leads to topological partial differential equations (TPDEs). 

Criteria for subcritical and supercritical energies in generalized Harper's model

Speaker: 

Laura Shou

Institution: 

Caltech

Time: 

Thursday, November 6, 2014 - 3:00pm

Location: 

RH 340P

For discrete Schrödinger operators with potential given by a trigonometric polynomial of cosines (called generalized Harper's model), we use the complexified Lyapunov exponent to prove a criterion for subcritical energies in the spectrum and a criterion for supercritical energies. This work was done through the Caltech SURF program, with mentor Christoph Marx.

Robust Principal Component Analysis

Speaker: 

Emmanuel Candes

Institution: 

Stanford University

Time: 

Wednesday, November 5, 2014 - 4:00pm to 5:00pm

Location: 

Natural Sciences I Room 1114

This talk is about a curious phenomenon, which concerns the reliable estimation of principal components in the face of severe corruptions. Here, the scientist is given a data matrix which is the sum of an approximately low-rank matrix and a sparse matrix modeling corrupted entries. In addition, many entries may be missing. Hence, we have a blind de-mixing problem in which the goal is to recover the low-rank structure and find out which entries have been corrupted. We present a novel approach to this problem with very surprising performance guarantees as well as a few applications in computer vision and biomedical imaging, where this technique opens new perspectives. 

Modern Optimization Meets Physics: Recent Progress on the Phase Retrieval Problem

Speaker: 

Emmanuel Candes

Institution: 

Stanford University

Time: 

Thursday, November 6, 2014 - 4:00pm to 5:00pm

Location: 

Natural Sciences II Room 1201

In many imaging problems such as X-ray crystallography, detectors can only record the intensity or magnitude of a diffracted wave as opposed to measuring its phase.  Phase retrieval concerns the recovery of an image from such phaseless information.  Although this problem is in general combinatorially hard, it is of great importance because it arises in many applications ranging from astronomical imaging to speech analysis. This talk discusses novel acquisition strategies and novel convex and non-convex algorithms which are provably exact, thereby allowing perfect phase recovery from a minimal number of noiseless and intensity-only measurements. More importantly, we also demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades gracefully as the signal-to-noise ratio decreases. This may be of special contemporary interest because phase retrieval is at the center of spectacular current research efforts collectively known under the name of coherent diffraction imaging aimed, among other things, at determining the 3D structure of large protein complexes.  

 

Modern Optimization Meets Physics: Recent Progress on the Phase Retrieval Problem

Speaker: 

Emmanuel Candes

Institution: 

Stanford University

Time: 

Thursday, November 6, 2014 - 4:00pm to 5:00pm

Location: 

Natural Sciences II Room 1201

In many imaging problems such as X-ray crystallography, detectors can only record the intensity or magnitude of a diffracted wave as opposed to measuring its phase.  Phase retrieval concerns the recovery of an image from such phaseless information.  Although this problem is in general combinatorially hard, it is of great importance because it arises in many applications ranging from astronomical imaging to speech analysis. This talk discusses novel acquisition strategies and novel convex and non-convex algorithms which are provably exact, thereby allowing perfect phase recovery from a minimal number of noiseless and intensity-only measurements. More importantly, we also demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades gracefully as the signal-to-noise ratio decreases. This may be of special contemporary interest because phase retrieval is at the center of spectacular current research efforts collectively known under the name of coherent diffraction imaging aimed, among other things, at determining the 3D structure of large protein complexes.  

 

Diophantine approximation and bounded orbits of mixing flows on homogeneous spaces

Speaker: 

Ryan Broderick

Institution: 

UC Irvine

Time: 

Tuesday, October 28, 2014 - 1:00pm to 2:00pm

We sketch a proof of a theorem due to Kleinbock, and generalizing previous work of Dani and of Margulis and Kleinbock, regarding the size of the set of bounded orbits of a mixing flow on a homogeneous space. We then discuss connections to number theory, specifically the fact, proved in the same paper of Kleinbock, that the set of badly approximable systems of affine forms has full Hausdorff dimension.

Professor Alice Silverberg awarded Alfred P. Sloan Foundation Grant to develop secure methods of computing on encrypted data

Professor Alice Silverberg was recently awarded an Alfred P. Sloan Foundation grant of almost $800,000. The grant will be used to engage mathematicians and cryptographers in developing efficient and secure methods of computing on encrypted data.

Vorticity coherence effect on energy-enstrophy bounds

Speaker: 

Michael Jolly

Institution: 

Indiana University

Time: 

Thursday, December 4, 2014 - 3:00pm

Location: 

RH 440R

One of the main tenets in the Kolmogorov theory of 3D turbulence is the direct cascade of energy. This means that the rate of transfer of energy from one length scale to the next smallest is roughly constant over the so-called inertial range of scales. This can be indicated by a large quotient of the averages of enstrophy over energy. Similarly, the Batchelor, Kraichnan, Leith theory of 2D turbulence features an additional direct cascade, that of enstrophy, which in turn is indicated by a large quotient of averaged palinstrophy over enstrophy.  In the case of the 2D NSE we have derived bounding curves for these pairwise quantities by combining estimates for their time derivatives.  To do so for the 3D NSE, however, is to confront its outstanding global regularity problem.

Beirao da Veiga, following work of Constantin and Fefferman, showed that solutions to the 3D NSE are regular if one assumes that the direction of vortex filaments is Holder continuous with exponent 1/2. Under this assumption we construct in a single bounding curve whose maximal enstrophy is shown to scale as an exponential of the Grashof number.  This suggests that even under this smoothness assumption solutions can display extraordinary bursts in enstrophy.

Pages

Subscribe to UCI Mathematics RSS