Existence and regularity of stable branched minimal hypersurfaces

Speaker: 

Professor Neshan Wickramasekera

Institution: 

UCSD

Time: 

Tuesday, November 15, 2005 - 3:00pm

Location: 

MSTB 254

I will describe some recent progress on the regularity theory
for minimal hypersurfaces. Assuming stability of the hypersurfaces, the results to be presented establish a rather complete local regularity theory that is applicable near points of volume density less than 3. I will also present an existence result. The latter is joint work with
Leon Simon.

Special Lagrangian T^2-cones in C^3

Speaker: 

Emma Camberry

Institution: 

MSRI

Time: 

Tuesday, April 13, 2004 - 4:00pm

Location: 

MSTB 254

Special Lagrangian 3-folds are of interest in mirror symmetry, and in particular play an important role in the SYZ conjecture. One wishes to understand the singularities that can develop in families of these 3-folds; the relevant local model is provided by special Lagrangian cones in complex 3-space. When the link of the cone is a torus, there is a natural invariant g associated to the cone, namely the genus of its spectral curve. We show that for each g there are countably many real (g-2)-dimensional families of such special Lagrangian cones.

Ricci Flow and Fukaya Theory in Dimension Three

Speaker: 

Professor Ben Chow

Institution: 

UCSD

Time: 

Tuesday, May 4, 2004 - 4:00pm

Location: 

MSTB 254

We consider collapsing sequences of solutions to the Ricci flow on 3-manifolds with almost nonnegative curvature. Such sequences may arise from dilating about infinite time singularities. For finite time singularities no collapse can occur by a result Perelman. Using Fukaya theory, we study some geometric (not topological) aspects of such collapse. When the limit solution is 1-dimensional we construct a virtual 2-dimensional rotationally symmetric limit. This is joint work with David Glickenstein and Peng Lu.

Pages

Subscribe to RSS - Differential Geometry