Processing math: 2%

Definition

An n×n matrix A is convergent if

lim

for all 1 \leq i,j\leq n.

Theorem

The following statements are equivalent:

  1. A is a convergent matrix
  2. \lim_{n\to \infty} \|A^n\| = 0, for some induced norm
  3. \lim_{n \to \infty} \|A^n\| = 0, for all induced norms
  4. \rho(A) < 1
  5. \lim_{n\to\infty} A^n x = 0 for every x \in \mathbb R^n
  6. Given an induced norm \|\cdot\|, \|A^n\| = O((1+\delta)^{-n}), for some \delta > 0.

Gershgorin Circle Theorem

Let A be an n\times n matrix and let R_i denote the circle in the complex plane \mathbb C with center a_{ii} and radius \sum_{j\neq i} |a_{ij}|:

R_i = \left\{ z \in \mathbb C : |z-a_{ii}| \leq \sum_{j \neq i} |a_{ij}| \right\}.

Then all of the eigenvalues of A are contained in the union \bigcup_i R_i.

Proof

Suppose \lambda is an eigenvalue with assoicated eigenvector v. We need to show that \lambda \in R_i for some i. We normalize \|x\|_\infty = 1. The eigenvalue equation gives Ax = \lambda x or

\sum_{j=1}^n a_{ij} x_j = \lambda x_j, \quad 1 \leq i \leq n.

Let k be the smallest integer such that |x_k| = 1. Consider the above equation for this value of k:

\sum_{j=1}^n a_{kj} x_j = \lambda x_k ( \lambda - a_{kk}) x_k = \sum_{j\neq k} a_{kj} x_j |\lambda - a_{kk}| |x_k| \leq \sum_{j\neq k} |a_{kj}| |x_j| |\lambda - a_{kk}| \leq \sum_{j\neq k} |a_{kj}|.

This shows that \lambda \in R_k and therefore \lambda \in \bigcup_i R_i. This holds for every eigenvalue.

In [21]:
hold on
%A = [10 2 3 1; 1 -3 1 -1; -1 -3 -1 4; 2 2 2 5];
%A = rand(10)-1/2; A = A + 1j*(rand(10)-1/2);
A = [4,1,1;0,2,1;-2,0,9];
for i = 1:length(A)
    a = A(i,i); r = norm(A(i,:),1)-abs(a);
    theta = linspace(0,2*pi,100);
    x = r*cos(theta); y = r*sin(theta);
    plot(x+real(a),y + imag(a),'k')
end
lambda = eigs(A);
plot(real(lambda),imag(lambda),'*')

Example

Estimate the spectral radius of A using the Gershgorin Circle Theorem

A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 2 &1 \\ 2 & 1 & 9 \end{bmatrix}.

Simple iteration

We want to solve the equation Ax = b, or find the root of Ax - b. Recall that every root-finding problem has equivalent, associated fixed-point iterations. If x is a solution of Ax = b then x satisfies

x = (I - A)x + b.

Define T = I -A, and we want to find a fixed point of

g(x) = Tx + b.
In [20]:
A = [1.1 .1 .3 .4; .2 .9 -.1 .33; -.3 .4 1. .8; .1 .2 .3 1];
b = [1 1 1 1]';
T = eye(4)-A;
x = [0 0 0 0]';
for i = 1:20
    x = T*x + b;
end
A*x-b
ans =

   1.0e-04 *

   -0.9116
   -0.4433
   -0.6195
   -0.5963

This leads to the natural question:

Given a matrix T and an initial vector x^{(0)}, when does the fixed point method given by

g(x) = Tx + b

converge?

Fortunately, the spectral radius allows us to answer this question in a fairly simple manner:

Lemma

If the spectral radius of T satisfies \rho(T) < 1, then (I-T)^{-1} exists and

(I-T)^{-1} = \sum_{k=0}^\infty T^k.

Proof

First, if (I-T) is invertible if and only if it has a trivial nullspace or (I-T)v = 0 if and only if v = 0. If v is not zero, then \lambda = 1 would be an eigenvalue of T, but \rho(T) < 1. Thus (I-T)^{-1} exists. Then for any induced norm, consider

\left\| (I-T)^{-1} - \sum_{j=0}^k T^j \right\| = \left\|(I-T)^{-1} \left( I - (I-T) \sum_{j=0}^k T^j \right) \right\| \leq \left\|(I-T)^{-1} \right\| \left\| I - (I-T) \sum_{j=0}^k T^j \right\|.

Now, we examine this last factor

I - (I-T) \sum_{j=0}^k T^j = I - \sum_{j=0}^k T^j + \sum_{j=0}^k T^{j+1} = T^{k+1}.

Then, because T is a convergent matrix \|T^{k+1}\| \to 0 as k \to \infty. This shows

\lim_{k \to \infty} \left\| (I-T)^{-1} - \sum_{j=0}^k T^j \right\| = 0.

Then because convergence in matrix norm implies that individual entries converge, we obtain

(I-T)^{-1} = \sum_{j=0}^\infty T^j,

as required.