Fall
2006: 202, Functional Analysis
Course:
MAT-202-1, CRN
43695
Instructor: Roman
Vershynin
e-mail: vershynin at math dot ucdavis dot edu
Office hours: M 1-2, W 2-3 in 2218 MSB
Meeting times:
MWF 11:00 -
11:50.
Location:
BAINER 1128
Textbook:
Yuli Eidelman, Vitali Milman, Antonis Tsolomitis, Functional analysis. An introduction.
Graduate Studies in Mathematics, 66. American Mathematical Society,
Providence, RI, 2004. xvi+323 pp. ISBN 0-8218-3646-3
Monographs for further reading and references:
- P. Wojtaszczyk, Banach spaces
for analysts, Cambridge
Studies in Advanced Mathematics, 25. Cambridge University
Press, 1991. ISBN 0-521-35618-0
- J. Lindenstrauss, L. Tzafriri, Classical
Banach spaces, Springer reprinted 1977, 1979 edition. ISBN
3-540-60628-9
Course
description:
- Fundamental theorems of functional analysis. Open mapping
theorem. Closed graph theorem. Projections in Banach spaces.
Banach-Steinhaus theorem. Applications to constructing counterexamples
in
Fourier analysis. Hahn-Banach
theorem. Separation of convex sets. Alaoglu theorem. Eberlein-Smulian
theorem. Extremal points and Krein-Milman theorem. [Chapter 9]
- Compact operators (Review Section 4.3). Adjoint operators;
Shauder's duality theorem (Section 4.4). Spectrum of linear operators
on
Banach spaces. Fredholm theory of
compact operators [Chapter 5]
- Functions of operators. Spectral theory of self-adjoint bounded
operators on Hilbert space. [Chapter7]
Prerequisites:
MAT 201 A,B
Assessment:
Problem Set 1 (50%),
Problem Set 2 (50%)
Homework from the textbook:
- October 6: Chapter 9, Exercises 1, 2, 3, 5, 7, 8, 13, 14,
15
- October 13: Chapter 9, Exercises 17, 18, 20, 21
- October 22: Try to prove Lemma 1.4.1 without looking at its proof
on p.14.
Ex. 1.6.23, 1.6.24, 9.10.23, 9.10.25
Web:
http://www.math.ucdavis.edu/~vershynin/teaching/2006-07/202/course.html