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Outline

• Pattern recognition in computer vision

• Background on the development of SIFT

• SIFT algorithm and some of its variations

• Computational considerations (SURF)

• Potential improvement 

• Summary
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Pattern Recognition
• Pattern recognition is a classical problem in computer vision. It 

consists of two crucial steps: feature extraction and pattern matching. 
Our focus today is on feature extraction. 

• Features are effective and efficient representations of a pattern that 
are discriminative and invariant
� Discriminative: similar objects are close to each other in the feature space
� Invariant: values remain stable under normal variation of conditions. 

• Scale (focal length) change is frequent and normal to any camera-
based application. A person has no problem in identifying object with 
different focal length. A useful camera app needs to be scale-invariant.

• Ideally, features should also be photometric (illumination) invariant 
and geometrical (rotational, affine, or perspective).
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Example on Discriminative Features
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Methods on Feature Extraction

• Features could be global or local. Global means features are derived 
based on the entire image. Eigen-face (or Fisher-face) is a good 
example of global feature. 

• It has tractable mathematics with straightforward algorithm (although 
could be MIPS intensive). It is, however, subject to variations due to 
multiple factors: geometrical, photometrical, and partial occlusion to 
name a few. It only works well under well controlled conditions.

• Local features are features intrinsic to an object and can be 
computed using patches of images. The minutia (breaks and 
branching points), for example, are effective local features for 
fingerprint recognition. 

• Local features could be difficult to compute; but has several 
advantages. 
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Fingerprint Recognition
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Additional Advantages of Local Features

• Locality: features are local, so robust to occlusion and 
clutter.

• Distinctiveness: individual features can be matched to a 
large database of objects.

• Quantity: many features can be generated for even a small 
object.

• Efficiency: close to real-time performance.

• Corners together with a description of its neighboring 
structure appear to be a excellent candidate as local feature 
for general object recognition. 

• Corner provide a stable focal point whereas its neighboring 
structures provide some uniqueness of an object.
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Harris Corner Detector

• SIFT is primarily originated from the Harris corner detector.

• Harris corner detector is correlation based:
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Computing Harris Corner
• Auto-SSD for a point (x,y) and a shift (��x��y) is computed as

where C(x,y) is an effective representation for corner determination.
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Corner Determination

Computer eigen values are difficult. A quick measure on corner strength is:                 
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Harris Corner: Rotational Invariant
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Harris Corner: Not Scale Invariant
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Harris Corner: The Problem
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SIFT

• SIFT resolves the problem of Harris corner with two major 
improvements.

• First, a scale space representation is built to facilitate the 
search for features (corners) at a distinctive scale 

• Second, difference of Gaussian (DoG) was used to replace 
the computation of C(x,y)
� It is computationally efficient for building scale space 

representations

� It approximates Laplacian of Gaussian (LoG) and its extremes also 
provide stable anchor points (such as Harris corners) for feature 
extraction.

• This results from the heat equation                     We will come 
back to this point later on. 
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Overview of SIFT
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Construct Scale Space
• All scales must be examined to identify scale-invariant 

features. An efficient way is to construct the Difference of 
Gaussian (DoG) pyramid:
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Take Difference of Gaussian
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Locate DoG Extrema

• Detect maxima and 
minima of difference-of-
Gaussian in scale space

• These extrema are 
potential candidates for 
features and referred to as 
key-points or interest-
points.
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Subtract
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Sub-Pixel Localization

• The problem • The solution

-Take Taylor series 
expansion

- Differentiate and set to 0

-to get location in terms of 
(x,y,σ)
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Keypoint Filtering - Low Contrast

• Low Contrast Points Filter

smaller than 0.03 will be discarded because it is likely to 

be generated by noise.

� �xD x
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Eliminating Edge Responses

• Edge also has high response along one direction; but is not a 
useful feature.

• Use eigen values of Hessian matrix to eliminate edges:

� Eigenvalues are proportional to principle curvatures
� The ratio between trace and determinant could identify stable features 
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Orientation Assignment

• Use scale of point to choose correct image:

• Compute gradient magnitude and orientation using finite 
differences:

• Use directional histogram 
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Compute Final SIFT Vector

• Actual implementation uses 4x4 descriptors from 16x16 which 
leads to a 4x4x8=128 element vector
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Example of Key-point Detection
Threshold on value at DOG peak and on ratio of principle curvatures 
(Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures
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Repeatability against Noise
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Repeatability against View Angles
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Variations of SIFT
• SIFT uses DoG in both spatial and scale space operations. 

DoG is an approximation of LoG. Threshold and edge 
elimination are part of the computations.

• Alternatively, other derivative based functions or operators 
can also be used to compute scale space representation:
� SIFT
� Square gradient:
� Laplacian:
� Harris function:
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Two Alternatives on Finding Key-points

� Harris-Laplacian1

Find local maximum of:
� Laplacian in scale
� Harris corner detector 

in space (image 
coordinates)
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Performance Comparisons
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Some Computational Considerations

• Discrete implementation of SIFT provides opportunity for the 
development of fast algorithm.

• The Gaussian kernel for computing derivatives, for example, 
need to be quantized and windowed.

• A coarse quantization with square windowing can help to 
save MIPS by change convolution to additions. 

• Speed Up Robust Features (SURF) made successful use of 
the property for the computation of Hessian Matrix

needed for the detection of extrema.
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Computational Profile on SIFT

• 8800GTX(800*600)
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Approximating the Gaussian Kernel

• Approximated second order derivatives with box filters for the 
computation of 2nd order derivatives (Fast-Hessian). 
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Comparisons of Different Algorithms

7/2/201011/6/
01010010010001011001001011010011100101133



3434
7/2/201011/6/

01010001000110101000101000100001134

Potential Improvements on SIFT
• The vector representation is a heuristic scheme and could be 

replaced by more rigorous vector-generation method. PCA, for 
example, could be used to compute the canonical orientation.

• The algorithm is build on intensity image only. Color image 
introduces further math sophistications.

• SIFT is affine invariant (covariant); it can tolerate only small,  
insignificant perspective variations.

• SIFT makes use the solutions of linear equation of heat 
diffusion. An evolution of non-linear diffusion could potentially 
minimizes the need to search in scale space.  
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Summary

• We did a tutorial review on the development of SIFT in pattern 
recognition.

• The focus is on SIFT; but we also briefly reviewed several 
variations of SIFT.

• We also quickly covered one computation scheme - SURF.

• Potential work on improving SIFT is discussed.

• This tutorial mainly talks about feature extraction. Pattern 
matching using SIFT is not covered. 


