
MATH 13 FINAL EXAM SOLUTIONS

WINTER 2014

Problem 1 (15 points). For each statement below, circle T or F according to whether the
statement is true or false. You do NOT need to justify your answers.

T© F For all functions f : A→ B and g : B → C and all subsets S ⊆ C,
we have (g ◦ f)−1[S] = f−1[g−1[S]].

T F© If A is a well-ordered set of real numbers and x, y ∈ A, then there
must only be finitely many elements of A between x and y.

T F© For all sets A and B, if there is a surjection from A to B and B is
countable, then A is countable.

T© F For every set A, there is an injection from A to P(A).
T F© If f1 and f2 are functions from A to B and g is a surjection from

B to C, and g ◦ f1 = g ◦ f2, then f1 must equal f2.

T F© For all functions f : A → B and all subsets S ⊆ A, we have
f−1[f [S]] = S.

T F© For all sets A and B, there is a bijection from AB to BA.
T© F P =⇒ Q is logically equivalent to (∼ P ) ∨Q.
T© F For every set A, there is a bijection from P(A) to {0, 1}A.
T© F For all a, b ∈ Z, if a ≡ b (mod 2) and a ≡ b (mod 3), then a ≡ b

(mod 6).

T© F If f1 and f2 are functions from A to B and g is an injection from
B to C, and g ◦ f1 = g ◦ f2, then f1 must equal f2.

T© F If A is a countably infinite set, then P(A) must be uncountable.
T F© The relation on N defined by R = {(x, y) : x | y or y | x} is an

equivalence relation.
T© F ∼(P ∨Q) is logically equivalent to (∼P ) ∧ (∼Q)
T© F If R is a transitive relation on the set A, then R−1 must also be a

transitive relation on A.
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Problem 2 (5 points). Let A and B be sets. Prove that A ∩ (A ∪B) = (A ∪B) ∩B.

Problem 3 (5 points). Are the following two statements logically equivalent?

(1) ∃x ∈ S, (P (x) ∧Q(x))
(2) (∃x ∈ S, P (x)) ∧ (∃x ∈ S,Q(x))

Justify your answer.



Problem 4 (5 points). PROVE or DISPROVE: If x, y, and z are real numbers and x − y,
y + z, and z + x are all rational, then x, y, and z must all be rational.

Solution. We disprove the statement with a counterexample. Let x, y =
√

2 and z = −
√

2.
Then x − y, y + z, and z + x are all rational (they are all zero) but x, y, and z are not all
rational (in fact, they are all irrational, but we don’t need this.)

Remark. A large majority of students submitted “proofs” of the problem statement. We
all make mistakes sometimes, but I think it is fair to say that some of you may need to
recalibrate your BS detectors.

Remark. Note that nothing in the problem says that x, y, and z are distinct real numbers.
However, if we wanted a counterexample using distinct real numbers we could take x =

√
2,

y = 1 +
√

2, and z = −
√

2, for example.

Remark. Some common mistakes appearing in false arguments:

• From the assumption that a + b is rational, it does not follow that a and b are both
rational.
• Every integer is rational. If n ∈ Z then we can write n = n/1, so n is rational.
• If you want to prove the contrapositive of the problem statement, your hypothesis

will be “x, y, and z are not all rational”; that is, “at least one of x, y and z is
irrational”.

– You cannot assume that all of x, y, and z are irrational.
– You cannot assume that one and only one of x, y, and z is irrational.
– Even if you could assume that one and only one of x, y, and z is irrational, you

could not say “without loss of generality x is irrational and y and z are rational.”
The problem statement is not symmetric with respect to x, y, and z.

Problem 5 (5 points). The Fibonacci sequence {a1, a2, a3, . . .} is defined by

a1 = 1

a2 = 1

an = an−2 + an−1, if n ≥ 3.

Prove that an ≥ (8/5)n−2 for all n ∈ N.



Problem 6 (5 points). Define the equivalence relation E on Z by

x E y ⇐⇒ x2 ≡ y2 (mod 7), for all x, y ∈ Z
and let Z/E denote the set of equivalence classes of E. Is there a function f : Z/E → Z/E
such that for all integers x we have f([x]) = [x3]? Why or why not?

Solution. Yes. To show that there is such a function, it suffices (as explained below) to check
that for all x, y ∈ Z, if [x] = [y], then [x3] = [y3]. So let x, y ∈ Z and assume that [x] = [y].
In other words, x2 ≡ y2 (mod 7). Then we have

(x3)2 = x6 = (x2)3 ≡ (y2)3 = y6 = (y3)2 (mod 7),

so [x3] = [y3] as desired. This means that the relation f on Z/E defined by

f = {([x], [x3]) : x ∈ Z}
is a function from Z/E to Z/E. It is clear that this function f has the desired property that
f([x]) = [x3] for all integers x.

Remark. In the context of this problem, checking the implication “if [x] = [y], then [x3] =
[y3]” is sometimes called “checking whether the function f is well-defined.” This terminology
is confusing because it seems to presuppose that a function f is given, when actually it is
not. Your task is to determine whether there is a function satisfying a desired property. In
this case, there is such a function. It may be helpful to see the solutions to the yellow exam
for a similar example where there is not a function satisfying the desired property.

Remark. Some common mistakes:

• If you want to prove that such a function exists (which is the correct solution) then
you should not use the symbol “f” in a way that presupposes that such a function
exists.
• The problem does not ask you to check that the relation E is an equivalence relation.

This was given.
• The fact that [x3] 6= [x] for some integers x is not relevant. The problem asks you

whether there is a function f satisfying a certain property. It does not ask you
whether the identity function on Z/E satisfies that property.
• Many students repeated the proof that the operation of addition is well-defined on
Z7. This problem is different in two ways: (1) the operation is cubing, not addition,
and (2) the domain is Z/E, not Z7.
• Many students rewrote the equation y2 − x2 = 7k as y =

√
x2 + 7k. I think this

is meaningless because a single number can have multiple square roots modulo 7;
for example, 4 = 22 (mod 7) and 4 = 52 (mod 7), and unlike in the case of the real
numbers, there is no notion of “positive” in modular arithmetic that gives a canonical
choice of square root. Note that the ordinary notion of square root for real numbers
is irrelevant; it may result in numbers that are not integers, and it certainly isn’t
well-defined mod 7.



Problem 7 (5 points). Let A and B be disjoint sets. Prove that there is a bijection from
P(A)× P(B) to P(A ∪B).

Solution. Define a function f : P(A)× P(B)→ P(A ∪B) by

f((C,D)) = C ∪D.

Here (C,D) denotes an arbitrary element of P(A)×P(B), so C denotes an arbitrary subset
of A and D denotes an arbitrary subset of B.

The function f is injective: Let (C,D), (C ′, D′) ∈ P(A)×P(B) and assume that f((C,D)) =
f((C ′, D′)). In other words, C ∪ D = C ′ ∪ D′. Because C,C ′ ⊆ A and D,D′ ⊆ B and
A ∩B = ∅, we have

C = (C ∪D) ∩ A = (C ′ ∪D′) ∩ A = C ′ and

D = (C ∪D) ∩B = (C ′ ∪D′) ∩B = D′.

So (C,D) = (C ′, D′) as desired.
The function f is surjective: Let E ∈ P(A∪B). That is, E ⊆ A∪B. Defining C = E ∩A

and D = E ∩B, we have C ⊆ A and D ⊆ B and E = C ∪D, so E = f((C,D)) as desired.

Remark. A few students argued along the following lines: Let m = |A| and n = |B|. Then
|P(A)| = 2m and |P(B)| = 2n. We have |A∪B| = |A|+ |B| because A and B are disjoint, so
|P(A∪B)| = 2m+n. Therefore |P(A)×P(B)| = |P(A)|·|P(B)| = 2m·2n = 2m+n = |P(A∪B)|,
so there is a bijection from P(A)× P(B) to P(A ∪B).

Unfortunately, this argument only works when A and B are finite sets. It is possible to
define a notion of “infinite cardinal number” and do a similar argument for infinite sets. But
what is the meaning of the equation

2m · 2n = 2m+n

for infinite cardinal numbers m and n? Is it a true statement? (We have seen that some
properties of finite sets do not hold for infinite sets.)

In fact this equation can be given a meaning and proved to hold for infinite cardinal
numbers m and n. But the proof would look a lot like the solution I gave above! This is
because one defines the product of cardinalities as the cardinality of a product, and defines
the sum of cardinalities as the cardinality of a disjoint union, and defines the equality of
cardinalities as the existence of a bijection. Moral: “cardinality” is not a magic wand that
you can wave to conjure up a bijection if you didn’t already know how to construct one.



Problem 8 (5 points). Prove that there is a bijection from R to R− {0}.

Solution. Define a function f : R→ R− {0} by

f(x) =

{
x + 1 if x is a nonnegative integer

x otherwise (that is, if x is negative or x is not an integer).

Note that f really is a function into R − {0}: the number 0 is not in the range because if
x is not a nonnegative integer then neither is f(x), and if x is a nonnegative integer then
f(x) > 0.

The function f is injective: Let x, y ∈ R and assume that x 6= y.

• Case 1: x and y are nonnegative integers. Then f(x) = x + 1 6= y + 1 = f(y).
• Case 2: one of x and y is a nonnegative integer and the other isn’t. Without loss of

generality, x is and y isn’t. Then f(x) (which equals x + 1) is a nonnegative integer
and f(y) (which equals y) isn’t, so f(x) 6= f(y).
• Case 3: neither x nor y is a positive integer. Then f(x) = x 6= y = f(y).

The function f is surjective: Let y ∈ R− {0}.
• Case 1: y is a nonnegative integer. Because y 6= 0, the number y − 1 is also a

nonnegative integer, and y = f(y − 1).
• Case 2: otherwise. Then y = f(y).

Remark. Many students either

• defined a bijection from R− {0} to R− {0},
• defined a bijection from R to R,
• defined a function that was a bijection Z to Z−{0}, but did not extend to a bijection
R to R− {0} (in most cases either 1/2 was not in the range, or −1/2 was not in the
range, for example,) or
• argued that any two uncountable sets have the same cardinality (meaning that there

is a bijection between them,) which is not true. For example, if X is any uncountable
set then P(X) is also uncountable because there is an injection from X to P(X);
however, by Cantor’s theorem there can be no bijection from X to P(X).


