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RANDOM MATRICES ACTING ON SETS:

INDEPENDENT COLUMNS

YANIV PLAN AND ROMAN VERSHYNIN

Abstract. We study random matrices with independent subgaussian
columns. Assuming each column has a fixed Euclidean norm, we estab-
lish conditions under which such matrices act as near-isometries when
restricted to a given subset of their domain. We show that, with high
probability, the maximum distortion caused by such a matrix is pro-
portional to the Gaussian complexity of the subset, scaled by the sub-
gaussian norm of the matrix columns. This linear dependence on the
subgaussian norm is a new phenomenon, as random matrices with in-
dependent rows or independent entries typically exhibit superlinear de-
pendence. As a consequence, normalizing the columns of random sparse
matrices leads to stronger embedding guarantees.

1. Introduction

Let A ∈ R
m×n be a random matrix and T ⊂ R

n a fixed set. We study the
question: Under what circumstances is A well conditioned when restricted
to T? More technically, we study the quantity

δ := sup
x∈T

∣

∣

∣
‖Ax‖2 − ‖x‖2

∣

∣

∣
.

Observe that the isometry constant δ is the smallest constant such that

‖x‖2 − δ ≤ ‖Ax‖2 ≤ ‖x‖2 + δ for all x ∈ T.

If δ is small, A embeds T into R
m without significantly distorting Euclidean

norms. If T is replaced by the Minkowski difference T −T , then the embed-
ding approximately preserves Euclidean distances between points in T , so
we can think of A as a near isometry on T . Random matrices that are near
isometries are useful in a variety of applications, including compressed sens-
ing [11, 10], dimension reduction as in the Johnson-Lindenstrauss lemma
[13], and randomized sketching [26, 21]. The subset T of interest varies by
application. When T belongs to the sphere and δ < 1, the null space of A is
a random subspace that must not intersect T , and thus the study of δ also
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has interesting implications regarding the behaviour of random subspaces
[12, 18].

If A is a random Gaussian matrix, the size of δ is well understood [22].
It is controlled by the Gaussian width or Gaussian complexity of T [25].

Definition 1.1 (The Gaussian width and Gaussian complexity of a set).
The Gaussian width w(T ) and the Gaussian complexity γ(T ) of a set T ⊂ R

n

are defined as follows:

w(T ) := E sup
x∈T

〈g, x〉, γ(T ) := E sup
x∈T

|〈g, x〉|

where g is a standard normal random vector in R
n, i.e. g ∼ N(0, In).

These two quantities are identical for symmetric sets, and in general we
have w(T ) + rad(T ) ≍ γ(T ), where rad(T ) := supx∈T ‖x‖2. For more prop-
erties of Gaussian width and complexity, see [25].

To extend our discussion to more general random matrix ensembles, recall
that the subgaussian norm of a random variable Z is defined as

‖Z‖ψ2
:= inf

{

t > 0 : E exp(Z2/t2) ≤ 2
}

and Z is called subgaussian if ‖Z‖ψ2
< ∞. Further, the subgaussian norm

of a random vector V ∈ R
n is defined as

‖V ‖ψ2
:= sup

x∈Sn−1

‖〈V, x〉‖ψ2
(1.1)

i.e. it is the largest subgaussian norm of one-dimensional marginals of V .
For basic introduction to subgaussian distributions, see [25].

Matrices with subgaussian entries (or rows or columns) represent a no-
table generalization beyond the Gaussian case. In particular, this general-
ization includes discrete and/or sparse random matrices, which can be used
to accelerate computations [15] and are essential in applications like group
testing [7] and wireless network activity detection [17].

When A has independent, isotropic,1 and subgaussian rows, the quantity
δ has similar guarantees to the Gaussian case as shown in the following
theorem.

Theorem 1.2 (Corollary 1.2 in [12]). Let A be an m×n matrix whose rows
are independent, isotropic, subgaussian random vectors in R

n with subgaus-
sian norms bounded by K. Then, for any subset T ⊂ R

n, we have

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
m‖x‖2

∣

∣

∣
≤ CK

√

logK γ(T ).

Moreover, for any u ≥ 0, with probability at least 1− 3e−u
2

, we have

sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
m‖x‖2

∣

∣

∣
≤ CK

√

logK [w(T ) + u · rad(T )] .

Here and throughout the paper, C > 0 denotes an absolute constant.

1Recall that a random vector V ∈ R
n is called isotropic if EV V T = In where In is the

identity matrix.
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This theorem builds directly on the work in [18], which presents the same
result but with K

√
logK replaced by K2. In fact, the K

√
logK dependence

is known to be optimal in this setting [12]. Similar preceding results also
appear in the papers [16, 20, 9]; see [18, Section 3] for a discussion of their
relationship.

In this paper, we develop an analogous theory for matrices with indepen-
dent subgaussian columns. While there are several studies of random matri-
ces with independent subgaussian columns restricted to specific subsets–such
as the set of sparse vectors [2], finite sets [8], or the entire sphere [24]–we
believe the following theorem is the first result in this setting for an arbitrary
set T .

Theorem 1.3. Let A be an m×n matrix whose columns Ai are independent,
mean zero, subgaussian random vectors in R

m satisfying ‖Ai‖2 = 1 almost
surely and ‖Ai‖ψ2

≤ K. Then, for any subset T ⊂ R
n, we have

E sup
x∈T

∣

∣

∣
‖Ax‖2 − ‖x‖2

∣

∣

∣
≤ CKγ(T ).

Moreover, for any u ≥ 0, with probability at least 1− 3e−u
2

, we have

sup
x∈T

∣

∣

∣
‖Ax‖2 − ‖x‖2

∣

∣

∣
≤ CK [w(T ) + u · rad(T )] .

A trivial rescaling argument yields the following:

Corollary 1.4. Let A be an m×n matrix whose columns Ai are independent,
mean zero, subgaussian random vectors in R

n satisfying ‖Ai‖2 = λ almost
surely and ‖Ai‖ψ2

≤ K. Then, for any subset T ⊂ R
n, we have

E sup
x∈T

∣

∣

∣
‖Ax‖2 − λ‖x‖2

∣

∣

∣
≤ CKγ(T ).

Moreover, for any u ≥ 0, with probability at least 1− 3e−u
2

, we have

sup
x∈T

∣

∣

∣
‖Ax‖2 − λ‖x‖2

∣

∣

∣
≤ CK [w(T ) + u · rad(T )] .

In contrast to the previous result (Corollary 1.2), here we require a hard
normalization of columns:

‖Ai‖2 = λ a.s. for all i. (1.2)

One cannot remove this assumption even for n = 1, or replace it with a
weaker assumption of isotropy as in Theorem 1.2. This is because a mean-
zero isotropic subgaussian random vector A1 might vanish with probability
1/2.

Remark 1.5 (Column normalization improves the dependence on the sub-
gaussian norm). The hard normalization of columns has an interesting ben-
eficial effect on the dependence on the subgaussian norm. In the previous
result (Theorem 1.2) the dependence is O(K

√
logK), and this dependence
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is optimal even for matrices with all independent entries [12]. But as soon
as we normalize the columns as in Corollary 1.4, the dependence becomes
linear, i.e. O(K). We see in Section 2 that this small improvement leads
to completely different asymptotic behaviour for the embedding guarantees
of sparse matrices. We also observe in Remark 2.5 that this improvement
only occurs for matrices with independent columns of a fixed norm, not for
matrices with independent rows of a fixed norm.

We now specify some notations, discuss applications to sparse matrices in
Section 2, show that column normalization can improve embedding guaran-
tees for i.i.d. matrices in Section 3, prove our main result in Section 4, then
our auxiliary results in Section 5, and then conclude with an open question
in Section 6.

1.1. Notation. We use ‖·‖2 for the Euclidean norm of vectors, and Sn−1 for
the set of vectors in R

n with Euclidean norm 1. We say that f . g if there
exists an absolute constant C such that f ≤ Cg everywhere. The symbols
C, c generally refer to absolute constants which may vary from instance to
instance. We say f ≍ g if cf ≤ g ≤ Cf , i.e., f and g are equivalent up to
constants.

2. An example: sparse matrices

Sparse random matrices are a central object of study in the context of
sparse Johnson Lindenstrauss embeddings [1] and sparse subspace embed-
dings [6]. These give a method to facilitate computation by embedding
data into a lower dimension near isometrically via a sparse (and thus low
complexity) transform. The central question is: How should we choose the
distribution of A to (a) minimize the number of nonzero entries and (b)
ensure it behaves like a near-isometry?

An interesting phenomenon has been observed (and understood) in this
field: Choosing A with i.i.d. entries limits its ability to near-isometrically
embed sparse vectors [19, 3]. However, choosing the columns from a dis-
tribution with exactly s non-zero entries per column can give a significant
improvement. The literature in this area generally considers embeddings
of singletons, finite sets, or subspaces, with the notable exception in [4],
discussed further below. We extend the understanding of this phenomenon
to arbitrary bounded sets in the following. We begin with an illustrative
example to give an intuition for this point.

2.1. Approximate vs. exact sparsity. Consider two different models to
generate a sparsem×nmatrix with (about) s nonzero entries per column. In
the first, “approximate” model, we sample each entry independently from
the Ber(s/m) distribution. In the second, “exact” model, we put s ones
uniformly at random in each column of the matrix. Although individual
entries in both models have the same Ber(s/m) distribution, it turns out
that these two models have diverging behaviour as m increases. In the first
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model, the number of nonzero entries in a column converges to a Poisson(s)
distribution. Thus, the column norms will concentrate around

√
s, but their

deviations will not decrease to zero as m increases. Equivalently, the matrix
will randomly distort the norm of a standard basis vector, and that distortion
will never decrease to zero. In contrast, in the second model, the number of
nonzero entries per column is exactly s and so the column norms are exactly√
s. Further, as m increases, the columns become more and more likely to

have disjoint support and thus become orthogonal. Thus, the resulting
matrix (multiplied by 1/

√
s for normalization) asymptotically becomes an

exact isometry with probability approaching 1 as m increases.
The following two results make these observations quantitative and gen-

eral.

Corollary 2.1 (Approximately s-sparse columns). Let A be an m×n matrix
whose entries are independent random variables which take the value 1 or
−1 with probability s

2m each, and 0 with probability 1 − s
m . Then, for any

subset T ⊂ R
n, we have

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
≤ Cγ(T ).

Moreover, this bound is optimal in general. For any integers 1 ≤ s ≤ m/2
and n ≥ 1 there exists a non-empty subset T ⊂ R

n such that

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
≥ cγ(T ).

Note that the right-hand side does not decrease when m grows.

Proof. LetAi denote the columns of A. It is not hard to check (see Lemma 5.1)
that

‖Ai‖ψ2
.

1
√

log(2/p)
where p =

s

m
.

If we normalize Ai by setting Zi = Ai/
√
p, then all coordinates of Zi are

independent random variables with mean zero and variance 1. Hence Zi are
independent and isotropic random vectors with subgaussian norms bounded
by K = 1/

√

p log(2/p). Thus, applying Theorem 1.2 for the matrix A/
√
p,

we obtain

E sup
x∈T

∣

∣

∣

1√
p
‖Ax‖2 −

√
m‖x‖2

∣

∣

∣
. K

√

logK γ(T ) .
γ(T )√

p
.

Multiply by
√
p on both sides to obtain the first part of the theorem.

To prove the second part, choose T = {e1}, the first vector of the standard
basis in R

n. Then

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
= E

∣

∣

∣

√
Z −

√
s
∣

∣

∣
(where Z ∼ Binom(m, p)).
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Since γ(T ) ≍ 1, it suffices to prove that E
∣

∣

∣

√
Z −√

s
∣

∣

∣
& 1. A quick compu-

tation2 gives

E(Z − s)2 = mp(1− p) ≥ s

2
and E(Z − s)4 . s2.

Then using Paley-Zygmund inequality for (Z − s)2, we get

P

{

|Z − s| ≥
√
s

2

}

= P

{

(Z − s)2 ≥ 1

2
E(Z − s)2

}

> c. (2.1)

Furthermore, since EZ = mp = s, Markov inequality gives

P{Z ≤ 2s/c} ≥ 1− c/2.

Combining this with (2.1) by the union bound, we conclude that with prob-
ability at least c/2 we have both

|Z − s| &
√
s and Z . s.

If this event occurs, we have
∣

∣

∣

√
Z −

√
s
∣

∣

∣
=

|Z − s|√
Z +

√
s
& 1.

Thus E
∣

∣

∣

√
Z −√

s
∣

∣

∣
& (c/2) · 1 & 1, as required. �

Corollary 2.2 (Exactly s-sparse columns). Let A be an m×n matrix whose
columns are independent random vectors drawn uniformly from the set of
vectors in R

m that have all 0,−1, 1 entries and exactly s nonzero entries.
Then, for any subset T ⊂ R

n, we have

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
≤ Cγ(T )

√

log(2m/s)
.

Moreover, this bound is optimal in general. For any integers 1 ≤ s ≤ m
there exists n = n(m, s) and a non-empty subset T ⊂ R

n such that

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
≥ cγ(T )

√

log(2m/s)
.

Note that the right-hand side decreases when m grows.

Proof. It is not hard to check (see Lemma 5.1) that the columns Ai of A
satisfy

‖Ai‖2 =
√
s a.s. and ‖Ai‖ψ2

.
1

√

log(2m/s)
.

Apply Corollary 1.4 to obtain the first part of the theorem.
To prove the second part, choose

T = {e1 − e2, e1 − e3, . . . , e1 − en}
2To prove the second identity, express Z − s =

∑

m

i=1
Xi where Xi are independent

centered Ber(p) random variables. Expand the fourth power of the sum and use that
EXi = 0 to get E(Z − s)4 . mEX4

1 +m2(EX2

1 )
2 . mp+m2p2 . s2.
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where e1, . . . , en is the standard basis of Rn. Then

P{Ax = 0 for some x ∈ T} = P{A1 = Ai for some i = 2, . . . , n}
= 1− (1− P{A1 = A2})n−1 .

P{A1 = A2} =
1

2s
(

m
s

)

≥
(2em

s

)−s
(by a standard bound [25, Exercise 0.0.5])

≥ 1

n
(if we choose) n =

⌈

(2em

s

)3s
⌉

.

Then

P{Ax = 0 for some x ∈ T} ≥ 1−
(

1− 1

n

)n−1

≥ c.

When Ax = 0 for some x ∈ T , we have
∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
=

√
2s. It follows

that

E sup
x∈T

∣

∣

∣
‖Ax‖2 −

√
s‖x‖2

∣

∣

∣
≥ c

√
2s. (2.2)

On the other hand, denoting by gi independent N(0, 1) random variables,
we have

γ(T ) = E max
i=2,...,n

|g1 − gi| .
√

log n .
√

s log(2m/s). (2.3)

where the first inequality follows from the standard bound on the maximum
of subgaussian random variables [25, Exercise 2.5.10], and the second in-
equality follows by our choice of n. Comparing (2.2) and (2.3), we complete
the proof. �

Remark 2.3 (Diverging asymptotic behaviour). As shown in Corollaries 2.1
and 2.2, in general as m → ∞ the isometry constant for sparse matrices
with i.i.d. entries remains lower bounded, whereas the isometry constant for
sparse matrices with exactly s non-zeros per column decreases to 0.

Remark 2.4 (Alternative treatments of isometry constants of sparse matri-
ces). We point out three different treatments of the isometry constants of
sparse matrices depending on the structure of T :

1. There is a rich understanding of the isometric properties of sparse ma-
trices in the literature on sparse Johnson Lindenstrauss embeddings
(see e.g., [15]) when T is a singleton (or a finite set).

2. When T is a d-dimensional subspace, again there is a thorough under-
standing in the literature on sparse (oblivious) subspace embeddings.
Here it is shown that one only needs m = O(d) to have an isometry
constant lower than 1, even if the sparsity is polylogarithmic (see e.g.,
[5]) – a result which does not follow from Corollary 2.2.
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3. We are aware of one paper, [4], which addresses the isometric proper-
ties of sparse matrices for arbitrary subsets of the sphere. The main
theorem in [4] controls the isometry constant by a new quantity, which
is akin to a sparsified gaussian complexity. We don’t repeat that theo-
rem here because the conditions are relatively complex, but note that it
recovers the results on sparse subspace embeddings (up to log factors)
as a special case. Thus, the machinery in [4] allows tighter control of
the isometry constant than Corollary 2.2 for some sets and parameter
regimes. However, the results in [4] do not imply that the restricted
isometry constant converges to 0 as m → ∞ and thus do not imply the
diverging asymptotic behaviour of “approximately sparse” and “ex-
actly sparse” matrices shown in our work and discussed in the remark
above. Further, we note that our work does not require T to be a sub-
set of the sphere, and is oblivious to every property of T aside from its
gaussian complexity.

Remark 2.5 (Exactly s-sparse rows do not give the same benefit). The
reader may be wondering whether the improvements gained by choosing
the columns from a distribution with exactly s non-zeros could alternatively
be gained by choosing the rows from such a distribution. In fact, this is not
the case. For instance, suppose A is a square m by m matrix whose rows
are independently drawn from the set of vectors that have all 0,−1, 1 entries
and exactly s nonzero entries. Then, the first column (or any other) of A
has entries which are independent random variables which take the value 1
or −1 with probability s

2m each, and 0 with probability 1 − s
m . The lower

bound in Corollary 2.1 then applies, since it is realized by the set T = {e1}
which isolates the first column.

3. Normalizing the columns of an i.i.d. matrix

We now consider random matrices with independent, symmetric, sub-
gaussian entries. We show that normalizing the columns improves the de-
pendence of the isometry constant on the subgaussian norm. We assume
the entries have variance 1 which implies that the rows are isotropic, thus
fitting the models in [18, 12]. This causes the columns to concentrate around√
m and so we normalize them onto

√
mSn−1 to more easily compare to the

results in [12]. We need to condition on the event that the columns have
lower-bounded Euclidean norm as otherwise the normalization step could
blow up the columns by an arbitrary amount. This is encoded in the event
F below.

Corollary 3.1. Let A be an m × n matrix whose entries are independent,
symmetric, with unit variance, and subgaussian norm bounded by K. As-
sume m ≥ CK2 log(K) · log(n).3 Let Ai be the ith column of A. Let F be the

3The assumption that m ≥ CK2 log(K) · log(n) could be replaced with m ≥

CK2 log(K) at the expense of losing the lower bound on P(F ).
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event that all columns of A have Euclidean norm lower bounded by
√
m/2,

that is,

F :=

{

min
i=1,2,...,n

‖Ai‖2 ≥
√
m

2

}

.

Then P {F} ≥ 1 − 2 exp(−Cm/(K2 logK)). Further, conditional on F ,

consider the column-normalized matrix Ã with columns

Ãi :=

√
m

‖Ai‖2
· Ai, i = 1, 2, . . . n.

The matrix Ã satisfies

E

[

sup
x∈T

∣

∣

∣
‖Ãx‖2 −

√
m‖x‖2

∣

∣

∣

∣

∣

∣

∣

∣

F

]

≤ CKγ(T ).

Moreover, conditional on F , with probability at least 1− 3 exp(−u2).

sup
x∈T

∣

∣

∣
‖Ãx‖2 −

√
m‖x‖2

∣

∣

∣
≤ CK [w(T ) + u · rad(T )] . (3.1)

Note that one may generate the matrices A, Ã conditionally on F by
re-sampling any columns of A whose Euclidean norms are below

√
m/2.

Further, since P {F} ≥ 1 − 2 exp(−Cm/(K2 logK)), the matrix Ã is well
defined and Equation (3.1) holds unconditionally with probability at least
(1− 3 exp(−u2)) · P {F} ≥ 1− 3 exp(−u2)− 2 exp(−Cm/(K2 logK)).

Remark 3.2 (Effect of normalizing columns). Observe that the rows of A are
independent and isotropic. Thus, we are in the setting of [12, Corollary 1.2]
(see Theorem 1.2 in Section 1), in which the authors show the unnormalized
version of A satisfies Equation (3.1) but with K

√
logK dependence on the

subgaussian norm, and that dependence is tight [12, Proposition 4.5]. Our
corollary shows that normalizing columns removes the logarithmic factor,
improving the dependence to linear.

As an application of this corollary, we show that normalizing the columns
of an “approximately sparse” matrix improves the embedding guarantees
to those of an “exactly sparse” matrix (see Section 2). This follows from
Corollary 3.1 after rescaling the columns to have norm

√
s.

Corollary 3.3. Let m ≥ s ≥ C log(n).4 Let A be an m × n matrix whose
entries are independent random variables which take the value 1 or −1 with
probability s

2m each, and 0 with probability 1 − s
m . Let F be the event that

all columns of A have Euclidean norm lower bounded by
√
s/2, that is,

F :=

{

min
i=1,2,...,n

‖Ai‖2 ≥
√
s

2

}

.

4The assumption that s ≥ C log(n) could be replaced with s ≥ 1 at the expense of

losing the lower bound on P

{

F
}

.
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Then P {F} ≥ 1 − 2 exp(−Cs). Further, conditional on F , consider the

normalized matrix Ã with columns

Ãi :=

√
s

‖Ai‖2
Ai, i = 1, 2, . . . n.

Conditional on F , Ã satisfies

E

[

sup
x∈T

∣

∣

∣
‖Ãx‖2 −

√
s‖x‖2

∣

∣

∣

∣

∣

∣

∣

∣

F

]

≤ C
√

log(1 +m/s)
γ(T ). (3.2)

Remark 3.4. By comparing to Corollary 2.1, we see that normalizing the
columns has the same beneficial effect as choosing the columns to be exactly
s-sparse: Without normalizing, the isometry constant may remain lower
bounded as m → ∞, but after normalizing the isometry constant shrinks to
0 as m → ∞.

4. Proof of Theorem 1.3

As in our work [18], whose exposition can be found in [25, Section 9.1],
Theorem 1.3 follows automatically from Talagrand’s majorizing measure
theorem and the following result:

Theorem 4.1 (Subgaussian increments). Let A be a random matrix satis-
fying the assumptions of Theorem 1.3. Then the random process

Zx := ‖Ax‖2 − ‖x‖2
has subgaussian increments, namely

‖Zx − Zy‖ψ2
≤ CK‖x− y‖2 for all x, y ∈ R

n.

To see how this leads to Theorem 1.3, let us show how to combine The-
orem 4.1 with the specialized version of Talagrand’s comparison inequality
below. This result is from [18]; for more general versions, see [25, Section
8].

Theorem 4.2 (Comparison inequality). Let (Zx)x∈T be a random process on
a bounded set T ⊂ R

n. Assume that the process has subgaussian increments,
that is there exists M ≥ 0 such that

‖Zx − Zy‖ψ2
≤ M‖x− y‖2 for all x, y ∈ T.

Then

E sup
x,y∈T

|Zx − Zy| ≤ CM E sup
x∈T

〈g, x〉,

where g ∼ N(0, In). Moreover, for any u ≥ 1, the event

sup
x,y∈T

|Zx − Zy| ≤ CM

(

E sup
x∈T

〈g, x〉 + u · diam(T )

)

holds with probability at least 1− e−u
2

. Here diam(T ) := supx,y∈T ‖x− y‖2.
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The first part of Theorem 4.2 can be found in [23, Theorem 2.4.12] and
the second part can be found in [9, Theorem 3.2]. See also [25, Theorem
8.5.5].

Theorem 1.3 then follows by observing that for any x0 ∈ T ,

sup
x∈T

|Zx| ≤ |Zx0 |+ sup
x∈T

|Zx − Zx0 | ≤ |Zx0 |+ sup
x,y∈T

|Zx − Zy|.

The second summand is controlled by Theorems 4.2 and 4.1. The first sum-
mand is a single subgaussian random variable. Indeed, by Proposition 4.3
below, ‖Zx0‖ψ2

. K‖x0‖2 ≤ Krad(T ). It is relatively straightforward to
complete the proof of Theorem 1.3, see [12, Section 4] for the full detailed
argument.

We now build the proof of Theorem 4.1, starting with two special cases.

4.1. Unit vector x, zero vector y. Let us first prove a partial case of
Theorem 4.1 for ‖x‖2 = 1 and y = 0.

Proposition 4.3 (Concentration of norm). Let A be random matrix satis-
fying the assumptions of Theorem 1.3. Then for any x ∈ Sn−1 we have

∥

∥‖Ax‖2 − 1
∥

∥

ψ2

. K.

To prove this result, let us first note that Ax is a subgaussian random
vector:

Lemma 4.4 (Sum of independent subgaussians). Let X1, . . . ,Xn be inde-
pendent, mean zero, subgaussian random vectors in R

m. Then

‖
n
∑

i=1

Xi‖2ψ2
≤ C

n
∑

i=1

‖Xi‖2ψ2
.

In particular, under the assumptions of Theorem 1.3, for any unit vector
x ∈ R

n we have

‖Ax‖ψ2
≤ CK.

Proof of Lemma 4.4. The first part is an easy consequence of Definition (1.1)
and [25, Proposition 2.6.1]. The second part follows if we expand Ax =
∑n

i=1 xiAi and apply the first part to Xi = xiAi. �

We now proceed with a moment generating function (MGF) bound. For
any fixed λ ∈ R, consider the function

Φλ(z) := exp(λx). (4.1)

Then the MGF of a random variable Z can be expressed as EΦλ(Z).

Lemma 4.5. Let A and x be as in Proposition 4.3. Set S := ‖Ax‖22 − 1.
Then

EΦλ(S) ≤ exp(Cλ2K2) for |λ| ≤ c

K2
.
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Proof. Expanding the norm, we get

‖Ax‖22 = ‖
n
∑

i=1

xiAi‖22 =
n
∑

i=1

x2i ‖Ai‖22 +
∑

i 6=j

xixj〈Ai, Aj〉.

By assumption we have ‖Ai‖2 = 1 and ‖x‖2 = 1. Thus,

n
∑

i=1

x2i ‖Ai‖22 =
n
∑

i=1

x2i = 1

an so

S =
∑

i 6=j

xixj〈Ai, Aj〉. (4.2)

Since ‖Ai‖2 = 1 by assumption, using Cauchy-Schwarz we can see that S
is a bounded random variable, so Φλ(S) is finite for all λ. Let’s now get a
quantitative bound.

Fix any λ ∈ R and let A′ be an independent copy of A. Then

EΦλ(S) = EΦλ





∑

i 6=j

xixj〈Ai, Aj〉





≤ EΦλ



4

n
∑

i,j=1

xixj〈Ai, A′
j〉



 (decoupling [25, Exercise 6.1.4])

= EΦλ
[

4〈Ax,A′x〉
]

Let us now condition on A. Recall, by Lemma 4.4, ‖A′x‖ψ2
≤ CK. Then the

random variable 〈Ax,A′x〉 is (conditionally) subgaussian, and its conditional
subgaussian norm is bounded by CK‖Ax‖2, see [25, Definition 3.4.1]. Thus

EΦλ
(

4〈Ax,A′x〉
)

= EA EA′ exp(4λ〈Ax,A′x〉)
≤ EA exp(Cλ2K2‖Ax‖22) (by Equation [25, (2.16)]).

We have shown that

EΦλ(S) ≤ E exp(Cλ2K2‖Ax‖22).
Recall that S := ‖Ax‖22−1. We now replace ‖Ax‖22 with S+1 in the equation
above to yield a recursive equation for the moment generating function of
S. This gives

EΦλ(S) ≤ exp(Cλ2K2) · E exp(Cλ2K2S) for all λ ∈ R. (4.3)

Now assume that

0 ≤ λ ≤ 1/(2CK2).

Then 0 ≤ CλK2 ≤ 1/2, and Jensen inequality gives

E exp(Cλ2K2S) = E
[

exp(λS)CλK
2] ≤ [E exp(λS)]CλK

2

= [EΦλ(S)]
CλK2

.
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Insert this into Equation 4.3 and rearrange the terms to get

EΦλ(S) ≤ exp(Cλ2K2)1/(1−CλK
2).

Since 1− CλK2 ≥ 1/2 by assumption, we conclude that

EΦλ(S) ≤ exp(2Cλ2K2) for all 0 ≤ λ ≤ 1/(2CK2), (4.4)

as desired.
Finally, let us lift the nonnegativity assumption and simply assume that

|λ| ≤ 1/(2CK2).

We have

E exp(Cλ2K2S) = EΦµ(S) (where µ = Cλ2K2)

≤ exp(2Cµ2K2) (using (4.4), since 0 ≤ µ ≤ 1/(2CK2))

≤ exp(2Cλ2K2) (since µ ≤ |λ|).
Substitute this into (4.3) to get

EΦλ(S) ≤ exp(3Cλ2K2) for all |λ| ≤ 1/(2CK2).

The proof is complete. �

Remark 4.6 (Why normalized columns give linear dependence on K). We
can now point out the first place where the assumption of normalized columns
allows linear dependence on K in our main result. In the proof above,

S = ‖Ax‖22 − 1 =
n
∑

i=1

x2i (‖Ai‖22 − 1) +
∑

i 6=j

xixj〈Ai, Aj〉.

Since the columns of A have norm 1, the first term disappears, leaving
just a linear combination of the inner products of different columns (see
Equation (4.2)). After decoupling, this gives the neat recursive equation
(4.3) for S which ultimately allows a tight control of its tail. If we had not
assumed normalized columns then the variations in the norms of Ai would
have necessarily not allowed this (as follows from [12, Proposition 4.5]).

The following lemma converts the bound on the moment generating func-
tion of S into a tail bound.

Lemma 4.7. Let S be as in Lemma 4.5. Then

P {|S| ≥ t} ≤ 2 exp

[

− C

K2

(

t2 ∧ t
)

]

.

Proof. Let 0 ≤ λ ≤ c/K2, as in Lemma 4.5. Then

P{S ≥ t} = P

{

eλS ≥ eλt
}

≤ e−λt EΦλ(S) ≤ exp(−λt+ Cλ2K2),

where the last inequality follows from Lemma 4.5.
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The optimal choice of λ subject to the constraint λ ≤ c/K2 is λ =
t/(2CK2) ∧ c/K2. With this choice, we obviously have λ ≤ t/(2CK2),
which is equivalent to Cλ2K2 ≤ λt/2. Thus,

P {S ≥ t} ≤ exp(−λt+ Cλ2K2) ≤ exp(−λt/2) ≤ exp

[

− C ′

K2

(

t2 ∧ t
)

]

.

P {−S ≥ t} may be bounded similarly, and the the proof is completed via a
union bound. �

Proof of Proposition 4.3. By Lemma 4.7, for t ≥ 0

P
{
∣

∣‖Ax‖22 − 1
∣

∣ ≥ t
}

≤ 2 exp

[

− C

K2

(

t2 ∧ t
)

]

.

Now we use the following elementary observation, which holds for all z, δ ≥ 0:

|z − 1| ≥ δ implies |z2 − 1| ≥ δ ∨ δ2.

We obtain

P{|‖Ax‖2 − 1| ≥ δ} ≤ P
{
∣

∣‖Ax‖22 − 1
∣

∣ ≥ δ ∨ δ2
}

≤ 2 exp

(

−Cδ2

K2

)

,

since if t = δ ∨ δ2 then t2 ∧ t = δ2. The proof is complete. �

4.2. Vectors on the sphere, squared process. We now show that ‖Ax‖22−
‖Ay‖22 has a mixed tail bound for x, y ∈ Sn−1. We will then convert that
into a subgaussian tail bound for Zx − Zy in the next section.

Lemma 4.8 (Squared process). Let A be a random matrix satisfying the
assumptions of Theorem 1.3. Fix any pair of vectors x, y ∈ Sn−1. Then the
random variable

∆ :=
‖Ax‖22 − ‖Ay‖22

‖x− y‖2
satisfies

P {|∆| ≥ t} ≤ 2 exp

[

− C

K2

(

t2 ∧ t
)

]

.

Proof. Set

u := x+ y, v := x− y.

Then

‖Ax‖22 − ‖Ay‖22 = 〈Au,Av〉 =
∑

i

〈Ai, Ai〉uivi +
∑

i 6=j

〈Ai, Aj〉uivj =: I + II.

Observe that uivi = x2i − y2i and 〈Ai, Ai〉 = ‖Ai‖22 = 1. Thus

I =
∑

i

x2i − y2i = ‖x‖22 − ‖y‖22 = 1− 1 = 0.

Now, set v̂ = v/‖v‖2 so
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∆ =
‖Ax‖22 − ‖Ay‖22

‖v‖2
=

∑

i 6=j

〈Ai, Aj〉uiv̂i.

Using decoupling ([25, Exercise 6.1.4]) as in the proof of Lemma 4.5, we
let A′ be an independent copy of A and get

EΦλ(∆) ≤ EΦλ
[

4〈Au,A′v̂〉.
]

As in the proof of Lemma 4.5, taking the conditional expectation with
respect to A′ gives

EΦλ(∆) ≤ E exp(Cλ2K2‖Au‖22).
Observe that ‖u‖2 = ‖x+y‖2 ≤ ‖x‖2+‖y‖2 = 2 and assume |λ| ≤ 1/(CK2).
Then Cλ2K2 ≤ |λ| and by Lemma 4.5

E exp(Cλ2K2‖Au‖2) ≤ exp(Cλ2K2).

Thus,

EΦλ(∆) ≤ exp(Cλ2K2) for |λ| ≤ c

K2
.

To finish, observe that this is exactly the same bound on the MGF that
we had previously for S = ‖Ax‖22 − 1 (as in Lemma 4.5). Thus, it can be
converted into the same tail bound as in Lemma 4.7, but with S replaced
by ∆, as desired. �

4.3. Vectors on the sphere, original process. We now show that the
random process Zx = |‖Ax‖2−1| has subgaussian increments for vectors on
the sphere, i.e., we show that

‖Zx − Zy‖ψ2
≤ CK‖x− y‖2

when ‖x‖2 = ‖y‖2 = 1.
This follows from the following lemma, together with the observation that

|Zx − Zy| = ||‖Ax‖2 − 1| − |‖Ay‖2 − 1|| ≤ |‖Ax‖2 − ‖Ay2‖|.
Lemma 4.9. Fix any pair of vectors x, y ∈ Sn−1. Then the random variable

‖‖Ax‖2 − ‖Ay‖2‖ψ2
≤ CK‖x− y‖2.

Proof. This proof is essentially the same as the proof of [18, Lemma 5.4].
We repeat it here for convenience.

Assume x 6= y (as otherwise the result clearly holds) and set

Q :=
|‖Ax‖2 − ‖Ay‖2|

‖x− y‖2
.

We wish to show that

P {Q ≥ t} ≤ C exp

(

−C
t2

K2

)

for t ≥ 0. (4.5)

We show this separately for small t and large t. Set v = x − y and
v̂ = v/‖v‖2.
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Case 1: t ≥ 2.
By the triangle inequality, |‖Ax‖2 − ‖Ay‖2| ≤ ‖A(x − y)‖2 = ‖Av‖2.

Thus,

Q ≤ ‖Av̂‖2.
Then,

P {Q ≥ t} ≤ P {‖Av̂‖2 ≥ t} = P {‖Av̂‖2 − 1 ≥ t− 1} ≤ P {‖Av̂‖2 − 1 ≥ t/2}
since t ≥ 2. Recall that ‖‖Av̂‖2 − 1‖ψ2

. K by Proposition 4.3 and so

P {‖Av̂‖2 − 1 ≥ t/2} ≤ 2 exp

(

−C
t2

K2

)

as desired.
Case 2: t < 2. Observe that

|‖Ax‖2 − ‖Ay‖2|
‖x− y‖2

=
|∆|

‖Ax‖2 + ‖Ay‖2
≤ |∆|

‖Ax‖2
with ∆ defined as in Lemma 4.8.

Define the events F = {|∆| ≥ t/2} and G = {‖Ax‖2 ≤ 1/2} so that
{ |∆|
‖Ax‖2

≥ t

}

⊂ F ∪G.

By the union bound

P

{ |∆|
‖Ax‖2

≥ t

}

≤ P(F ) + P(G).

By Lemma 4.8, P (F ) ≤ 2 exp(−Ct2/K2) and by Proposition 4.3,

P(G) = P

{

‖Ax‖2 − 1 ≤ −1

2

}

≤ 2 exp

(

− C

K2

)

≤ 2 exp(−Ct2

K2
)

since t/2 ≤ 1 (we have absorbed two factors of 4 into the numeric constant
C).

Thus,

P(F ) + P(G) ≤ 4 exp

(

−C
t2

K2

)

giving the desired bound on P {Q ≥ t}. �

4.4. Arbitrary vectors, original process. We now show that

‖Zx − Zy‖ψ2
. K‖x− y‖2 (4.6)

for any x, y ∈ R
n, thus completing the proof of Theorem 4.1. Again, we

present this for convenience, since the argument is already made in [18] (see
also [25, Section 9.1.4]).

Without loss of generality, assume ‖x‖2 ≥ ‖y‖2. Assume y 6= 0 as oth-
erwise Equation (4.6) is already shown by Proposition 4.3. By a simple
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rescaling argument, we may assume ‖y‖2 = 1. Let x̂ = x/‖x‖, i.e., the pro-
jection onto the sphere (or the convex hull of the sphere). Since projection
onto a convex set is contractive, and by definition of projection, we have

‖x̂− y‖2 ≤ ‖x− y‖2 and ‖x− x̂‖2 ≤ ‖x− y‖2. (4.7)

By the triangle inequality, ‖Zx − Zy‖ψ2
≤ ‖Zx − Zx̂‖ψ2

+ ‖Zx̂ − Zy‖ψ2
.

We now use the results from the previous sections to show that each term
is bounded by CK‖x− y‖2, thus completing the proof. Indeed,

‖Zx − Zx̂‖ψ2
= ‖x− x̂‖2 · ‖‖Ax̂‖2 − 1‖ ≤ CK‖x− x̂‖2 ≤ CK‖x− y‖2.

The first inequality follows by Proposition 4.3 and the second by Equa-
tion (4.7).

Next, by Lemma 4.9 followed by Equation (4.7),

‖Zx̂ − Zy‖ψ2
≤ CK‖x̂− y‖2 ≤ CK‖x− y‖2.

The proof is finished.

5. Proofs of the material in Sections 2, 3

We begin with a lemma controlling the subgaussian norm of the columns
of “approximately sparse” and “exactly sparse” matrices, as referenced in
Sections 2, 3.

Lemma 5.1. Let s ≤ m be a positive integer and consider random vectors
X,Y ∈ R

m. The vector X is drawn uniformly from the set of vectors in
R
m with that have all 0, 1,−1 entries and exactly s non-zero entries. The

entries of Y are independent and take the value 1 or −1 with probability s
2m

each, and 0 with probability 1− s
m . Then,

‖X‖ψ2
≤ C

√

log(1 +m/s)
and ‖Y ‖ψ2

≤ C
√

log(1 +m/s)
. (5.1)

Proof. It is not hard to show that by definition, ‖Yi‖ψ2
= 1/

√

log(1 +m/s).
The bound on ‖Y ‖ψ2

then follows from [25, 2.6.1] and Definition (1.1).
We now bound the moments of the marginals of X by the moments of the

marginals of Y , thus controlling ‖X‖ψ2
by ‖Y ‖ψ2

. Below, given an event F
and a random variable Z, we use the notation

‖Z|F‖ψ2
:= inf{t > 0 : E[exp(Z2/t2)|F ]}

i.e., it is the subgaussian norm of Z conditioned on F .
Let u ∈ Sn−1 and let G be the event G := {‖Y ‖0 ≥ s} where we use ‖·‖0

for the number of nonzero entries of a vector. Since s is the median of ‖Y ‖0,
we have P {G} ≥ 1/2 (see [14]). Let p ≥ 1 and observe that

E|〈Y, u〉|p ≥ E

[

|〈Y, u〉|p
∣

∣

∣
G
]

·P {G} ≥ E

[

|〈Y, u〉|p
∣

∣

∣
‖Y ‖0 = s

]

·1
2
= E|〈X,u〉|p·1

2
.

The last equality follows since conditioned on ‖Y ‖0 = s, Y has the same
distribution as X. We have shown that

E|〈X,u〉|p ≤ 2E|〈Y, u〉|p.
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It follows from the moment-based characterization of the subgaussian norm
[25, Equation 2.15] that ‖X‖ψ2

≤ C‖Y ‖ψ2
as desired. �

5.1. Proof of Corollary 3.1. Our strategy is to condition on the event F
that the column norms of A are lower bounded, show that conditionally on
this event Ã has independent, mean-zero, subgaussian columns, and then
apply Corollary 1.4.

The norm of a vector with independent subgaussian entries is well con-
centrated. Indeed, by [12, Theorem 4.1] the columns of A satisfy,

‖‖Ai‖2 −
√
m‖ψ2

. K
√

logK i = 1, 2, . . . , n

and thus,

P

{

‖Ai‖2 ≤
√
m

2

}

= P

{

‖Ai‖2 −
√
m ≤ −

√
m

2

}

≤ 2 exp

(

−C
m

K2 logK

)

.

Then, by the union bound, the event

F :=

{

min
i=1,2,...,n

‖Ai‖2 ≥
√
m

2

}

satisfies

P {F} ≥ 1− 2n exp

(

−C
m

K2 logK

)

= 1− 2 exp

(

log(n)− C
m

K2 logK

)

.

By assumption, m ≥ CK2 log(K) · log(n), and so the log(n) term is insignif-
icant, only changing the constant:

P {F} ≥ 1− 2 exp

(

−C
m

K2 logK

)

≥ 1

2
.

Now condition on the event F . Clearly, the columns of A are (condition-
ally) non-zero. Further,

‖Ãi|F‖ψ2
= ‖

√
m

‖Ai‖2
Ai

∣

∣

∣

∣

F‖ψ2
≤ 2‖Ai|F‖ψ2

≤ C‖Ai‖ψ2
. (5.2)

The first inequality follows because
√
m/‖Ai‖ ≤ 2 (conditionally). The

second inequality follows because conditioning on an event that has at least
50% probability cannot increase the subgaussian norm of Ai by more than a
constant factor. For instance, this follows by checking the moment condition
in [25, Proposition 2.5.2].

Thus, by [25, Proposition 2.6.1],

‖Ãi|F‖ψ2
≤ C‖Ai‖ψ2

≤ CK.

Further, since the entries of Ai are symmetric, and thus the signs of those
entries are independent from their magnitudes, the conditional entries of Ãi
are still symmetric. It follows that E[Ãi|F ] = 0. Summarizing, conditional

on F , Ã has the following properties

‖Ãi‖2 =
√
m, ‖Ãi|F‖ψ2

≤ CK, E[Ãi|F ] = 0.
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Clearly, the columns of Ã remain independent conditional on F and so we
are in the setting of Corollary 1.4 with λ =

√
m. The proposition follows.

Remark 5.2 (Replacing m ≥ CK2 log(K)·log(n) with m ≥ CK2 log(K)). In
Equation (5.2), conditioning on F is equivalent to conditioning on the event
that ‖Ai‖2 ≥ m/

√
2 (by independence). Thus, we only need P

{

‖Ai‖2 ≥ m/
√
2
}

≥
1/2 for Equation (5.2) to hold. This only requires m ≥ CK2 log(K), rather
than m ≥ CK2 log(K) · log(n) (since we may remove the union bound in-
volved in controlling P(F )). Thus Corollary 3.1 holds with the milder as-
sumption on m, but without a lower bound on P(F ). Similar arguments
allow us to take the mild assumption s ≥ 1 in Corollary 3.3 at the expense
of losing the lower bound on P(F ).

6. Conclusion

We have shown that randommatrices with normalized independent columns
have similar behaviour that of random matrices with independent rows, ex-
cept with better dependence on the subguassian norm. We conclude with
an open question: Can the assumption of normalized columns be removed?
This question is made concrete with the following conjecture.

Conjecture 6.1. Let A be an m × n matrix whose columns Ai are inde-
pendent, mean zero, subgaussian random vectors in R

m with ‖Ai‖ψ2
≤ K.

Then, for any subset T ⊂ R
n, we have

E sup
x∈T

∣

∣

∣
‖Ax‖2 − ‖Dx‖2

∣

∣

∣
≤ C(K)γ(T )

where D is the diagonal matrix with Di,i = ‖Ai‖2 and C(K) depends only
on K.
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