Welcome To Song-Ying Li's Homepage

 

/Users/jim/Desktop/web folder/index.fld/image001.png

Recent Publications

1.       1.  Characterizations of Isometries on Besov Type Spaces



2.       2.  Characterization for a class of pseudoconvex domains whose boundaries having positive constant pseudo scalar curvature, Communication in analysis and Geometry, 17(2009)



3.       3.  On the rigidity theorem for harmonic functions in K\"ahler metric of Bergman type (jointly with D-H. Wei), preprint 00



4.       4.  Infimum of the spectrum of Laplace-Beltrami operator on a bounded pseudoconvex domain with a K\"ahler metric of Bergman type, preprint



5.       5.  On the CR-Obatatheorem and some extremal problems associated to pseudo scalar curvature on the real ellipsoids in $C^{n+1}$ (jointly with M-A. Tran), preprint

6.       6.  The CR-Obata theorem on compact strictly pseudoconvex pseudo-Hermitian manifolds, preprint



7.       7.  Compact composition operators on $BMOA(B_n)$ (jointly with Long), Science in China, 2009

8.       8.  Complex Monge-Amp\`ere Operators in Analysis and Pseudo-Hermitian Manifolds, Proceeding of ICCM, 2007

9.       9.  Analysis on Besov spaces II: Embedding and Duality Theorems (with W. Luo), J. of Math. Analysis and Applications, 2007, 200



10.    10.  Composition Operators and Isometries on Holomorphic Function Spaces over Domains in $C^n$, The Proceedings of the International Conference on Complex Geometry and Related Fields, AMS/IP Studies in Advanced Math., IP press, 39(2007), 161--174.



11.           11.  On proper harmonic map between two strictly pseudoconvex domains with K\"ahler metrics (with E. Simon), Asian Journal of Mathematics, 11(2007), 251--276.



12.           12.  An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces (joint with H-S. Luk,), Science in Chian, 49(2006), 1662--1682,



13.           13.  An explicit formula for the Webster pseudo Ricci curvature on real hypersurfaces and its application for characterizingballs in $C^n$(joint with H-S. Luk), Communication in Analysis and Geometry, 14(2006), 673-701.



14.           3.     

15.           14.  Characterization for Balls by Potential Function of K\"ahler-Einstein Metrics for domains in $C^n$, Comm. in Analysis and Geometry, 13(2005), 461--478.



16.                    15.      

17.           15.  On the Dirichlet Problems for Symmetric Function Equations of the eigenvalues of the Complex Hessian, Asian Journal of Mathematics, 2004.




18.           16.  On the existence and regularity of Dirichlet problem for complex Monge-Ampere equations on weakly pseudoconvex domains, Variation Calculus and PDEs, 20(2004), 119--132.

17. CR-analogue of Siu-d\dbar-formula ans applications to rigidity problem for pseudo-Hermitian harmonic maps, Proceeding of AMS, to appear.  

 

Lecture Note

 

1.     Function theory of one complex variable- Math220A-2018

2.     Function theory of one complex variable-Math220B-2019