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1 Introduction and Main Results

Let (M, θ) be a strictly pseudoconvex pseudo-Hermitian compact hypersur-
face in Cn+1 in the sense of Webster [34] with a pseudo-Hermitian real one-
form θ on M . Let Rθ be the Webster pseudo scalar curvature for M with
respect to θ. By the solution of the CR Yamabe problem given by Jerison
and Lee [18], Gamara and Yacoub [10] and Gamara [9] (for n = 1), there is a
pseudo-Hermitian real one-form θ so that (M, θ) has constant Webster pseudo
scalar curvature Rθ. Let ρ be a defining function for M . Then θ = 1

2i
(∂ρ−∂ρ)

is a pseudo-Hermitian one-form for M , and any Hermitian one-form can be
constructed in this way by using defining function of M . When M = S2n+1,
the unit sphere in Cn+1, if ρ(z) = |z|2 − 1, then Rθ = n(n + 1) on M . The
main purpose of the paper is to give some characterizations on ρ so that the
pseudo scalar curvature Rθ is a positive constant on M if and only if M is
CR-equivalent to the sphere S2n+1.

Let D be a smoothly bounded pseudoconvex domain in Cn. Let u be a
strictly plurisubharmonic exhaustion function for D (u = +∞ on ∂D). Let
ρ(z) = −e−u(z). Then the Fefferman’s functional J(ρ) of ρ is defined as:

(1.1) J(ρ) = − det
[

ρ ∂ρ
(∂ρ)∗ H(ρ)

]
where H(ρ) is the complex Hessian matrix of ρ, ∂ρ = (∂1ρ, · · · , ∂nρ) is a 1×n
matrix and (∂ρ)∗ is its adjoint matrix.
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Let f(z) be a positive function on D. It was known (see, for examples,
[7], [25]) that

(1.2) J(ρ) = f(z) > 0 in D; ρ = 0 on ∂D

if and only if

(1.3) det H(u)(z) = f(z)e(n+1)u in D; u = +∞ on ∂D.

When f(z) ∈ C∞(D) is positive for all z ∈ D, the existence and unique-
ness of a strictly plurisubharmonic solution of (1.3) were given by Cheng and
Yau in [7]. In particular, when f(z) ≡ 1, they proved that the plurisubhar-
monic solution u of (1.3) defines a complete Kähler-Einstein metric on D:

∂2u
∂zi∂zj

dzi ⊗ dzj.

When D is strictly pseudoconvex, uniqueness and a formal approximation
solution ρ of (1.2) with u = − log(−ρ) being plurisubharmonic in D were
given by Fefferman [8] earlier; the existence of such a solution was proved
by Cheng and Yau [7] with ρ ∈ Cn+3/2(D). Lee and Melrose [22] gave
an asymptotic expansion solution for ρ. In particular, they proved that
ρ ∈ Cn+2−ε(D) for any ε > 0. In general ρ fails to be in Cn+2(D).

Using the notation of J(ρ), the following formula for the Webster pseudo
Ricci curvature of (M, θ) was given by Li and Luk in [28]:

(1.4) Ricz(w, v) = −
n+1∑
j,k=1

∂2 log J(ρ)(z)

∂zj∂zk

wjvk + (n + 1)
det H(ρ)(z)

J(ρ)(z)
wjvk

for v, w ∈ Hz(M), holomorphic tangent space of M at z.
Assume that φ : D → Bn+1 is a biholomorphic mapping, and if

ρ(z) = |φ(z)|2 − 1, then det H(ρ) = J(ρ) = | det φ′(z)|2 on D and log J(ρ) is
pluriharmonic in D. By (1.4), we have Rθ = n(n + 1) on ∂D.

The main purpose of the current paper is to prove the converse is also
true, we state it as the following theorem.

THEOREM 1.1 Let ρ ∈ C3(D) be a defining function for D so that u(z) =
− log(−ρ(z)) is strictly plurisubharmonic in D. Let M = ∂D and θ =
1
2i

(∂ρ−∂ρ). Assume log J(ρ) is harmonic in the Kähler metric ∂2u
∂zi∂zj

dzi⊗dzj,

we have the following two statements hold:
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(a) If Rθ ≡ c > 0, constant on ∂D, then D is biholomorphic to the unit
ball Bn+1 in Cn+1.

(b) Webster pseudo scalar curvature

(1.5) Rθ = n(n + 1)
det H(ρ)

J(ρ)
on ∂D.

Notice that if u(z) = − log(−ρ(z)) is the potential function for the
Kähler-Einstein metric for D, then J(ρ) = 1 on D. By Theorem 1,1 and
Theorem 3.1 in [24], we have the following corollary.

Corollary 1.2 Let D be a smoothly bounded strictly pseudoconvex domain
in Cn+1. Assume that u(z) = − log(−ρ(z)) is the potential function for
the Kähler-Einstein metric for D (defined by (1.3) with f ≡ 1) and θ =
1
2i

(∂ρ − ∂ρ) on M = ∂D. If Rθ ≡ c > 0, constant on ∂D, then there is a
biholomorphic map φ : D → Bn+1 so that det φ′(z) is a constant on D.

The paper is organized as follows: In Section 2, we provide several main
lemmas. In Section 3, we will prove part (b) of Theorem 1.1. Finally, the
proofs of Part(a) of Theorem 1.1 and Corollary 1.2 are given in Section 4.

2 Main Lemmas

Let D = {z ∈ Cn : ρ(z) < 0} with C2 defining function ρ. Let u(z) =
− log(−ρ(z)) be plurisubharmonic in D. Then the relation between J(ρ)
and det H(u) is given by the following lemma.

Lemma 2.1 Let u ∈ C2(D) and let ρ(z) = −e−u. Then

(2.1) det H(u) = J(ρ)e(n+1)u.

Proof. By viewing ∂u as an 1 by n matrix and (∂u)∗ is its adjoint matrix,
one has that

(2.2) ∂ρ = −ρ∂u, H(ρ)(z) = −ρ(z)H(u) + ρ(z)(∂u)∗ ∂u.
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Thus

J(ρ) = − det
[

ρ −ρ∂u
−ρ(∂u)∗ −ρH(u) + ρ(∂u)∗∂u

]
= −(ρ)n+1 det

[
1 −∂u

−(∂u)∗ −H(u) + (∂u)∗∂u

]
= −(ρ)n+1 det

[
1 −∂u
0 −H(u) + (∂u)∗∂u− (∂u)∗∂u

]
= −(ρ)n+1 det(−H(u))

= e−(n+1)u det H(u).

Therefore, (2.1) holds and the lemma is proved.

Let [uij]t = H(u)−1. We will use the following notations:

(2.3) uij =
∂2u

∂zi∂zj

, ui =
∂u

∂zi

, uj =
∂u

∂zj

and

(2.4) |∂u|2u := uij∂iu∂ju, T (z) := |∂u|2u + e−u.

Then if ρ(z) = −e−u(z) with u being strictly plurisubharmonic in D, then by
Lemma 2.2 in [24],

(2.5) det H(ρ) = e−nu det H(u)(1− |∂u|2u) = J(ρ)eu(1− |∂u|2u).

Thus

(2.6)
det H(ρ)

J(ρ)
− 1 = eu(1− T (z)).

Then the following lemma was included in the proof of Part(b) of Theorem
2.4 in [24], given in pages 468–470.

Lemma 2.2 Let D be a bounded pseudoconvex domain in Cn. Let u ∈
C4(D) be strictly plurisubharmonic in D, and let ρ(z) = −e−u. If − log J(ρ)
is subharmonic in the metric uijdzi ⊗ dzj, then

(2.7)
n∑

i,j=1

uij∂ij(−
det H(ρ)

J(ρ)
)(z) ≥ 0, z ∈ D.
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The following result essentially is corollary of the main theorem of Burns
[3] in our notation:

Corollary 2.3 Let ρ ∈ C3(D) be a defining function for D so that u(z) =
− log(−ρ(z)) is strictly plurisubharmonic in D. Let M = ∂D and θ =
1
2i

(∂ρ− ∂ρ). If det H(ρ)/J(ρ) is a positive constant on the boundary ∂D of
D, then D is biholomorphic to the unit ball Bn+1 in Cn+1.

Proof. Since u = − log(−ρ) is plurisubharmonic in D, by (2.1), we have
J(ρ) > 0 on D. Notice that det H(ρ)/J(ρ) is a positive constant on D, we
have ρ is strictly plurisubharmonic in D. Let z0 ∈ D be such that

(2.8) m = −min{ρ(z) : z ∈ D} = −ρ(z0),

Then

(2.9) J(ρ)(z0) = m det H(ρ)(z0).

Let

(2.10) τ(z) = ρ(z) + m.

Then τ : D → [0, m) is smooth, onto and strictly plurisubharmonic. More-
over,

J [τ ] = − det H(τ)[τ − |∂τ |2τ ]
= −m det H(ρ)− det H(ρ)(ρ− |∂ρ|2ρ)
= −m det H(ρ) + J(ρ).

Therefore,

(2.11)
det H(ρ)

J(ρ)
≡ constant on D ⇐⇒ J(τ) ≡ 0 on D.

Notice that

(2.12) J(τ) = −τn+1 det H(log τ)

Thus

(2.13) J(τ) = 0 ⇐⇒ det H(log τ) = 0 D \ τ−1(0).

Combining the above relations and the main theorem of Burns in [3], the
proof of Corollary 2.3 is complete.

Next result is the main theorem of this section.
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THEOREM 2.4 Let ρ ∈ C3(D) be a defining function for D so that u(z) =
− log(−ρ(z)) is strictly plurisubharmonic in D. If − log J(ρ) is subharmonic
in Kähler metric uijdzi ⊗ dzj, and if there is a positive constant c so that

(2.14)
det H(ρ)

J(ρ)
≡ c on ∂D,

then

(2.15)
det H(ρ)

J(ρ)
≡ c on D.

Proof. Since det H(ρ)/J(ρ) ≡ c > 0 on ∂D, replacing ρ by cρ if it is
necessary, without loss of generality, we may assume that c = 1. We can
write

(2.16)
det H(ρ)

J(ρ)
:= 1 + A(z)ρ(z), z ∈ D.

Since − log J(ρ) is subharmonic in the metric uijdzi⊗dzj, by Lemma 2.2, we

have that det H(ρ)/J(ρ) attains its minimum over D at some point in ∂D.
Thus (2.16) holds with A(z) ≤ 0 in D. By (2.6), one has

(2.17) 1− T (z) =
det H(ρ)

J(ρ)
e−u − e−u = (1 + A(z)ρ)(−ρ) + ρ.

Thus, by (2.16)

(2.18) T (z) = 1− ρ(z) + (1 + Aρ)ρ = 1 + A(z)ρ(z)2.

We claim that T (z) ≡ 1 on D (i.e. det H(ρ)/J(ρ) ≡ 1 on D.)
By Lemma 2.2, if there is z0 ∈ D so that det H(ρ)(z0)/J(ρ)(z0) = 1, then

det H(ρ)/J(ρ) ≡ 1 on D (i.e. A ≡ 0). Otherwise, we have A(z) < 0 on D,
we will prove there is a contradiction.

Let C = max{−A(z) : z ∈ D} ∈ (0,∞). Then C ∈ (0,∞), and by
(2.18), we have

(2.19) 0 < (1− T ) ≤ Cρ(z)2 = Ce−2u, on D.

By (2.18) again, one has T (z) := |∂u|2u + e−u < 1 on D. Since e−u = 0 on
∂D and e−u > 0 in D, one can easily see that

(2.20) b := max{e−u(z) : z ∈ D} < 1, z ∈ D.

6



By (2.19), we have

(2.21) (1− T )−3/4 ≥ C−3/4e
3u
2 ,

1

1− eu(z)
≤ 1

1− b
.

Note: This is key place we use the condition det H(ρ)/J(ρ) = 1 on ∂D.
For any fixed positive integer m satisfying

(2.22) m ≥ C3/4 (n + 1)2

(1− b)2
,

It is easy to see that

(2.23) m(1− T )−3/4 − (1 + n)

(1− e−u)
− (1 + n)2|∂u|2

4(1− e−u)2
eu ≥ 0, z ∈ D.

Let

(2.24) Ln := uij ∂2

∂zi∂zj

− nRe (uijui∂j)

and

(2.25) Lm,n = Ln + m(1− T )−3/4Re (∂iTuij∂j).

For any z0 ∈ D, we will show Lm,nT (z0) ≥ 0. By a holomorphic change of
coordinates, without loss of generality, we may assume that

(2.26) uijk(z0) = 0, 1 ≤ i, j, k ≤ n.

It was proved by author in [24] that: if T (z) ≤ 1 on D and if u is the strictly
plurisubharmonic solution for the Monge-Ampère equation:

(2.27) det H(u) = Je(n+1)u in D; u = ∞ on ∂D

with − log J is subharmonic in the metric uijdzi ⊗ dzj, then

(2.28) uij∂ijT (z0) = uij(uk`uku` + e−u)

≥ n(1− T )− |∂u|2u(1− e−u) + uijuk`uikuj`.

Note: This is (2.24) in [24] while (2.21) in [24] becomes inequality with our
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assumption uij∂ij log J(ρ)(z0) ≤ 0.

By (2.26), one has that ∂ku
ij(z0) = 0. Thus, for 1 ≤ j ≤ n, one has

(2.29) ∂jT (z0) = uk`ukuj` + uj(1− e−u), ∂iT (z0) = uk`uikuj + ui(1− eu).

Thus

(2.30) uijui∂jT (z0) = uijuiu
k`ukuj` + |∂u|2u(1− e−u)

and

(2.31) uij∂ijT (z0) ≥ n(1− T )− uijui∂jT + uijuiu
k`ukuj` + uijuk`uikuj`.

Thus

(2.32) LnT ≥ n(1−T )−Re (1+n)uijui∂jT +Re uijuiu
k`ukuj` +uijuk`uikuj`

By (2.29), one has

(2.33) ui(z0) =
1

1− e−u
[∂iT (z0)− uk`u`uik(z0)].

Thus

(2.34) − (1 + n)Re uijui∂jT

=
1 + n

1− e−u
[−uij∂iT∂jT + uijuk`u`uik∂jT ]

≥ −[
(1 + n)

(1− e−u)
+

(1 + n)2|∂u|2

4(1− e−u)2
eu]uij∂iT∂jT − e−uuijuk`uikuj`

and

(2.35) Re uijuiu
k`ukuj`(z0) ≥ −|∂u|2uuijuk`uikuj`(z0).

Combining (2.32), (2.34) and (2.35), one has

(2.36) LnT (z0) ≥ n(1− T ) + (1− |∂u|2 − e−u)uijuk`uikuj`

−[
(1 + n)

(1− e−u)
+

(1 + n)2|∂u|2

4(1− e−u)2
eu]uij∂iT∂jT.
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Therefore

(2.37) Lm,nT (z0) ≥ n(1− T ) + (1− T )uijuk`uikuj`

+[m(1− T )−3/4 − (1 + n)

(1− e−u)
− (1 + n)2|∂u|2

4(1− e−u)2
eu]uij∂iT∂jT

≥ [m(1− T )−3/4 − (1 + n)

(1− e−u)
− (1 + n)2|∂u|2

4(1− e−u)2
eu]uij∂iT∂jT

≥ 0.

Since det H(u) = J(ρ)e(n+1)u, we have
∑n

i=1 ∂i[J(ρ)e(n+1)uuij] = 0 for all
1 ≤ j ≤ n. Thus

(2.38) Re
n∑

i,j=1

∂i[e
−nue−4m(1−T )1/4

J(ρ)e(n+1)uuij∂jT )]

= e(n+1−n)ue−4m(1−T )1/4

[LnT (z0) + m(1− T )−3/4uij∂iT∂jT ]

= eue−4m(1−T )1/4Lm,nT.

Since

(2.39) uij = (−ρ)(ρij − ρiρj

|∂ρ|2ρ − ρ
), ρi = ρi`ρ`

we have

(2.40) eu
n∑

i=1

ρiu
ij∂jT = − ρρj

|∂ρ|2ρ − ρ
∂jT = 0 on ∂D.

Let |∂ρ|20 =
∑n

j=1 |∂jρ(z)|2. Then

0 = Re
n∑

i,j=1

∫
∂Ω

ρi

|∂ρ|0
e−nue−4m(1−T )1/4

J(ρ)e(n+1)uuij∂jT )dσ(z)

= Re
∫
Ω

n∑
i,j=1

∂i(e
−nue−4m(1−T )1/4

J(ρ)e(n+1)uuij∂jT )dv

=
∫
Ω

eue−4m(1−T )1/4Lm,nT (z)dv(z)
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(2.37) shows that the integrand in the last integral is non-negative on D.
Thus, the above identity implies that

(2.41) eue−4m(1−T )1/4Lm,nT (z) = 0, z ∈ D.

Therefore,
Lm,nT (z) ≡ 0, in D.

Maximum principle (for both T and −T ) implies that

max{T (z) : z ∈ Ω} = max{T (z) : z ∈ ∂D} = 1

and
min{T (z) : z ∈ Ω} = min{T (z) : z ∈ ∂D} = 1.

Therefore

T (z) ≡ 1, and
det H(ρ)

J(ρ)
≡ 1 in D.

This contradicts to A(z) < 0 on D (i.e. T (z) < 1 on D). Therefore, our
claim T (z) ≡ 1 is proved, and so

(2.42)
det H(ρ)

J(ρ)
≡ 1 in D.

Therefore, the proof of Theorem 2.4 is complete.

3 Proof of Part (b) of Theorem 1.1

First let us recall some notions and a formula for the Webster pseudo
Ricci curvature and pseudo scalar curvature proved in [28]. Let M be
a real hypersurface in Cn+1 with a defining function ρ ∈ C3(Cn+1). Let
D = {z ∈ Cn+1 : ρ(z) < 0} and let U be a neighborhood of M . Assume that
u(z) = − log(−ρ(z)) is strictly plurisubharmonic in D∩U . From now on, we
always use ρ to denote a defining function for M and θ = 1

2i
(∂ρ− ∂ρ) is the

pseudo-Hermitian form for M associated to the defining function ρ. We de-
fine a second order differential operator Dαβ associated to ρ for 1 ≤ α, β ≤ n
as follows:

(3.1) Dαβ =
∂2

∂zα∂zβ

− ρα

ρn+1

∂2

∂zn+1∂zβ

−
ρβ

ρn+1

∂2

∂zα∂zn+1

+
ραρβ

|ρn+1|2
∂2

∂zn+1∂zn+1

.
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The following explicit formula for the Webster pseudo Ricci curvature and
pseudo scalar curvature in terms of defining function ρ for (M, θ) was proved
in [28]:

THEOREM 3.1 Let M = ∂D be a strictly pseudoconvex hypersurface in
Cn+1. Let ρ ∈ C3(D ∩ U) ∩ C∞(D ∩ U) be a defining function for M with
that J(ρ) > 0 on D∩U and u(z) = − log(−ρ) is plurisubharmonic in D∩U .
Let θ = (∂ρ− ∂ρ)/(2i). Then for v, w ∈ H(M) = T1,0(M), we have:

(3.2) Ric(w, v) = −Llog J(ρ)(w, v) + (n + 1)
det H(ρ)

J(ρ)
Lρ(w, v).

where Lg(w, v) =
∑n

k,j=1 gkj(z)wkvj is the Levi form associated to g.
In a local coordinates, at those z ∈ M1 = {z ∈ M : ρn+1(z) 6= 0}, we

have the Webster pseudo scalar curvature

(3.3) Rθ(z) = −
n∑

α,β=1

hαβDαβ log J(ρ) + n(n + 1)
det H(ρ)

J(ρ)
,

where the pseudo-Hermitian metric hαβ = Dαβ(ρ) and [hαβ] = ([hαβ]t)−1.

Proposition 3.2 With the notation above, hαβ = Dαβ(ρ), we have

(3.4) hαβ(z) = ραβ − ραρβ

|∂ρ|2ρ
, z ∈ M1, 1 ≤ α, β ≤ n.

Proof. Since, for 1 ≤ i, k ≤ n with hkj = Dkj(ρ)

n∑
j=1

(ρij − ρiρj

|∂ρ|2ρ
)hkj

=
n∑

j=1

(ρij − ρiρj

|∂ρ|2ρ
)(ρkj −

ρk

ρn+1

ρn+1 j −
ρj

ρn+1

ρkn+1 +
ρkρj

|ρn+1|2
ρn+1 n+1)

=
n∑

j=1

ρij(ρkj −
ρk

ρn+1

ρn+1 j −
ρj

ρn+1

ρkn+1 +
ρkρj

|ρn+1|2
ρn+1 n+1)
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−
n∑

j=1

ρiρj

|∂ρ|2ρ
(ρkj −

ρk

ρn+1

ρn+1 j −
ρj

ρn+1

ρkn+1 +
ρkρj

|ρn+1|2
ρn+1 n+1)

= δik − ρin+1ρkn+1 +
ρk

ρn+1

ρin+1ρn+1 n+1 −
ρi

ρn+1

ρkn+1 + ρin+1ρkn+1

+
ρiρk

|ρn+1|2
ρn+1 n+1 − ρin+1 ρk

ρn+1

ρn+1 n+1

− ρiρk

|∂ρ|2ρ
+

ρiρn+1

|∂ρ|2ρ
ρkn+1 +

ρiρn+1

|∂ρ|2ρ
ρk

ρn+1

− ρiρn+1

|∂ρ|2ρ
ρk

ρn+1

ρn+1 n+1

+
ρi

ρn+1

ρkn+1 −
ρiρn+1

|∂ρ|2ρ
ρkn+1 −

ρiρk

|ρn+1|2
ρn+1 n+1 +

ρiρn+1

|∂ρ|2ρ
ρk

ρn+1

ρn+1 n+1

= δik.

Therefore, (3.4) holds, and the proof of the proposition is complete.
Let ∆u be the Beltrami-Laplacian with respect to the metric uijdzi⊗dzj.

Then

(3.5) ∆u =
n+1∑
i,j=1

uij ∂2

∂zi∂zj

Since u = − log(−ρ) we have (see [7], [24]) that

(3.6) uij =
ρij

−ρ
+

ρiρj

ρ2
, and uij = (−ρ)(ρij − ρiρj

−ρ + |∂ρ|2ρ
).

Then

(3.7) ∆u = (−ρ)
n+1∑
i,j=1

(ρij − ρiρj

−ρ + |∂ρ|2ρ
)

∂2

∂zi∂zj

.

Thus if f is harmonic in the metric uijdzi ⊗ dzj, then that

(3.8) ∆uf =
n+1∑
i,j=1

(ρij − ρiρj

−ρ + |∂ρ|2ρ
)

∂2f

∂zi∂zj

= 0.

Proposition 3.3 With the notation above, for any f ∈ C2(D), we have

(3.9)
n+1∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)fij =

n∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)Dij(f).
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Proof. Since

n∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)fij −

n∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)Dij(f)

=
n∑

i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)(

ρi

ρn+1

fn+1j +
ρj

ρn+1

fin+1 −
ρiρj

|ρn+1|2
fn+1 n+1)

=
n∑

j=1

ρj

ρn+1

fn+1 j −
n∑

j=1

ρn+1jfn+1j +
n∑

i=1

ρi

ρn+1

fin+1 −
n∑

i=1

ρin+1fin+1

+
n∑

i=1

(− ρiρ
i

|ρn+1|2
+ ρin+1 ρi

ρn+1

)fn+1 n+1

−
∑n

i=1 ρiρi

|∂ρ|2ρ

n∑
j=1

ρj

ρn+1

fn+1j −
∑n

j=1 ρjρj

|∂ρ|2ρ

n∑
i=1

ρi

ρn+1

fi n+1

+
(
∑n

i=1 ρiρi)(
∑n

j=1 ρjρj)

|∂ρ|2ρ |ρn+1|2
fn+1 n+1

= (1−
∑n

i=1 ρiρi

|∂ρ|2ρ
)

n∑
j=1

ρj

ρn+1

fn+1 j −
n∑

j=1

ρn+1jfn+1j

+(1−
∑n

j=1 ρjρj

|∂ρ|2ρ
)

n∑
i=1

ρi

ρn+1

fin+1 −
n∑

i=1

ρin+1fin+1

+(−
∑n

i=1 ρiρ
i

|ρn+1|2
+

ρn+1

ρn+1

− ρn+1 n+1 +
(
∑n

i=1 ρiρi)(
∑n

j=1 ρjρj)

|∂ρ|2ρ |ρn+1|2
)fn+1 n+1

= −
n∑

j=1

[ρn+1j − ρn+1ρj

|∂ρ|2ρ
]fn+1j −

n∑
i=1

[ρi n+1 − ρn+1ρi

|∂ρ|2ρ
]fi n+1

−[ρn+1 n+1 − ρn+1ρn+1

|∂ρ|2ρ
]fn+1n+1

Moving the right side to the left hand side, we have

(3.10)
n+1∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)fij −

n∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)Dij(f) = 0.

Therefore, the proof of (3.9) is complete, and so is the proof of the proposi-
tion.
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Proof of Part (b) of Theorem 1.1

Proof. Let f(z) = log J(ρ)(z) be harmonic in the metric uijdzi ⊗ dzj. By
(3.8), and then by (3.9), we have for all z ∈ M = ∂D

(3.11) 0 =
n+1∑
i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)

∂2f

∂zi∂zj

=
n∑

i,j=1

(ρij − ρiρj

|∂ρ|2ρ
)Dij(f)(z).

By (3.4) and f = log J(ρ), we have

(3.12)
n∑

α,β=1

hαβDαβ(log J(ρ)) = 0, z ∈ M1.

Applying the formula (3.3) for the Webster pseudo scalar curvature Rθ, we
have that Rθ = n(n + 1) det H(ρ)/J(ρ), i.e., (1.5) holds, and the proof of
Part(b) of Theorem 1.1 is complete.

4 Proof of Theorem 1.1 and Corollary 1.2

We have proved Part (b) of Theorem 1.1. Now we prove Part (a) of Theorem
1.1.

Proof of Part (a) of Theorem 1.1

Proof. Since log J(ρ) is harmonic in the metric uijdzi⊗dzj in D. Since the
pseudo scalar curvature is constant c, by Part(b) of Theorem 1.1, we have

(4.1) c = Rθ = n(n + 1)
det H(ρ)

J(ρ)
on ∂D.

Therefore

(4.2)
det H(ρ)

J(ρ)
=

c

n(n + 1)
> 0 on ∂D.

This with − log J(ρ) being harmonic in the metric uijdzi⊗ dzj, we have that
all conditions of Theorem 2.4 hold. By Theorem 2.4, we have

(4.3)
det H(ρ)

J(ρ)
=

c

n(n + 1)
> 0 on D.

14



By Corollary 2.3, we have that D is biholomorphic to Bn+1, and the proof of
Part (a) of Theorem 1.1 is complete.

Proof of Corollary 1.2

Proof. Since u is the potential function for D, we have J(ρ) ≡ 1. Hence
log J(ρ) = 0 is harmonic in uijdzi⊗dzj. By Part (b) of Theorem 1.1, we have
Rθ = c on ∂D, and then by Part (a) of Theorem 1.1 that D is biholomorphic
to Bn+1. Moreover, det H(ρ) ≡ c on D. Let ρ0 = cρ. det H(ρ0)/J(ρ0) ≡ 1
on D. Then by (2.8) and (2.9), there is z0 ∈ D with

(4.4) ρ0(z0) = min{ρ0(z) : z ∈ D} = −det H(ρ)(z0)

J(ρ0)(z0)
= −1.

By (2.6), we have T (z) ≡ 1 on D. By (2.5) in [24], we have

det H(log(1 + ρ0))(z) = 0, for all z ∈ D with ρ0(z) > −1.

Applying Part (ii) of Theorem 1.2 in [24], there is a constant Jacobian bi-
holomorphic mapping φ : D → Bn+1. The proof of Corollary 1.2 is complete.
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