Problem 1 (10 points). Evaluate the following limits. JUSTIFY your answers. If a limit does not exist, say so.
(1) $\lim _{n \rightarrow \infty} \frac{2+3 n^{2}}{3+2 n^{2}}$
(2) $\lim _{n \rightarrow \infty} \frac{(\ln n)^{2}}{n}$
(3) $\lim _{n \rightarrow \infty} \frac{\sin (n)+n}{2 n}$
(4) $\lim _{n \rightarrow \infty}(-1)^{n} e^{-n}$
(5) $\lim _{n \rightarrow \infty} \sin \left(\frac{\pi n+3}{2 n}\right)$

Problem 2 (10 points). Determine whether the following series converge or diverge. JUSTIFY your answers. You do NOT need to find the sum.
(1) $\sum_{n=0}^{\infty} \frac{3 n+2}{2 n^{3}-n+1}$
(2) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(3) $\sum_{n=1}^{\infty} \frac{n!}{e^{n^{2}}}$
(4) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$
(5) $\sum_{n=1}^{\infty} \frac{2^{n} n^{2}}{n!}$

Problem 3 ( 6 points). Find the Maclaurin series (Taylor series at zero) of the following functions. You do NOT need to find the radius of convergence.
(1) $f(x)= \begin{cases}\frac{1-\cos (x)}{x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
(2) $f(x)=\sqrt{4-x^{2}}$.
(3) $f(x)=\int_{0}^{x} z e^{z^{2}} d z$

Problem 4 (6 points). Consider the power series

$$
\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{5^{n} n^{2}}
$$

(1) Where is this power series centered?
(2) What is its radius of convergence?
(3) What is its interval of convergence?

Problem 5 (10 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

T F If the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, then the series $\sum_{n=0}^{\infty} a_{n}$ must also converge.

T F If the series $\sum_{n=0}^{\infty} b_{n}$ converges and $0 \leq a_{n} \leq b_{n}$, then the series $\sum_{n=0}^{\infty} a_{n}$ must also converge.

T F The series $\sum_{n=1}^{\infty}(-4 / 3)^{n}$ converges.
$\mathrm{T} \quad \mathrm{F}$ The series $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})$ diverges.
$\mathrm{T} \quad \mathrm{F}$ The series $\sum_{n=1}^{\infty}\left(1-1 / n^{2}\right)$ diverges.

T F If the series $\sum_{n=0}^{\infty} a_{n}$ converges to $S$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges to $S-a_{0}$.

T F If the series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ both converge, then $\lim _{n \rightarrow \infty} a_{n} / b_{n}=$ $L$ for some nonzero real number $L$.

T F If the function $f$ is continuous, positive, and decreasing on $[1, \infty)$ and $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1}^{\infty} f(n)$ converges to the same value.

T F If the power series $\sum_{n=1}^{\infty} c_{n} x^{n}$ converges for $x=1$ then it must also converge for $x=-1$.

T F If the series $\sum_{n=0}^{\infty} a_{n}$ converges, then the sequence of terms $\left\{a_{n}\right\}_{n=0}^{\infty}$ must converge to zero.

Problem 6 (10 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.
$\mathrm{T} \quad \mathrm{F}$ The series $\sum_{n=1}^{\infty}(-1)^{n} / n^{2}$ converges conditionally.

T F If the sequence $\left\{b_{n}\right\}_{n=0}^{\infty}$ is bounded and increasing, then it must converge.

T F If the series $\sum_{n=0}^{\infty} a_{n}$ diverges and $0 \leq a_{n} \leq b_{n}$ for all $n$, then the series $\sum_{n=0}^{\infty} b_{n}$ must also diverge.

T F If the series $\sum_{n=0}^{\infty} a_{n}$ converges to $L$, then the series $\sum_{n=0}^{\infty}\left(a_{n}+3\right)$ converges to $L+3$.

T F The series $\sum_{n=1}^{\infty}\left(\frac{1}{n+2}-\frac{1}{n}\right)$ converges.

T F Given a sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, if the sequences $\left\{a_{2 n}\right\}_{n=0}^{\infty}$ and $\left\{a_{2 n+1}\right\}_{n=0}^{\infty}$ both converge then $\left\{a_{n}\right\}_{n=0}^{\infty}$ itself must converge.

T F If the series $\sum_{n=0}^{\infty} b_{n}$ converges and $a_{n} / b_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the series $\sum_{n=0}^{\infty} a_{n}$ must also converge.

T F The series $\sum_{n=1}^{\infty} n^{-1.1}$ converges.

T F If the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely at $x=-2$ then it must also converge absolutely at $x=2$.
$\mathrm{T} \quad \mathrm{F}$ The series $\sum_{n=1}^{\infty} 1 / 3^{n-1}$ converges to $4 / 3$.

If you finish early, check your work on each problem by one of the following methods:
(1) Check that your proposed solution has the desired properties.
(2) Solve the problem again in a different way.
(3) For each true/false problem you marked as true, try to prove it is true.
(4) For each true/false problem you marked as false, try to construct a counterexample.

