MATH 13 FINAL EXAM SOLUTIONS

WINTER 2014

Problem 1 (15 points). For each statement below, circle T or F according to whether the
statement is true or false. You do NOT need to justify your answers.

@M F For all functions f: A — B and g : B — C' and all subsets S C C,
we have (go f)7'[S] = f~[g™![S]].

If A is a well-ordered set of real numbers and z,y € A, then there
must only be finitely many elements of A between x and .

For all sets A and B, if there is a surjection from A to B and B is
countable, then A is countable.

For every set A, there is an injection from A to P(A).

If fi and fy are functions from A to B and g is a surjection from
B to C,and go f; = go fo, then f; must equal f5.
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For all functions f : A — B and all subsets S C A, we have
fHfLS] = 8.

For all sets A and B, there is a bijection from A” to B4.

P = Q@ is logically equivalent to (~ P) V Q.

For every set A, there is a bijection from P(A) to {0,1}4.

For all a,b € Z, if a = b (mod 2) and @ = b (mod 3), then a = b
(mod 6).
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If fi and f, are functions from A to B and ¢ is an injection from
B to C, and go f; = go fy, then f; must equal f.

If A is a countably infinite set, then P(A) must be uncountable.
The relation on N defined by R = {(x,y) : ¢ | yory | x} is an
equivalence relation.

~(P V Q) is logically equivalent to (~ P) A (~ Q)

If R is a transitive relation on the set A, then R~! must also be a
transitive relation on A.
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Problem 2 (5 points). Let A and B be sets. Prove that AN (AU B) = (AU B)nN B.

Problem 3 (5 points). Are the following two statements logically equivalent?
(1) 3z € 5, (P(z) A Q(x))
(2) (x € S,P(x)) ATz € S,Q(x))

Justify your answer.



Problem 4 (5 points). PROVE or DISPROVE: If z, y, and z are real numbers and x — v,
y + 2, and z + x are all rational, then z, y, and z must all be rational.

Solution. We disprove the statement with a counterexample. Let z,y = v/2 and z = —/2.
Then x —y, y + z, and z + z are all rational (they are all zero) but z, y, and z are not all
rational (in fact, they are all irrational, but we don’t need this.)

Remark. A large majority of students submitted “proofs” of the problem statement. We
all make mistakes sometimes, but I think it is fair to say that some of you may need to
recalibrate your BS detectors.

Remark. Note that nothing in the problem says that x, y, and 2z are distinct real numbers.
However, if we wanted a counterexample using distinct real numbers we could take z = /2,
y =142, and z = —v/2, for example.

Remark. Some common mistakes appearing in false arguments:

e From the assumption that a + b is rational, it does not follow that a and b are both
rational.

e Every integer is rational. If n € Z then we can write n = n/1, so n is rational.

e If you want to prove the contrapositive of the problem statement, your hypothesis
will be “z, y, and z are not all rational”; that is, “at least one of z, y and z is
irrational”.

— You cannot assume that all of x, y, and z are irrational.

— You cannot assume that one and only one of x, y, and z is irrational.

— Even if you could assume that one and only one of z, y, and z is irrational, you
could not say “without loss of generality x is irrational and y and z are rational.”
The problem statement is not symmetric with respect to z, y, and z.

Problem 5 (5 points). The Fibonacci sequence {aq, as, as, ...} is defined by
a; =1
a; =1
Gy = Gp_9 + Qp_1, if n > 3.

Prove that a, > (8/5)" 2 for all n € N.



Problem 6 (5 points). Define the equivalence relation E on Z by
rEy <= 2°=y* (mod7), forallz,y€Z

and let Z/E denote the set of equivalence classes of E. Is there a function f:Z/E — Z/E
such that for all integers = we have f([z]) = [#*]? Why or why not?

Solution. Yes. To show that there is such a function, it suffices (as explained below) to check
that for all x,y € Z, if [x] = [y|, then [2%] = [y?]. So let x,y € Z and assume that [z] = [y].
In other words, 72 = y? (mod 7). Then we have

(@) =2 = (2*)° = (¥*)’ =" = (v')* (mod 7),
so [2%] = [y?] as desired. This means that the relation f on Z/FE defined by

f=A{lz],[2°]) s 2w € Z}
is a function from Z/E to Z/E. It is clear that this function f has the desired property that
f([z]) = [23] for all integers .

Remark. In the context of this problem, checking the implication “if [z] = [y], then [z®] =
[43]” is sometimes called “checking whether the function f is well-defined.” This terminology
is confusing because it seems to presuppose that a function f is given, when actually it is
not. Your task is to determine whether there is a function satisfying a desired property. In
this case, there is such a function. It may be helpful to see the solutions to the yellow exam
for a similar example where there is not a function satisfying the desired property.

Remark. Some common mistakes:

e If you want to prove that such a function exists (which is the correct solution) then
you should not use the symbol “f” in a way that presupposes that such a function
exists.

e The problem does not ask you to check that the relation F is an equivalence relation.
This was given.

e The fact that [2*] # [z] for some integers x is not relevant. The problem asks you
whether there is a function f satisfying a certain property. It does not ask you
whether the identity function on 7Z/E satisfies that property.

e Many students repeated the proof that the operation of addition is well-defined on
Zz. This problem is different in two ways: (1) the operation is cubing, not addition,
and (2) the domain is Z/E, not Zj.

e Many students rewrote the equation y? — 2? = Tk as y = va2 + 7k. 1 think this
is meaningless because a single number can have multiple square roots modulo 7;
for example, 4 = 2% (mod 7) and 4 = 5% (mod 7), and unlike in the case of the real
numbers, there is no notion of “positive” in modular arithmetic that gives a canonical
choice of square root. Note that the ordinary notion of square root for real numbers
is irrelevant; it may result in numbers that are not integers, and it certainly isn’t

well-defined mod 7.



Problem 7 (5 points). Let A and B be disjoint sets. Prove that there is a bijection from
P(A) x P(B) to P(AU B).

Solution. Define a function f : P(A) x P(B) — P(AU B) by
f(¢,D))=CuUD.

Here (C, D) denotes an arbitrary element of P(A) x P(B), so C' denotes an arbitrary subset
of A and D denotes an arbitrary subset of B.

The function f is injective: Let (C, D), (C',D") € P(A)xP(B) and assume that f((C, D)) =
f((C’, D). In other words, C UD = C"U D’. Because C,C" C A and D,D" C B and
AN B =0, we have

C=(CUD)NA=(C"UD)NA=C" and
D=(CuD)nB=(C'uD"YnB=D"

So (C, D) = (C", D') as desired.
The function f is surjective: Let F € P(AUB). That is, E C AUB. Defining C' = ENA
and D =FENB,wehave C C Aand D C Band E=CUD, so E= f((C,D)) as desired.

Remark. A few students argued along the following lines: Let m = |A| and n = |B|. Then
|P(A)] = 2™ and |P(B)| = 2". We have |AU B| = |A| + |B| because A and B are disjoint, so
|P(AUB)| = 2™+, Therefore |P(A)xP(B)| = |P(A)|-|P(B)| = 2™-2" = 2"*" = |P(AUB)|,
so there is a bijection from P(A) x P(B) to P(AU B).

Unfortunately, this argument only works when A and B are finite sets. It is possible to
define a notion of “infinite cardinal number” and do a similar argument for infinite sets. But
what is the meaning of the equation
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for infinite cardinal numbers m and n? Is it a true statement? (We have seen that some
properties of finite sets do not hold for infinite sets.)

In fact this equation can be given a meaning and proved to hold for infinite cardinal
numbers m and n. But the proof would look a lot like the solution I gave above! This is
because one defines the product of cardinalities as the cardinality of a product, and defines
the sum of cardinalities as the cardinality of a disjoint union, and defines the equality of
cardinalities as the existence of a bijection. Moral: “cardinality” is not a magic wand that
you can wave to conjure up a bijection if you didn’t already know how to construct one.



Problem 8 (5 points). Prove that there is a bijection from R to R — {0}.
Solution. Define a function f: R — R — {0} by

(@) x+ 1 if x is a nonnegative integer
xT) =
T otherwise (that is, if  is negative or z is not an integer).

Note that f really is a function into R — {0}: the number 0 is not in the range because if
x is not a nonnegative integer then neither is f(x), and if z is a nonnegative integer then
f(z) > 0.
The function f is injective: Let z,y € R and assume that x # y.
e Case 1: x and y are nonnegative integers. Then f(z) =z +1#y+ 1= f(y).
e Case 2: one of x and y is a nonnegative integer and the other isn’t. Without loss of
generality, = is and y isn’t. Then f(z) (which equals = + 1) is a nonnegative integer
and f(y) (which equals y) isn’t, so f(z) # f(y).
e Case 3: neither x nor y is a positive integer. Then f(z) = x # y = f(y).
The function f is surjective: Let y € R — {0}.
e Case 1: y is a nonnegative integer. Because y # 0, the number y — 1 is also a
nonnegative integer, and y = f(y — 1).
e Case 2: otherwise. Then y = f(y).

Remark. Many students either

e defined a bijection from R — {0} to R — {0},

e defined a bijection from R to R,

e defined a function that was a bijection Z to Z—{0}, but did not extend to a bijection
R to R — {0} (in most cases either 1/2 was not in the range, or —1/2 was not in the
range, for example,) or

e argued that any two uncountable sets have the same cardinality (meaning that there
is a bijection between them,) which is not true. For example, if X is any uncountable
set then P(X) is also uncountable because there is an injection from X to P(X);
however, by Cantor’s theorem there can be no bijection from X to P(X).



