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Abstract. We study the spectral norm of matrices W that can be factored
as W = BA, where A is a random matrix with independent mean zero
entries and B is a fixed matrix. Under the (4 + ε)-th moment assumption
on the entries of A, we show that the spectral norm of such an m×n matrix
W is bounded by

√
m +

√
n, which is sharp. In other words, in regard to

the spectral norm, products of random and deterministic matrices behave
similarly to random matrices with independent entries. This result along
with the previous work of M. Rudelson and the author implies that the
smallest singular value of a random m × n matrix with i.i.d. mean zero
entries and bounded (4 + ε)-th moment is bounded below by

√
m−
√

n− 1
with high probability.

1. Introduction

This paper grew out of an attempt to understand the class of random matri-
ces with non-independent entries, but which can be factorized through random
matrices with independent entries. Equivalently, we are interested in sample
covariance matrices of a wide class of random vectors – the linear transforma-
tions of vectors with independent entries.

Here we study the spectral norm of such matrices. Recall that the spectral
norm ‖W‖ is defined as the largest singular value of a matrix W , which equals

the largest eigenvalue of
√
WW ∗. Equivalently, the spectral norm can be

defined as the `2 → `2 operator norm: ‖W‖ = supx ‖Wx‖2/‖x‖2 where ‖ · ‖2
denotes the Euclidean norm. The spectral norm of random matrices plays a
notable role in particular in geometric functional analysis, computer science,
statistical physics, and signal processing.

1.1. Matrices with independent entries. For random matrices with inde-
pendent and identically distributed entries, the spectral norm is well studied.
Let W be an m× n matrix whose entries are real independent and identically
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distributed random variables with mean zero, variance 1 and finite fourth mo-
ment. Estimates of the type

(1.1) ‖W‖ ∼
√
n+
√
m

are known to hold (and are sharp) in both the limit regime for dimensions
increasing to infinity, and the non-limit regime where the dimensions are fixed.
The meaning of (1.1) in the limit regime is that, for a family of matrices as
above whose dimensions m and n increase to infinity and whose aspect ratio
m/n converges to a constant, the ratio ‖W‖/(

√
n+
√
m) converges to 1 almost

surely [32].
In the non-limit regime, i.e. for arbitrary dimensions n and m, variants of

(1.1) were proved by Y. Seginer [28] and R. Latala [17]. If W is an m × n
matrix whose entries are i.i.d. mean zero random variables, then denoting the
rows of W by Xi and the columns by Yj, the result of Y. Seginer [28] states
that

E‖W‖ ≤ C
(
E max

i
‖Xi‖2 + E max

j
‖Yj‖2

)
where C is an absolute constant. This estimate is sharp because ‖W‖ is
obviously bounded below by the Euclidean norm of any row and any column
of W . Furthermore, if the entries wij of the matrix W are not necessarily
identically distributed, then R. Latala’s result [17] states that

E‖W‖ ≤ C
(

max
i

E‖Xi‖2 + max
j

E‖Yj‖2 +
(∑

i,j

Ew4
ij

)1/4)
.

In particular, if W is an m× n matrix whose entries are independent random
variables with mean zero and fourth moments bounded by 1, then one can
deduce from either Y. Seginer’s or R. Latala’s result that

(1.2) E‖W‖ ≤ C(
√
n+
√
m).

This is a variant of (1.1) in the non-limit regime.
The fourth moment hypothesis is known to be necessary. Consider again a

family of matrices whose dimensions m and n increase to infinity, and whose
aspect ratio m/n converges to a constant. If the entries are independent and
identically distributed random variables with mean zero and infinite fourth
moment, then the upper limit of the ratio ‖W‖/(

√
n+
√
m) is infinite almost

surely [32].

1.2. The main result. The main result of this paper is an extension of the
optimal bound (1.2) to the class of random matrices with non-independent
entries, but which can be factored through a matrix with independent entries.

Theorem 1.1. Let ε ∈ (0, 1) and let m,n,N be positive integers. Consider a
random m × n matrix W = BA, where A is an N × n random matrix whose



3

entries are independent random variables with mean zero and (4+ε)-th moment
bounded by 1, and B is an m×N non-random matrix such that ‖B‖ ≤ 1. Then

(1.3) E‖W‖ ≤ C(ε)(
√
n+
√
m)

where C(ε) is a function that depends only on ε.

Remarks. 1. An important feature of this result is that its conclusion is inde-
pendent of the dimension N .

2. The proof of Theorem 1.1 yields the stronger estimate

(1.4) E‖W‖ ≤ C(ε)(‖B‖
√
n+ ‖B‖HS)

valid for arbitrary (non-random) m×N matrix B. This result is independent
of the dimensions of the matrix B, and therefore it holds for an arbitrary linear
operator B acting from the N -dimensional Euclidean space `N2 to an arbitrary
Hilbert space.

3. Theorem 1.1 can be interpreted in terms of sample covariance matrices
of random vectors in Rm of the form BX, where X is a random vector in
RN with independent entries. Indeed, let A be the random matrix whose
columns are n independent samples of the vector X. Then W = BA is the
matrix whose columns are n independent samples of the random vector BX.
The sample covariance matrix of the random vector BX is defined as Σ =
1
n
WW ∗. Theorem 1.1 states that the largest eigenvalue of Σ is bounded by
C1(ε)(1 +m/n), which is further bounded by C2(ε) for the number of samples
n & m (and independently of the dimension N). This problem was previously
studied in [4], [5] in the limit regime for m = N , where the result must of
course depend on N .

4. Under the stronger subgaussian moment assumption (1.6) on the entries,
Theorem 1.1 is easy to prove using standard concentration and an ε-net argu-
ment. In contrast, if only some finite moment is assumed, we do not know any
simple proof.

1.3. The smallest singular value. Our main motivation for Theorem 1.1
was to complete the analysis of the smallest singular value of random rect-
angular matrices carried out by M. Rudelson and the author in [27]. The
smallest singular value smin(W ) of a matrix W can be equivalently described
as smin(W ) = infx ‖Wx‖2/‖x‖2.

Analyzing the smallest singular value is generally harder than analyzing the
largest one (the spectral norm). The analogue of (1.1) for the smallest singular
value of random m× n matrices W (for m > n) is

(1.5) smin(W ) ∼
√
m−

√
n.
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The optimal limit version of this result proved in [7] holds under exactly the
same hypotheses as (1.1) – for i.i.d. entries with mean zero, variance 1 and
finite fourth moment.

Many papers addressed (1.5) for fixed dimensions n, m. Sufficiently tall
matrices (m ≥ Cn for sufficiently large C) were studied in [8]; extensions to
genuinely rectangular matrices (m > (1 + ε)n for some ε > 0) were studied in
[20, 2, 23], with gradually improving dependence on ε. An optimal version of
(1.5) for all dimensions was obtained in [27]. All these works put somewhat
stronger moment assumptions than the fourth moment of the entries wij of the
matrix W . A convenient assumption is that the entries wij are subgaussian
random variables. This means that all their moments are bounded by the
corresponding moments of the standard normal random variable, i.e.

(1.6) (E|wij|p)1/p ≤M
√
p for all p ≥ 1

where M is called the subgaussian moment. It was proved in [27] that if
the entries of W are i.i.d. mean zero subgaussian random variables with unit
variance, then for every t > 0 one has

(1.7) P
(
smin(W ) ≤ t

(√
m−

√
n− 1

))
≤ (Ct)m−n+1 + e−cm

where C, c > 0 depend only on the subgaussian moment M . In particular, for
such matrices we have

(1.8) smin(W ) ≥ c1(
√
m−

√
n− 1) with high probability

where c1 > 0 depends only on the desired probability and the subgaussian
moment. This result encompasses the case of square matrices where m = n
and hence (1.8) yields smin(W ) ≥ c2/

√
n. For Gaussian square matrices this

optimal bound was obtained in [11] and [29]; for general square matrices a
weaker bound n−3/2 was obtained in [24] and the best bound as above in [25];
the estimate is shown to be optimal in [26].

Whether (1.8) holds under weaker moment assumptions was only known in
the case of square matrices. It was proved in [25] using (1.2) that (1.8) holds
under the fourth moment assumption for square matrices, i.e. for m = n.
Whether the same is true for arbitrary rectangular matrices under the fourth
moment assumption was left open in [27]. The bottleneck of the argument
occurred in Proposition 7.3 on [27] where we needed a correct bound on the
spectral norm of a product of a random matrix and a fixed orthogonal projec-
tion. Such a bound was easy to get only under the subgaussian hypothesis.
Theorem 1.1 of the present paper extends the argument of [27] for random ma-
trices with bounded (4 + ε)-th moment. It follows directly from the argument
of [27] and Theorem 1.1.

Corollary 1.2 (Smallest singular value). Let ε ∈ (0, 1) and m ≥ n be positive
integers. Let A be a random m × n matrix whose entries are i.i.d. random
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variables with mean zero, unit variance and (4 + ε)-th moment bounded by M .
Then, for every δ > 0 there exist t > 0 and n0 which depend only on ε, δ and
M , and such that

P
(
smin(A) ≤ t

(√
m−

√
n− 1

))
≤ δ for all n ≥ n0.

This result follows by the argument in [27], where one considers probability
estimates conditional on the event that the norm of a product W of a random
matrix and a non-random orthogonal projection is small (see [27, Proposi-
tion 7.3]).

After this paper was written, two important related results appeared on the
universality of the smallest singular value in two extreme regimes – for almost
square matrices and for genuinely rectangular matrices. One of these results,
by T. Tao and V. Vu [31] works for square and almost square matrices where
the the defect m−n is constant. It is valid for matrices with i.i.d. entries with
mean zero, unit variance and bounded C-th moment where C is a sufficiently
large absolute constant. The result states that the smallest singular value of
such m×n matrices A is asymptotically the same as of the Gaussian matrix G
of the same dimensions and with i.i.d. standard normal entries. Specifically,

(1.9) P
(
msmin(G)2 ≤ t−m−c

)
−m−c ≤ P

(
msmin(A)2 ≤ t

)
≤ P

(
msmin(G)2 ≤ t+m−c

)
+m−c.

This universality result, combined with the known asymptotic estimates of
the smallest singular value of Gaussian matrices smin(G) allows one to obtain
bounds sharper than in Corollary 1.2. However, the universality result of [31]
is only known in the almost square regime m− n = O(1) (and under stronger
moment assumptions), while Corollary 1.2 is valid for all dimensions m ≥ n.

Another recent universality result was obtained by O. Feldheim and S. Sodin
[12] for genuinely rectangular matrices, i.e. with aspect ratio m/n separated
from 1 by a constant, and with subgaussian i.i.d. entries. In particular they
proved the inequality

(1.10) P
(
smin(A) ≤ (

√
m−

√
n)2 − tm

)
≤ C

1−
√
m/n

exp(−cnt3/2).

Deviation inequalities (1.7) and (1.10) complement each other – the former
is multiplicative (and is valid for arbitrary dimensions) while the latter is
additive (and is applicable for genuinely rectangular matrices). Each of these
two inequalities clearly has the regime where it is stronger.

1.4. Outline of the argument. Let us sketch the proof of Theorem 1.1. We
can assume that m = n by adding an appropriate number of zero columns
to A or rows to B. Since the columns of A are independent, the columns
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X1, . . . , Xn of the matrix W are independent random vectors in Rn. We would
like to bound the spectral norm of WW ∗ =

∑
j Xj ⊗ Xj, which is a sum of

independent random operators. For random vectors Xj uniformly distributed
in convex bodies, deviation inequalities for sums

∑
j Xj ⊗Xj were studied in

[15, 10, 22, 14, 21, 3, 1]. For general distributions, a sharp estimate for such
sums has been proved by M. Rudelson [22]. This approach, which we develop
in Section 3, leads us to the bound

(1.11) E‖W‖ ≤ C
√
n log n.

This bound is already independent of the dimension N , but is off by
√

log n
from being optimal. The logarithmic term is unfortunately a limitation of
this method. This term comes from M. Rudelson’s result, Theorem 3.1 be-
low, where it is needed in full generality. It would be useful to understand the
situations where the logarithmic term can be removed from M. Rudelson’s the-
orem. So far, only one such situation is known from [1] where the independent
random vectors Xj are uniformly distributed in a convex body.

In absence of a suitable variant of M. Rudelson’s theorem without the loga-
rithmic term, the rest of our argument will proceed to remove this term from
(1.11) using the rich independence structure, which is inherited by the vectors
Xj from the random matrix A. However, the independence structure is en-
coded nontrivially via the linear transformation B, which makes the entries of
Xj dependent). A more delicate application of M. Rudelson’s theorem allows
one to transfer the logarithmic term from the conclusion to the assumption.
Namely, Theorem 3.9 establishes the optimal bound E‖W‖ ≤ C

√
n in the case

when all columns of B are logarithmically small, i.e. their Euclidean norm is
at most log−O(1) n. While some columns of a general matrix B may be large,
the boundedness of B implies that most columns are always logarithmically
small – all but all but n logO(1) n of them. So, we can remove from B the
already controlled small columns, which will make B an almost square matrix.
In other words, we can assume hereafter that N = n logO(1) n.

The advantage of almost square matrices is that the magnitude of their
entries is easy to control. A simple consequence of the (4 + ε)-th moment
hypothesis and Markov’s inequality yields that the entries of A = (aij) satisfy
maxi,j |aij| ≤

√
n with high probability. Note that the same estimate holds for

square matrices (N = n) under the fourth moment assumption. So, in regard
to the magnitude of entries, almost square matrices are similar to exactly
square matrices, for which the desired bound follows from R. Latala’s result
(1.2).

This prompts us to construct the proof of Theorem 1.1 for almost square
matrices similarly to R. Latala’s argument in [17], i.e. using fairly standard
concentration of measure results in the Gauss space, coupled with delicate
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constructions of nets. We first decompose A into a sum of matrices which con-
tain entries of similar magnitude. As the magnitude increases, these matrices
become sparser. This quickly reduces the problem to random sparse matrices,
whose entries are i.i.d. random variables valued in {−1, 0, 1}. The spectral
norm of random sparse matrices was studied in [16] as a development of the
work of Z. Furedi and J. Komlos [13]. However, we need to bound the spec-
tral norm of the matrix W = BA rather than A. Independence of entries is
not available for W , which makes it difficult to use the known combinatorial
methods based on the bounding trace of high powers of W .

To summarize, at this point we have an almost square random sparse matrix
A, and we need to bound the spectral norm of W = BA, which is ‖W‖ =
supx ‖Wx‖2, where the supremum is over all unit vectors x ∈ Rn. The well
known method is to first fix x and bound ‖Wx‖2 with high probability; then
take a union bound over all x in a sufficiently fine net of the unit sphere of
Rn. However, a probability bound for every fixed vector x, which follows from
standard concentration inequalities, is not strong enough to make this method
work. Sparse vectors – those which have few but large nonzero coordinates
– produce worse concentration bounds than spread vectors, which have many
but small nonzero coordinates. What helps us is that there are fewer sparse
vectors on the sphere than there are spread vectors. This leads to a tradeoff
between concentration and entropy, i.e. between the probability with which
‖Wx‖2 is nicely bounded, and the size of a net for the vectors x which achieve
this probability bound. One then divides the unit Euclidean sphere in Rn

into classes of vectors according to their “sparsity”, and uses the entropy-
concentration tradeoff for each class separately. This general line is already
present in Latala’s argument [17], and it was developed extensively in the
recent years, see e.g. [20, 24, 25, 27]. This argument is presented in Section 4,
where it leads to a useful estimate for norms of sparse matrices, Corollary 4.9.
With this in hand, one can quickly finish the proof of Theorem 1.1.

Acknowledgement. The author is grateful for the referee for careful read-
ing of the manuscript, and for many suggestions which greatly improved the
presentation.

2. Preliminaries

2.1. Notation. Throughout the paper, the results are stated and proved over
the field of real numbers. They are easy to generalize to complex numbers.

We denote by C,C1, c, c1 . . . positive absolute constants, and by C(ε), C1(ε), . . .
positive quantities that may depend only on the parameter ε. Their values can
change from line to line.

The standard inner product in Rn is denoted 〈x, y〉. For a vector x ∈ Rn, we
denote the cardinality of its support by ‖x‖0 = |{j : xj 6= 0}|, the Euclidean
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norm by ‖x‖2 = (
∑

j x
2
j)

1/2, and the sup-norm by ‖x‖∞ = maxj |xj|. The

unit Euclidean ball in Rn is denoted by Bn
2 = {x : ‖x‖2 ≤ 1}, and the unit

Euclidean sphere in Rn is denoted by Sn−1 = {x : ‖x‖2 = 1}.
The tensor product of vectors x, y ∈ Rn is the linear operator x ⊗ y on Rn

defined as (x⊗ y)(z) = 〈x, z〉y for z ∈ Rn.

2.2. Concentration of measure. The method that we carry out in Section 4
uses concentration in the Gauss space in combination with constructions of ε-
nets. Here we recall some basic facts we need.

The standard Gaussian random vector g ∈ Rm is a random vector whose
coordinates are independent standard normal random variables. The following
concentration inequality can be found e.g. in [19, inequality (1.5)].

Theorem 2.1 (Gaussian concentration). Let f : Rm → R be a Lipschitz
function. Let g be a standard Gaussian random vector in Rm. Then for every
t > 0 one has

P(f(g)− Ef(g) > t) ≤ exp(−c0t2/‖f‖2Lip)

where c0 ∈ (0, 1) is an absolute constant.

As a very restrictive but useful example, Theorem 2.1 implies the following
deviation inequality for sums of independent exponential random variables
g2
i (which can also be derived by the more standard approach via moment

generating functions).

Corollary 2.2 (Sums of exponential random variables). Let d = (d1, . . . , dm)
be a vector of real numbers, and let g1, . . . , gm be independent standard normal
random variables. Then, for every t > 0 we have

P
{( m∑

i=1

d2
i g

2
i

)1/2

> ‖d‖2 + t
}
≤ exp(−c0t2/‖d‖2∞).

Proof. The function f(y) = (
∑m

i=1 d
2
i y

2
i )

1/2 is a Lipschitz function on Rm with
‖f‖Lip = ‖d‖∞. Moreover, Hölder’s inequality implies that

Ef(g) = E
( m∑
i=1

d2
i g

2
i

)1/2

≤
(
E

m∑
i=1

d2
i g

2
i

)1/2

= ‖d‖2.

Theorem 2.1 completes the proof. �

Another classical deviation inequality we will need is Bennett’s inequality,
see e.g. [9, Theorem 2]:
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Theorem 2.3 (Bennett’s inequality). Let X1, . . . , XN be independent mean
zero random variables such that |Xi| ≤ 1 for all i. Consider the sum S =
X1 + · · ·+XN and let σ2 := Var(S). Then, for every t > 0 we have

P(S > t) ≤ exp
(
− σ2h(t/σ2)

)
where h(u) = (1 + u) log(1 + u)− u.

We will also need M. Talagrand’s concentration inequality for convex Lip-
schitz funcitons from [30, Theorem 6.6]; see also [18, Corollary 4.10] and the
discussion below it.

Theorem 2.4 (Concentration of Lipschitz convex functions). Let X1, . . . , Xm

be independent random variables such that |Xi| ≤ K for all i. Let f : Rm → R
be a convex and 1-Lipschitz function. Then for every t > 0 one has

P
(
|f(X1, . . . , Xm)− Ef(X1, . . . , Xm)| > Kt

)
≤ 4 exp(−t2/4).

2.3. Nets. Consider a subset U of a normed space X, and let ε > 0. Recall
that an ε-net of U is a subset N of U such that the distance from any point
of U to N is at most ε. In other words, for every x ∈ U there exists y ∈ N
such that ‖x− y‖X ≤ ε.

The following estimate follows by a volumetric argument, see e.g. the proof
of Lemma 9.5 in [19].

Lemma 2.5 (Cardinality of ε-nets). Let ε ∈ (0, 1). The unit Euclidean ball
Bn

2 and the unit Euclidean sphere Sn−1 in Rn both have ε-nets of cardinality
at most (1 + 2/ε)n.

When computing norms of linear operators, ε-nets provide a convenient
discretization of the problem. We formalize it in the next proposition.

Proposition 2.6 (Computing norms on nets). Let A : X → Y be a linear
operator between normed spaces X and Y , and let N be an ε-net of either the
unit sphere S(X) or the unit ball B(X) of X for some ε ∈ (0, 1). Then

‖A‖ ≤ 1

1− ε
sup
x∈N
‖Ax‖Y .

Proof. We give the proof for an ε-net of the unit sphere; the case of the unit
ball is similar. Every z ∈ S(X) has the form z = x + h, where x ∈ N and
‖h‖X ≤ ε. Since ‖A‖ = supz∈S(X) ‖Az‖Y , the triangle inequality yields

‖A‖ ≤ sup
x∈N
‖Ax‖Y + sup

‖h‖X≤ε
‖Ah‖Y .

The last term in the right hand side is bounded by ε‖A‖. Thus we have shown
that

(1− ε)‖A‖ ≤ sup
x∈N
‖Ax‖Y .
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This completes the proof. �

2.4. Symmetrization. We will use the standard symmetrization technique
as was done in [17]; see more general inequalities in e.g. [19, Section 6.1]. To
this end, let the matrices A = (aij) and B be as in Theorem 1.1. Let A′ = (a′ij)
be an independent copy of A, and let εij be independent symmetric Bernoulli
random variables. Then, by Jensen’s inequality,

E‖BA‖ = E‖B(A− EA′)‖ ≤ E‖B(A− A′)‖
= E‖B(εij(aij − a′ij))‖ ≤ 2E‖B(εijaij)‖.

Therefore, we can assume without loss of generality in Theorem 1.1 that aij
are symmetric random variables. Furthermore, let gij be independent standard
normal random variables. Then, again by Jensen’s inequality,

E‖B(gijaij)‖ = E‖B(εij|gij|aij)‖ ≥ E‖B(εijE(|gij|)aij)‖
= (2/π)1/2E‖B(εijaij)‖.

Therefore

(2.1) E‖BA‖ ≤ (2π)1/2E‖B(gijaij)‖.

Conditioning on aij, we thus reduce the problem to random gaussian matrices.

We will use a similar symmetrization technique several times in our argu-
ment. In particular, in the proof of Lemma 3.8 we apply the following ob-
servation, which can be deduced from standard symmetrization lemma ([19]
Lemma 6.3) and the contraction principle ([19] Theorem 4.4). For the reader’s
convenience we include a direct proof.

Lemma 2.7 (Symmetrization). Consider independent mean zero random vari-
ables Zij such that |Zij| ≤ 1, independent symmetric Bernoulli random vari-
ables εij, and vectors xij in some Banach space, where both i and j range in
some finite index sets. Then

E max
j

∥∥∥∑
i

Zijxij

∥∥∥ ≤ 2E max
j

∥∥∥∑
i

εijxij

∥∥∥.
Proof. To be specific, we can assume that both indices i and j range in the
interval {1, . . . , n} for some integer n. Let (Z ′ij) denote an independent copy of
the sequence of random variables (Zij). Then Zij −Z ′ij are symmetric random
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variables. We have

E max
j

∥∥∥∑
i

Zijxij

∥∥∥ ≤ E max
j

∥∥∥∑
i

(Zij − EZ ′ij)xij
∥∥∥ (since EZ ′ij = 0)

≤ E max
j

∥∥∥∑
i

(Zij − Z ′ij)xij
∥∥∥ (by Jensen’s inequality)

= E max
j

∥∥∥∑
i

εij(Zij − Z ′ij)xij
∥∥∥ (by symmetry)

≤ 2 max
|aij |≤1

E max
j

∥∥∥∑
i

εijaijxij

∥∥∥
where the last line follows because |Zij −Z ′ij| ≤ |Zij|+ |Z ′ij| ≤ 2. The function

on Rn2

(aij)
n
i,j=1 7→ E max

j

∥∥∥∑
i

εijaijxij

∥∥∥
is a convex function. Therefore, on the compact convex set [−1, 1]n

2
it attains

its maximum on the extreme points, where all aij = ±1. By symmetry, the
function takes the same value at each extreme point, which equals

E max
j

∥∥∥∑
i

εijxij

∥∥∥.
This completes the proof. �

2.5. Truncation and conditioning. We will need some elementary obser-
vations related to truncation and conditioning of random variables.

Lemma 2.8 (Truncation). Let X be a non-negative random variable, and let
M > 0, p ≥ 1. Then

EX1{X≥M} ≤
EXp

Mp−1
.

Proof. Indeed,

EX1{X≥M} ≤ EX(X/M)p−11{X≥M} ≤ EXp/Mp−1.

The Lemma is proved. �

We will also need two elementary conditioning lemmas. In Section 4, we will
need to control the maximal magnitude of the entries M0 = maxij |aij| of the
random matrix A. Conditioning on M0 will unfortunately destroy the inde-
pendence of the entries. So, we will instead condition on an event {M0 ≤ t} for
fixed t, which will clearly preserve the independence. This conditional argu-
ment used in the proof of Corollary 4.11 relies on the following two elementary
lemmas.
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Lemma 2.9. Let X be a random variable and K be a real number. Then

E(X |X ≤ K) ≤ EX.

Proof. By the law of total probability,

EX = E(X |X ≤ K) P(X ≤ K) + E(X |X > K) P(X > K).

Thus EX is a convex combination of the numbers a = E(X |X ≤ K) and
b = E(X |X > K). Since clearly a ≤ K ≤ b, we must have a ≤ EX ≤ b. �

Lemma 2.10. Let X, Y be non-negative random variables. Assume there
exists K,L > 0 such that one has for every t ≥ 1:

(2.2) E(X2 |Y ≤ t) ≤ K2t, P(Y > Lt) ≤ 1

t2
.

Then EX ≤ CK
√
L.

Proof. Without loss of generality we can assume that K = 1 by rescaling X
to X/K. Thus we have for every t ≥ 1:

(2.3) EX21{Y≤t} ≤ E(X2 |Y ≤ t) ≤ t.,

We consider the decomposition

EX = EX1{Y≤L} +
∞∑
k=1

EX1{2k−1L<Y≤2kL}.

By (2.3) and Hölder’s inequality, the first term is bounded as

EX1{Y≤L} ≤
(
EX21{Y≤L}

)1/2 ≤ √L.
Further terms can be estimated by Cauchy-Schwarz inequality and using (2.3)
and the second inequality in (2.2). Indeed,

EX1{2k−1L<Y≤2kL} = EX1{Y≤2kL}1{Y >2k−1L}

≤
(
EX21{Y≤2kL}

)1/2(P{Y > 2k−1L}
)1/2

≤ (2kL)1/2 · 1

2k−1
=
√
L 21−k/2.

Therefore

EX ≤
√
L+

∞∑
k=1

√
L 21−k/2 ≤ C

√
L.

This completes the proof. �
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2.6. On the deterministic matrix B in Theorem 1.1. We start with two
initial observations that will make our proof of Theorem 1.1 more transparent.
By adding an appropriate number of zero rows to B or zero columns to A we
can assume without loss of generality that n = m, thus B is an n×N matrix.

Throughout the proof of Theorem 1.1, we shall denote the columns of such
a matrix B by B1, . . . , BN . They are non-random vectors in Rn, which satisfy

(2.4) max
i
‖Bi‖2 ≤ ‖B‖ ≤ 1;

N∑
i=1

‖Bi‖22 = ‖B‖2HS ≤ n‖B‖ ≤ n

where ‖·‖HS denotes the Hilbert-Schmidt norm. Throughout the argument, we
will only have access to the matrix B through inequalities (2.4). This explains
Remark 2 following Theorem 1.1, which states that the range space of B is
irrelevant as long as we control the spectral and Hilbert-Schmidt norms of B.

3. Approach via M. Rudelson’s theorem

3.1. M. Rudelson’s theorem. Our first approach, which will yield Theo-
rem 1.1 up to a logarithmic factor, rests on the following result. Here and
thereafter, by ε1, ε2, . . . we denote independent symmetric Bernoulli random
variables, i.e. independent random variables such that P(εi = ±1) = 1/2.

Theorem 3.1 (M. Rudelson [22]). Let u1, . . . , uM be vectors in Rm. Then, for
every p ≥ 1, one has(

E
∥∥∥ M∑
i=1

εiui ⊗ ui
∥∥∥p)1/p

≤ C(
√
p+

√
logm) ·max

i
‖ui‖2 ·

∥∥∥ M∑
i=1

ui ⊗ ui
∥∥∥1/2

.

In particular, for every t > 0, with probability at least 1− 2me−ct
2

one has∥∥∥ M∑
i=1

εiui ⊗ ui
∥∥∥ ≤ t ·max

i
‖ui‖2 ·

∥∥∥ M∑
i=1

ui ⊗ ui
∥∥∥1/2

.

The first estimate is taken from [22, inequality (3.4)]. The second estimate
can be easily derived from it using the following elementary lemma:

Lemma 3.2 (Moments and tails). Suppose a non-negative random variable X
satisfies for some m ≥ 1 that

(EXp)1/p ≤ √p+
√

logm for every p ≥ 1.

Then

P(X ≥ t) ≤ 2me−ct
2

for every t > 0.
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Proof. Suppose first that t ≥ max(1,
√

logm). Let p := t2. Then
√
p ≥√

logm, so the hypothesis gives (EXp)1/p ≤ 2
√
p. By Markov’s inequality,

P(X ≥ 2et) = P(Xp ≥ (2et)p) ≤
(2
√
p)p

(2et)p
= e−t

2

.

Next, if t < max(1,
√

logm) then by choosing the absolute constant c > 0
sufficiently small right hand side of (3.1) is larger than 1 for a sufficiently
small absolute constant c . Therefore, for every t > 0 one has

(3.1) P(X ≥ 2et) ≤ 2me−t
2/2

because if t < max(1,
√

logm) then the right hand side of (3.1) is larger than
one, which makes the inequality trivial. This completes the proof. �

The next lemma is a consequence of M. Rudelson’s Theorem 3.1 and a
standard symmetrization argument.

Lemma 3.3. Let X1, . . . , Xn be independent random vectors in Rm such that

(3.2) ‖EXj ⊗Xj‖ ≤ 1 for every j.

Then

E
∥∥∥ n∑
j=1

Xj ⊗Xj

∥∥∥ ≤ Cn+ C log(2m) E max
j
‖Xj‖22.

Proof. Let ε1, . . . , εn be independent symmetric Bernoulli random variables.
By the triangle inequality, the standard symmetrization argument (see e.g.
[19, Lemma 6.3]), and the assumption, we have

E := E
∥∥∥ n∑
j=1

Xj ⊗Xj

∥∥∥ ≤ E
∥∥∥ n∑
j=1

(Xj ⊗Xj − EXj ⊗Xj)
∥∥∥+

∥∥∥ n∑
j=1

EXj ⊗Xj

∥∥∥
≤ 2E

∥∥∥ n∑
j=1

εjXj ⊗Xj

∥∥∥+ n.

Condition on the random variables X1, . . . , Xn, and apply Theorem 3.1. Writ-
ing Eε to denote the conditional expectation (i.e. the expectation with respect
to the random variables ε1, . . . , εn), we have

Eε

∥∥∥ n∑
j=1

εjXj ⊗Xj

∥∥∥ ≤ C
√

log(2m) ·max
j
‖Xj‖2 ·

∥∥∥ n∑
j=1

Xj ⊗Xj

∥∥∥1/2

.

Now we take expectation with respect to X1, . . . , Xn and use Cauchy-Schwarz
inequality to get

E ≤ C
√

log(2m) ·
(
E max

j
‖Xj‖22

)1/2 · E1/2 + n.

The conclusion of the lemma follows. �
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3.2. Theorem 1.1 up to a logarithmic term. We now state a version of
Theorem 1.1 with a logarithmic factor.

Proposition 3.4. Let N, n be positive integers. Consider an N × n random
matrix A whose entries are independent random variables with mean zero and
4-th moment bounded by 1. Let B be an n × N matrix such that ‖B‖ ≤ 1.
Then

E‖BA‖ ≤ C
√
n log(2n).

The proof will need two auxiliary lemmas. Recall that B1, . . . , BN denote
the columns of the matrix B.

Lemma 3.5. Let a1, . . . , aN be independent random variables with mean zero
and 4-th moment bounded by 1. Consider the random vector X in Rn defined
as

X =
N∑
i=1

aiBi.

Then
E‖X‖22 ≤ n, Var(‖X‖22) ≤ 3n.

Proof. The estimate on the expectation follows easily from (2.4):

(3.3) E‖X‖22 =
N∑
i=1

E(a2
i )‖Bi‖22 ≤

N∑
i=1

‖Bi‖22 ≤ n.

To estimate the variance, we need to compute

E‖X‖42 = E〈X,X〉2 =
N∑

i,j,k,l=1

E(aiajakal)〈Bi, Bj〉〈Bk, Bl〉.

By independence and the mean zero assumption, the only nonzero terms in
this sum are those for which i = j; k = l or i = k; j = l or i = l; j = k.
Therefore

E‖X‖42 =
N∑

i,j=1

E(a2
i a

2
j)‖Bi‖22‖Bj‖22 + 2

N∑
i,j=1

E(a2
i a

2
j)〈Bi, Bj〉2

=
N∑
i=1

E(a4
i )‖Bi‖42 +

N∑
i,j=1
i 6=j

E(a2
i )E(a2

j)‖Bi‖22‖Bj‖22 + 2
N∑

i,j=1

E(a2
i a

2
j)〈Bi, Bj〉2

=: I1 + I2 + I3.

By the fourth moment assumption and using (2.4) we have

I1 ≤
N∑
i=1

‖Bi‖42 ≤ max
i

(‖Bi‖22)
N∑
i=1

‖Bi‖22 ≤ n
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Squaring the sum in (3.3), we see that

I2 ≤ (E‖X‖22)2.

Finally, since by Cauchy-Schwarz inequality E(a2
i a

2
j) ≤

√
E(a4

i )E(a4
j) ≤ 1, and

using (2.4) again, we obtain

I3 ≤ 2
N∑

i,j=1

〈Bi, Bj〉2 = 2‖B∗B‖2HS ≤ 2‖B∗‖2‖B‖2HS = 2‖B‖2‖B‖2HS ≤ 2n.

Putting all this together, we obtain

Var(‖X‖22) = E‖X‖42 − (E‖X‖22)2 ≤ I1 + I3 ≤ 3n.

This completes the proof. �

Lemma 3.6. Let A and B be matrices as in Proposition 3.4. Let X1, . . . , Xn ∈
Rn denote the columns of the matrix BA. Then

E max
j=1,...,n

‖Xj‖22 ≤ Cn.

Remark. This result says that all columns of the matrix BA have norm O(
√
n)

with high probability. Since the spectral norm of a matrix is bounded below by
the norm of any column, this result is a necessary step in proving our desired
estimate ‖BA‖ = O(

√
n).

Proof. Let, as usual, B1, . . . , BN ∈ Rn denote the columns of the matrix B,
and let aij denote the entries of the matrix A. Then

(3.4) Xj =
N∑
i=1

aijBi, j = 1, . . . , n.

Let us fix j ∈ {1, . . . , n} and use Lemma 3.5. This gives

(3.5) E‖Xj‖22 ≤ n, Var(‖Xj‖22) ≤ 3n.

Now we use Chebychev’s inequality, which states that for a random variable
Z with σ2 = Var(Z) and for an arbitrary k > 0, one has

P(|Z − EZ| > kσ) ≤ 1

k2
.

Let t > 0 be arbitrary. Using Chebychev’s inequality along with (3.5) for
Z = ‖Xj‖22, k = t

√
n, we obtain

P
(
‖Xj‖22 > (1 +

√
3 t)n

)
≤ 1

t2n
.

Taking the union bound over all j = 1, . . . , n, we conclude that

P
(

max
j=1,...,n

‖Xj‖22 > (1 +
√

3 t)n
)
≤ n · 1

t2n
=

1

t2
.
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Integration completes the proof. �

Proof of Proposition 3.4. Let X1, . . . , Xn ∈ Rn denote the columns of the ma-
trix BA. We are going to apply Lemma 3.3. In order to check that condition
(3.2) holds, we consider an arbitrary vector x ∈ Sn−1 and use representation
(3.4) to compute

E〈Xj, x〉2 = E
( N∑
i=1

aij〈Bi, x〉
)2

=
N∑
i=1

E(a2
ij)〈Bi, x〉2 ≤

N∑
i=1

〈Bi, x〉2

= ‖B∗x‖22 ≤ ‖B∗‖2 = ‖B‖2 ≤ 1.

This shows that condition (3.2) holds. Lemma 3.3 then gives

E‖BA‖2 = E
∥∥∥ n∑
j=1

Xj ⊗Xj

∥∥∥ ≤ Cn+ C log(2n) E max
j=1,...,n

‖Xj‖22.

Estimating the maximum in the right hand side using Lemma 3.6, we conclude
that

E‖BA‖2 ≤ C1n log(2n).

This completes the proof. �

3.3. Tradeoff between the matrix norm and the magnitude of entries.
We would like now to gain more control over the logarithmic factor than we
have in Proposition 3.4. Our next result establishes a tradeoff between the
logarithmic factor and the magnitude of the matrices A, B. It will be used in
the proof of Theorem 3.9.

Proposition 3.7. Let a, b ≥ 0 and N, n be positive integers. Let A be an
N × n matrix whose entries are random independent variables aij with mean
zero and such that

Ea2
ij ≤ 1, |aij| ≤ a for every i, j.

Let B be an n×N matrix such that ‖B‖ ≤ 1, and whose columns satisfy

‖Bi‖2 ≤ b for every i.

Then
E‖BA‖ ≤ C(1 + ab1/2 log1/4(2n))

√
n.

The proof will again be based on M. Rudelson’s Theorem 3.1, although this
time we use Rudelson’s theorem in a more delicate way:

Lemma 3.8. Under the assumptions of Proposition 3.7, we have

E max
j=1,...,n

∥∥∥ N∑
i=1

a2
ijBi ⊗Bi

∥∥∥ ≤ C(1 + a2b
√

log(2n)).
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Proof. Fix j ∈ {1, . . . , n}. Let µ2
ij := Ea2

ij. By the triangle inequality,

(3.6)
∥∥∥ N∑
i=1

a2
ijBi ⊗Bi

∥∥∥ ≤ ∥∥∥ N∑
i=1

(a2
ij − µ2

ij)Bi ⊗Bi

∥∥∥+
∥∥∥ N∑
i=1

µ2
ijBi ⊗Bi

∥∥∥.
Since 0 ≤ µ2

ij ≤ 1 and

(3.7)
∥∥∥ N∑
i=1

Bi ⊗Bi

∥∥∥ ≤ ‖B‖2 ≤ 1,

we have

(3.8)
∥∥∥ N∑
i=1

µ2
ijBi ⊗Bi

∥∥∥ ≤ ∥∥∥ N∑
i=1

Bi ⊗Bi

∥∥∥ ≤ 1.

Next, clearly µ2
ij ≤ a2, so

E(a2
ij − µ2

ij) = 0, |a2
ij − µ2

ij| ≤ 2a2.

Symmetrization Lemma 2.7 yields

(3.9) E max
j=1,...,n

∥∥∥ N∑
i=1

(a2
ij − µ2

ij)Bi ⊗Bi

∥∥∥ ≤ 2a2 E max
j=1,...,n

∥∥∥ N∑
i=1

εijBi ⊗Bi

∥∥∥
where εij denote independent symmetric Bernoulli random variables.

Let t > 0. By the second part of M. Rudelson’s Theorem 3.1 and taking the
union bound over n random variables, we conclude that, with probability at
least 1− 2n2e−ct

2
, we have

max
j=1,...,n

∥∥∥ N∑
i=1

εijBi ⊗Bi

∥∥∥ ≤ t · max
i=1,...,N

‖Bi‖2 ·
∥∥∥ N∑
i=1

Bi ⊗Bi

∥∥∥1/2

≤ tb

The second estimate follows from (3.7) and since maxi ‖Bi‖2 ≤ b by the hy-
pothesis.

Let s > 0 be arbitrary. We apply the above estimate for t chosen so that
2n2e−ct

2
= e−s

2
. This shows that, with probability at least 1− e−s2 , one has

max
j=1,...,n

∥∥∥ N∑
i=1

εijBi ⊗Bi

∥∥∥ ≤ tb ≤ C1b(
√

log(2n) + s).

Integration implies that

E max
j=1,...,n

∥∥∥ N∑
i=1

εijBi ⊗Bi

∥∥∥ ≤ C2b
√

log(2n).

Putting this into (3.9) and, together with (3.8), back into (3.6), we complete
the proof. �
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Proof of Proposition 3.7. By the symmetrization argument (see (2.1)), we can
assume that the entries of the matrix A are gijaij, where aij are random vari-
ables satisfying the assumptions of the proposition, and gij are independent
standard normal random variables. We will write Eg, Pg when we take ex-
pectations and probability estimates with respect to (gij) (i.e. conditioned on
(aij)), and we write Ea to denote the expectation with respect to (aij).

By Lemma 3.8, the random variable

K2 := max
j=1,...,n

∥∥∥ N∑
i=1

a2
ijBi ⊗Bi

∥∥∥
which does not depend on the random variables (gij), has expectation

(3.10) Ea(K
2) ≤ C(1 + a2b

√
log(2n)).

We condition on the random variables (aij); this fixes a value of K.
Let X1, . . . , Xn ∈ Rn denote the columns of the matrix BA; then

Xj =
N∑
i=1

gijaijBi, j = 1, . . . , n.

Consider a (1/2)-net N of the unit Euclidean sphere Sn−1 of cardinality |N | ≤
5n, which exists by Lemma 2.5. Using Proposition 2.6, we have

(3.11) ‖BA‖2 = ‖(BA)∗‖2 ≤ 4 max
x∈N
‖(BA)∗x‖22 = 4 max

x∈N

n∑
j=1

〈Xj, x〉2.

Fix x ∈ N . For every j = 1, . . . , n, the random variable

〈Xj, x〉 =
N∑
i=1

gij〈aijBi, x〉

is a Gaussian random variable with mean zero and variance
N∑
i=1

〈aijBi, x〉2 ≤
∥∥∥ N∑
i=1

a2
ijBi ⊗Bi

∥∥∥ ≤ K2.

(To obtain the first inequality, take the supremum over x ∈ Sn−1). Therefore,
by Corollary 2.2 with di = (Var〈Xi, x〉)1/2 ≤ K, we have for every t > 0:

Pg
{( n∑

j=1

〈Xj, x〉2
)1/2

> K
√
n+ t

}
≤ e−c0t

2/K2

.

Let s > 0 be arbitrary. The previous estimate for t = sK
√
n gives

Pg
{( n∑

j=1

〈Xj, x〉2
)1/2

> (1 + s)K
√
n
}
≤ e−c0s

2n.
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Taking the union bound over x ∈ N and using (3.11), we obtain

Pg
{
‖BA‖ > 2(1 + s)K

√
n
}
≤ |N |e−c0s2n = 5ne−c0s

2n ≤ e(2−c0s
2)n.

Integration yields

Eg‖BA‖ ≤ CK
√
n.

Finally, we take expectation with respect to the random variables (aij) and
use (3.10) to conclude that

E‖BA‖ ≤ CEa(K)
√
n ≤ C1

(
1 + a2b

√
log(2n)

)1/2√
n.

This completes the proof. �

3.4. Theorem 1.1 for logarithmically small columns. Our next step is
to combine Propositions 3.4 and 3.7 and obtain a weaker version of the main
Theorem 1.1 – this time with the correct bound O(

√
n) on the norm, but under

the additional assumption that the columns of the matrix B are logarithmically
small.

Theorem 3.9. Let ε ∈ (0, 1) and let N, n be positive integers. Consider an
N × n random matrix A whose entries are independent random variables with
mean zero and (4 + ε)-th moment bounded by 1. Let B be an n × N matrix
such that ‖B‖ ≤ 1, and whose columns satisfy for some M ≥ 1 that

‖Bi‖2 ≤M log−
1
2
− 1

ε (2n) for every i.

Then

E‖BA‖ ≤ CM1/2
√
n.

Proof. By the symmetrization argument described in Section 2, we can assume
without loss of generality that all entries aij of the matrix A = (aij) are
symmetric random variables. Let

a := log
1
2ε (2n).

We decompose every entry of the matrix A according to its absolute value as

āij := aij1{|aij |≤a}, ãij := aij1{|aij |>a}.

Then all random variables āij and ãij have mean zero, and we have the following
decomposition of matrices:

BA = BĀ+BÃ, where Ā = (āij), Ã = (ãij).

The norm of BÃ can be bounded using Proposition 3.4. Indeed, by the
Truncation Lemma 2.8 with p = 1 + ε/4, we have

Eã4
ij = Ea4

ij1{a4
ij>a

4} ≤
Ea4+ε

ij

aε
≤ a−ε,
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where the last inequality follows from the moment hypothesis. Therefore, the
matrix aεÃ satisfies the hypothesis of Proposition 3.4, which then yields

E‖BÃ‖ ≤ Ca−ε
√
n log(2n) = C

√
n.

The norm of BĀ can be bounded using Proposition 3.7, which we can apply

with a as above and b = M log−
1
2
− 1

ε (2n). This gives

E‖BĀ‖ ≤ C(1 + ab1/2 log1/4(2n))
√
n ≤ 2CM1/2

√
n,

where the last inequality follows by our choice of a and b.
Putting the two estimates together, we conclude by the triangle inequality

that

E‖BA‖ ≤ E‖BĀ‖+ E‖BÃ‖ ≤ C ′M1/2
√
n.

This completes the proof. �

Remark. The factor M1/2 in the conclusion of Theorem 3.9 can easily be im-

proved to about M ε/2 by choosing a = t log
1
2ε (2n) in the proof and optimizing

in t. We will not need this improvement in our argument.

4. Approach via concentration

In this section, we develop an alternative way to bound the norm of BA,
which rests on Gaussian concentration inequalities and elaborate choice of ε-
nets. The main technical result of this section is the following theorem, which,
like Theorem 3.9, gives the correct bound O(

√
n) under some boundedness

assumptions on the entries of A.

Theorem 4.1. Let ε ∈ (0, 1), M ≥ 1 and let N ≥ n be positive integers such
that log(2N) ≤ Mn. Consider an N × n random matrix A whose entries are
independent random variables aij with mean zero and such that

E|aij|2+ε ≤ 1, |aij| ≤
( Mn

log(2N)

) 1
2+ε

for every i, j.

Let B be an n×N matrix such that ‖B‖ ≤ 1. Then

E‖BA‖ ≤ C(ε)
√
Mn

where C(ε) depends only on ε.

Remarks. 1. If the entries aij have bounded (4 + ε)-th moment, it is easy to

check that maxij aij ∼ (nN)
1

4+ε holds with high probability. Therefore, under
the (4+ε)-th moment assumption, the hypotheses of Theorem 4.1 are satisfied
for almost square matrices, i.e. those for which N ≤ n1+cε. This will quickly
yield the main Theorem 1.1 for almost square matrices, see Corollary 4.11
below.
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2. The hypotheses of Theorem 4.1 are almost sharp when N ∼ n. Indeed,
let us assume for simplicity that the random variables aij are identically dis-
tributed and B is the identity matrix. The (2 + ε)-th moment hypothesis is

almost sharp: if Ea2
ij � 1 then (E‖A‖2)1/2 ≥

(
1
n
‖A‖2HS

)1/2 � √n. Also, the
boundedness hypothesis is almost sharp, since ‖A‖ ≥ maxi,j |aij|.

3. Using M. Talagrand’s concentration result, Theorem 2.4, one can also
obtains tail bounds for the norm ‖BA‖:

Corollary 4.2. Under the assumptions of Theorem 4.1, one has for every
t > 0:

P
(
‖BA‖ > (C(ε) + t)

√
Mn

)
≤ 4e−t

2/4.

In particular, one has for every q ≥ 1:

(E‖BA‖q)1/q ≤ C0(ε)
√
qMn.

Proof. We can consider the N×n matrix A as a vector in RNn. The Euclidean
norm of such a vector equals the Hilbert-Schmidt norm ‖A‖HS. Since ‖BA‖ ≤
‖B‖‖A‖ ≤ 1 · ‖A‖HS, the function f : RNn → R defined by f(A) = ‖BA‖
is 1-Lipschitz and convex. Since we have |aij| ≤

√
Mn for all i, j by the

assumptions, M. Talagrand’s Theorem 2.4 gives

P
(
‖BA‖ − E‖BA‖ > t

√
Mn

)
≤ 4e−t

2/4, t > 0.

The estimate for E‖BA‖ in Theorem 4.1 completes the proof. �

4.1. Sparse matrices: rows and columns. Theorem 4.1 will follow from
our analysis of sparse matrices. We will decompose the entries aij according
to their magnitude. As the magnitude increases, the moment assumptions will
ensure that there will be fewer such entries, i.e. the resulting matrix becomes
sparser.

We start with an elementary lemma, which will help us analyze the magni-
tude of the rows and columns of the matrix BA when A is a sparse matrix.

Lemma 4.3. Let N, n be positive integers. Consider independent random
variables aij, i = 1, . . . , N , j = 1, . . . , n. Let p ∈ (0, 1], and suppose that

Ea2
ij ≤ p, |aij| ≤ 1 for every i, j.

Let B be an n×N matrix such that ‖B‖ ≤ 1, whose columns are denoted Bi.
Then

E max
i=1,...,N

n∑
j=1

a2
ij ≤ C(np+ log(2N)),(4.1)

E max
j=1,...,n

N∑
i=1

a2
ij‖Bi‖22 ≤ C(np+ log(2n)).(4.2)
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Remark. The test case for this lemma, as well as for most of the results that
follow, is the random variables aij with values in {−1, 0, 1} and such that
P(aij 6= 0) = p. The N × n random matrix A = (aij) will then become sparser
as we decrease p; it will have on average np nonzero entries per row. Estimate
(4.1) gives a bound on the Euclidean norm of all rows of A.

Proof. We will only prove inequality (4.2); the proof of inequality (4.1) is
similar. By the assumptions, we have

Var(a2
ij) ≤ Ea4

ij ≤ Ea2
ij ≤ p for every i, j.

Also, recall that (2.4) gives

N∑
i=1

‖Bi‖22 ≤ n,
N∑
i=1

‖Bi‖42 ≤ max
i
‖Bi‖22 ·

N∑
i=1

‖Bi‖22 ≤ n.

Consider the sums of independent random variables

Sj :=
N∑
i=1

a2
ij‖Bi‖22, j = 1, . . . , n.

The above estimates show that for every j we have

ESj =
N∑
i=1

E(a2
ij)‖Bi‖22 ≤ np, Var(Sj) =

N∑
i=1

Var(a2
ij)‖Bi‖42 ≤ np.

We apply Bennett’s inequality, Theorem 2.3, for Xi = 1
2

(
a2
ij − Ea2

ij

)
‖Bi‖22,

which clearly satisfy |Xj| ≤ 1 because |aij| ≤ 1 and ‖Bi‖2 ≤ 1 by (2.4). We
obtain

(4.3) P
{1

2
(Sj − ESj) > t

}
≤ exp

(
− σ2h(t/σ2)

)
where E(1

2
Sj) ≤ np and σ2 = Var(1

2
Sj) ≤ np. Note that h(x) ≥ cx for

x ≥ 1, where c is some positive absolute constant. Therefore, if t ≥ np, then
σ2h(t/σ2) ≥ ct, so (4.3) yields

P{Sj > 2t} ≤ e−ct for t ≥ np.

Taking the union bound over all j, we conclude that

P
{

max
j=1,...,n

Sj > 2t
}
≤ ne−ct for t ≥ np.

Now let s ≥ 1 be arbitrary, and use the last inequality for t = (np+ log(2n))s.
We obtain

P
{

max
j=1,...,n

Sj > 2(np+ log(2n))s
}
≤ ne−c log(2n)s = 2−csn1−cs.

Integration yields
E max
j=1,...,n

Sj ≤ C(np+ log(2n)).
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This completes the proof of (4.2). �

The estimates in Lemma 4.3 motivate us to consider the class of N × n
matrices A = (aij) whose entries satisfy the following inequalities for some
parameters p ∈ (0, 1] and K ≥ 1:

(4.4)

max
i,j
|aij| ≤ 1;

max
i=1,...,N

( n∑
j=1

a2
ij

)1/2

≤ K
√
np+ log(2N);

max
j=1,...,n

( N∑
i=1

a2
ij‖Bi‖22

)1/2

≤ K
√
np+ log(2n).

We have proved that for random matrices whose entries satisfy |aij| ≤ 1 and
Ea2

ij ≤ p, conditions (4.4) hold with a random parameter K that satisfies
EK ≤ C.

4.2. Concentration for a fixed vector. Our goal will be to estimate the
magnitude of ‖BA‖ for matrices of the form A = (gijaij), where gij are in-
dependent standard normal random variables, and aij are fixed numbers that
satisfy conditions (4.4). Such an estimate will be established in Proposition 4.8
below. By the standard symmetrization, the same estimate will hold true if
A = (aij) is a random matrix with entries as in Lemma 4.3. This will be done in
Corollary 4.9. Finally, Theorem 4.1 will be deduced from this by decomposing
the entries of a random matrix according to their magnitude.

Our first step toward this goal is to check the magnitude of ‖BAx‖2 for a
fixed vector x.

Lemma 4.4. Let N, n be positive integers. Consider an N ×n random matrix
A = (gijaij) where gij are independent standard normal random variables and
aij are numbers that satisfy conditions (4.4). Let B be an n×N matrix such
that ‖B‖ ≤ 1. Then, for every vector x ∈ Bn

2 we have

E‖BAx‖2 ≤ K
√
np+ log(2n).

Proof. Denoting as usual the columns of B by Bi, we have

BAx =
N∑
i=1

( n∑
j=1

gijaijxj

)
Bi.
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Since ‖x‖2 ≤ 1 and using the last condition in (4.4), we have

E‖BAx‖22 =
N∑
i=1

n∑
j=1

a2
ijx

2
j‖Bi‖22

=
n∑
j=1

( N∑
i=1

a2
ij‖Bi‖22

)
x2
j

≤ max
j=1,...,n

N∑
i=1

a2
ij‖Bi‖22 ≤ K2(np+ log(2n)).

This completes the proof. �

We will now strengthen Lemma 4.4 into a deviation inequality for ‖BAx‖2.
This is a simple consequence of the Gaussian concentration, Theorem 2.1. This
deviation inequality is universal in that it holds for any vector x; in the sequel
we will need more delicate inequalities that depend on the distribution of the
coordinates in x.

Lemma 4.5 (Universal deviation). Let A and B be matrices as in Lemma 4.4.
Then, for every vector x ∈ Bn

2 and every t > 0 we have

(4.5) P
{
‖BAx‖2 > K

√
np+ log(2n) + t

}
≤ e−c0t

2

.

Proof. As in the proof of Lemma 4.4, we write

BAx =
N∑
i=1

( n∑
j=1

gijaijxj

)
Bi

where Bi are the columns of the matrix B. Therefore, the random vector BAx
is distributed identically with the random vector

N∑
i=1

giλiBi, where λi =
( n∑
j=1

a2
ijx

2
j

)1/2

and where gi are independent standard normal random variables. Since all
|aij| ≤ 1 by conditions (4.4), and ‖x‖2 ≤ 1 by the assumptions, we have

0 ≤ λi ≤ 1, i = 1, . . . , N.

Consider the map f : RN → R given by

f(y) =
∥∥∥ N∑
i=1

yiλiBi

∥∥∥
2
.
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Its Lipschitz norm equals

‖f‖Lip =
∥∥∥ N∑
i=1

λ2
iBi ⊗Bi

∥∥∥1/2

≤ max
i
|λi| ·

∥∥∥ N∑
i=1

Bi ⊗Bi

∥∥∥1/2

≤ 1 · ‖B‖ ≤ 1.

Then the Gaussian concentration, Theorem 2.1, gives for every t > 0:

P(f(g)− Ef(g) > t) ≤ exp(−c0t2),

where g = (g1, . . . , gN). Since as we noted above, f(g) is distributed identically
with ‖BAx‖2, Lemma 4.4 completes the proof. �

4.3. Control of sparse vectors. Since the spectral norm of BA is the supre-
mum of ‖BAx‖2 over all x ∈ Sn−1, the result of Lemma 4.5 suggests that
E‖BA‖ .

√
np+ logN should be true. However, the deviation inequality in

Lemma 4.5 is not strong enough to prove this bound. This is because the met-
ric entropy of the sphere, measured e.g. as the cardinality of its 1

2
-net, is ecn.

If we are to make the bound on ‖BAx‖2 uniform over the net, we would need
the probability estimate in (4.5) at most e−cn (to allow a room for the union
bound over ecn points x in the net). This however would force us to make
t ∼
√
n or larger, so the best bound we can get this way is E‖BA‖2 .

√
n.

This bound is too weak as it ignores the last two assumptions in (4.4).
Nevertheless, the bound in Lemma 4.5 can be made uniform over a set of

sparse vectors, whose metric entropy is smaller than that of the whole sphere:

Proposition 4.6 (Sparse vectors). Let A and B be matrices as in Lemma 4.4.
There exists an absolute constant c > 0 such that the following holds. Consider
the set of vectors

B2,0 :=
{
x ∈ Rn, ‖x‖2 ≤ 1, ‖x‖0 ≤ cnp/ log(e/p)

}
.

Then

E sup
x∈B2,0

‖BAx‖2 ≤ 3K
√
np+ log(2n).

Proof. Let c > 0 be a constant to be determined later, and let λ := cp/ log(e/p).
Then

B2,0 =
⋃

|J |=bλnc

BJ
2 ,

where the union is over all subsets J ⊂ {1, . . . , n} of cardinality bλnc, and
where BJ

2 = {x ∈ RJ : ‖x‖2 ≤ 1} denotes the unit Euclidean ball in RJ . By
Lemma 2.5, BJ

2 has a 1
2
-net NJ of cardinality at most e2λn. Let t ≥ 1. For a

fixed x ∈ NJ , Lemma 4.5 gives

P
{
‖BAx‖2 > (K + 1)

√
np+ log(2n) + t

}
≤ exp

(
− c0(np+ t2)

)
.
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Using Proposition 2.6 and taking the union bound over all x ∈ NJ , we obtain

P
{1

2
sup
x∈BJ

2

‖BAx‖2 > (K + 1)
√
np+ log(2n) + t

}
≤ P

{
sup
x∈NJ

‖BAx‖2 > (K + 1)
√
np+ log(2n) + t

}
≤ |NJ | exp

(
− c0(np+ t2)

)
≤ exp

(
2λn− c0(np+ t2)

)
.

Since there are
(

n
bλnc

)
≤ (e/λ)λn ways to choose the subset J , by taking the

union bound over all J we conclude that

(4.6) P
{1

2
sup
x∈B2,0

‖BAx‖2 > 2(K + 1)
√
np+ log(2n) + t

}
≤ exp

(
λ log(e/λ)n+ 2λn− c0(np+ t2)

)
.

Finally, if the absolute constant c > 0 in the definition of λ is chosen sufficiently
small, we have λ log(e/λ)n+ 2λn ≤ c0np. Thus the right hand side of (4.6) is
at most

exp(−c0t2).
Integration completes the proof. �

4.4. Control of spread vectors. Although we now have a good control of
sparse vectors, they unfortunately comprise a small part of the unit ball Bn

2 .
More common but harder to deal with are “spread vectors” – those having
many coordinates that are not close to zero. The next result gains control of
the spread vectors.

Proposition 4.7 (Spread vectors). Let A and B be matrices as in Lemma 4.4
with N ≥ n. Let M ≥ 2. Consider the set of vectors

B2,∞ :=
{
x ∈ Rn, ‖x‖2 ≤ 1, ‖x‖∞ ≤

M√
n

}
.

Then
E sup
x∈B2,∞

‖BAx‖2 ≤ C log3/2(M) ·K
√
np+ log(2N).

Proof. This time we will need to work with multiple nets to account for different
possible distributions of the magnitude of the coordinates of vectors x ∈ B2,∞.
Since ‖x‖∞ ≤ ‖x‖2, without loss of generality we can assume that M ≤

√
n.

Step 1: construction of nets. Let

hk :=
2k√
n
, k = −2,−1, 0, 1, 2, . . . , log2M

and let
N := {x ∈ B2,∞ : ∀j ∃k such that |xj| = hk}.
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A standard calculation shows that N is an 1
2
-net of B2,∞ in the B2,∞-norm,

i.e. for every x ∈ B2,∞ there exists y ∈ N such that x− y ∈ 1
2
B2,∞. Therefore,

by Proposition 2.6,

sup
x∈B2,∞

‖BAx‖2 ≤ 2 sup
x∈N
‖BAx‖2.

Fix x ∈ N . Since ‖x‖2 ≤ 1, the number of coordinates of x that satisfy
|xj| = hk is at most bh−2

k c, for every k. Decomposing x according to the
coordinates whose absolute value is hk, we have by the triangle inequality that

(4.7) sup
x∈B2,∞

‖BAx‖2 ≤ 2

log2M∑
k=−2

sup
x∈Nk

‖BAy‖2,

where

Nk =
{
x ∈ Bn

2 : ‖x‖0 ≤ bh−2
k c; all nonzero coordinates of x satisfy |xj| = hk

}
.

Fix k and assume that Nk 6= ∅. Since hk ≤M/
√
n, we have

(4.8) m := bh−2
k c ≥ bn/M

2c ≥ 1.

To estimate the cardinality of Nk, note that there are at most min(m,n) ways
to choose ‖x‖0 := l; there are

(
n
l

)
ways to choose the support of x; and there are

2l ways to choose the (signs of) nonzero coordinates of x. Hence by Stirling’s
approximation and using (4.8), we have
(4.9)

|Nk| ≤
min(m,n)∑

l=1

(
n

l

)
2l ≤ min

{(2en

m

)m
, 4n
}
≤ (4eM2)m ≤ exp(Cm logM)

where C ≥ 1 is an absolute constant.

Step 2: control of a fixed vector. Fix m and fix x ∈ Nk. As we saw in the
proof of Lemma 4.5,

‖BAx‖2 is distributed identically with
∥∥∥ N∑
i=1

giλiBi

∥∥∥
2

where

λi =
( n∑
j=1

a2
ijx

2
j

)1/2

and where gi are independent standard normal random variables. Since x ∈
Nk, we have ‖x‖∞ = hk ≤ 1√

m
. This and the second condition in (4.4) yield

λi ≤
( 1

m

n∑
j=1

a2
ij

)1/2

≤ K

√
np+ log(2N)

m
.
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We consider the map f : RN → R given by

f(y) =
∥∥∥ N∑
i=1

yiλiBi

∥∥∥
2
.

Repeating the estimate in the proof of Lemma 4.5, we bound the Lipschitz
norm as

‖f‖Lip ≤ max
i
|λi| ≤ K

√
np+ log(2N)

m
.

Then the Gaussian concentration, Theorem 2.1, gives for every t > 0:

P(f(g)− Ef(g) > t) ≤ exp
(
− c0t

2m

K2(np+ log(2N))

)
,

where g = (g1, . . . , gN). Since as we noted above, f(g) is distributed identically
with ‖BAx‖2, Lemma 4.4 yields that

P(‖BAx‖2 > K
√
np+ log(2n) + t) ≤ exp

(
− c0t

2m

K2(np+ log(2N))

)
,

Let u > 0 be arbitrary. Applying the above estimate for t = uK
√
np+ log(2N)

and using N ≥ n we conclude that

(4.10) P
(
‖BAx‖2 > (1 + u)K

√
np+ log(2N)

)
≤ exp(−c0u2m).

Step 3: union bound. Taking the union bound in (4.10) over all x ∈ Nk and
using estimate (4.9) on the cardinality of Nk, we have for all u > 0:

P
(

sup
x∈Nk

‖BAx‖2 > (1 + u)K
√
np+ log(2N)

)
≤ |Nk| exp(−c0u2m)

≤ exp(Cm logM − c0u2m).

Let s ≥ 1. We choose u = C1s
√

logM , where C1 :=
√
C/c0. Since u ≥ 1 and

m ≥ 1, M ≥ 2, we obtain from the above estimate that

P
(

sup
x∈Nk

‖BAx‖2 > 2C1sK
√

log(M)(np+ log(2N))
)
≤ exp(C(1− s2)m logM)

≤ exp(c(1− s2)).

Integrating yields that

E sup
x∈Nk

‖BAx‖2 ≤ C2K
√

log(M)(np+ log(2N)).

Putting this back in (4.7), we conclude that

E sup
x∈B2,∞

‖BAx‖2 ≤ 2(3 + logM) · C2K
√

log(M)(np+ log(2N)).

This completes the proof. �
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4.5. Norms of sparse matrices, and proof of Theorem 4.1. Proposi-
tions 4.6 and 4.7 together handle all vectors in the unit ball, and yield the
following norm estimate:

Proposition 4.8. Let A and B be matrices as in Lemma 4.4 with N ≥ n.
Then

E‖BA‖ ≤ C log3/2
(e
p

)
·K
√
np+ log(2N).

Proof. Let c be the absolute constant as in Proposition 4.6; we can clearly
assume that c ≤ 1/4. We define

M =

√
1

cp
log

e

p
.

Note that M ≥ 2 as required in Proposition 4.6.
Fix a vector x ∈ Bn

2 . We decompose it according to the magnitude of the
coordinates, as follows:

x = y + z, y := x1{j: |xj |>M/
√
n}, z := x1{j: |xj |≤M/

√
n}.

Clearly, ‖y‖2 ≤ ‖x‖2 ≤ 1, ‖z‖2 ≤ ‖x‖2 ≤ 1. By Markov’s inequality, we have

‖y‖0 =
∣∣{j : |xj| > M/

√
n}
∣∣ ≤ n

M2
=

cnp

log(e/p)
.

Then y ∈ B2,0 as in Proposition 4.6. On the other hand, ‖z‖∞ ≤ M/
√
n by

definition, so z ∈ B2,∞ as in Proposition 4.7. Therefore, by Propositions 4.6
and 4.7 we have

E‖BA‖ = E sup
x∈Bn

2

‖BAx‖2 ≤ E sup
y∈B2,0

‖BAy‖2 + E sup
z∈B2,∞

‖BAz‖2

≤ 3K
√
np+ log(2n) + C log3/2(M) ·K

√
np+ log(2N).

Our choice of M and the assumption N ≥ n completes the proof. �

Finally, a standard symmetrization argument yields the following norm es-
timate, which we shall use for sparse random matrices.

Corollary 4.9. Let p ∈ (0, 1] and let N ≥ n be positive integers. Consider an
N × n random matrix A whose entries are independent random variables aij
with mean zero and such that

E|aij|2 ≤ p, |aij| ≤ 1 for every i, j.

Let B be an n×N matrix such that ‖B‖ ≤ 1. Then

E‖BA‖ ≤ C log3/2
(e
p

)√
np+ log(2N).

Remark. It would be interesting to remove the logarithmic term from this
estimate.
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Proof. Let gij be independent standard normal random variables. Consider

the random matrix Ã = (gijaij). By (2.1), we have

(4.11) E‖BA‖ ≤ (2π)1/2 E‖BÃ‖.

By Lemma 4.3, conditions (4.4) hold with some random parameter K ≥ 1
which only depends on the random variables (aij) and not on (gij), and which
satisfies

(4.12) EaK ≤ C1

where C1 is an absolute constant. Here and below we write Ea when the
expectation is with respect to (aij), and Eg if the expectation is with respect
to (gij).

Condition on the random variables (aij). Proposition 4.8 then yields

Eg‖BÃ‖ ≤ C log3/2
(e
p

)
·K
√
np+ log(2N).

Therefore, when we remove the conditioning, we obtain by (4.12) that

E‖BÃ‖ = EaEg‖BÃ‖ ≤ C log3/2
(e
p

)
· C1

√
np+ log(2N).

This and (4.11) complete the proof. �

Proof of Theorem 4.1. By the standard symmetrization technique described in
Section 2, we can assume without loss of generality that all aij are symmetric
random variables. We decompose the matrix A according to the magnitude of
its entries as follows. Given a subset I ⊂ R, we define the truncated matrix

trunc(A, I) = (aij1{|aij |∈I}).

Consider

A(0) = trunc(A, [0, 1]);

A(k) = 2−k trunc(A, (2k−1, 2k]), k = 1, 2, . . .

Then we have a decomposition A =
∑∞

k=0 2kA(k). This sum is actually finite
because of the boundedness assumption on aij. Indeed, we have

(4.13) A = A(0) +

k0∑
k=1

2kA(k)

where k0 is the maximal integer such that

(4.14) 2k0−1 ≤
( Mn

log(2N)

) 1
2+ε
.
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Because aij are symmetric random variables, all entries a
(k)
ij of the matrices

A(k) satisfy Ea(k)
ij = 0 and |a(k)

ij | ≤ 1.

Using Corollary 4.9 for the matrix A(0) and p = 1, we obtain

(4.15) E‖BA(0)‖ ≤ C1

√
n+ log(2N) ≤ 2C1

√
Mn,

where the last line follows because log(2N) ≤Mn and M ≥ 1 by the hypoth-
esis.

Now we fix 1 ≤ k ≤ k0. Using the (2 + ε)-th moment assumption, we have
by Markov’s inequality that

P(a
(k)
ij 6= 0) ≤ P(aij > 2k−1) ≤ 2−(2+ε)(k−1) =: pk.

This and the bound |a(k)
ij | ≤ 1 yield E(a

(k)
ij )2 ≤ pk. With this, we apply Corol-

lary 4.9 for the matrix A(k) and obtain

E‖BA(k)‖ ≤ C log3/2
( e
pk

)√
npk + log(2N).

By the definition of pk and by (4.14), we have

pk ≥ pk0 ≥
log(2N)

Mn
.

Therefore, npk + log(2N) ≤ (1 +M)npk ≤ 2Mnpk, so

E‖BA(k)‖ ≤ C log3/2
( e
pk

)√
2Mnpk

≤ C2

[
1 + (2 + ε)(k − 1)

]3/2
2−(1+ε/2)(k−1) ·

√
Mn.(4.16)

Using (4.13) and the triangle inequality, then using (4.15) and (4.16), we
conclude that

E‖BA‖ ≤ E‖BA(0)‖+

k0∑
k=1

2k E‖BA(k)‖

≤ 2C1

√
Mn+

k0∑
k=1

C2

[
1 + (2 + ε)(k − 1)

]3/2
2k−(1+ε/2)(k−1) ·

√
Mn

≤ C2

√
Mn ·

∞∑
k=1

k3/22−(ε/2)k

= C(ε)
√
Mn.

This completes the proof of Theorem 4.1. �
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4.6. Almost square matrices. The main application of Theorem 4.1 is for
almost square matrices – those for which N = n1+o(1). The next lemma verifies
the hypotheses of Theorem 4.1 for such matrices.

Lemma 4.10. Let ε ∈ (0, 1) and let N, n be positive integers satisfying N ≤
n1+ε/10. Let A be an N × n random matrix whose entries are independent
random variables with (4 + ε)-th moment bounded by 1. Define the random
variable M by the equation

(4.17) max
i,j
|aij| =

( Mn

log(2N)

) 1
2+ε/4

.

Then, for every t ≥ 1, one has

P
(
M > C(ε)t

)
≤ 1

t2
.

In particular, one has EM ≤ C1(ε).

Proof. By Markov’s inequality, we have for every i, j that

P
(
|aij| > s

)
≤ 1

s4+ε
, s > 0.

Let t ≥ 1. We then have

P
(
|aij| > (t2nN)

1
4+ε

)
≤ 1

t2nN
.

Taking the union bound over all nN random variables aij, we obtain

(4.18) P
(

max
i,j
|aij| > (t2nN)

1
4+ε

)
≤ 1

t2
.

The assumption N ≤ n1+ε/10 yields that

nN ≤
( C(ε)n

log(2N)

)2+ε/8

.

Therefore, since 2+ε/8
4+ε
≤ 1

2+ε/4
and t ≥ 1, we have

(t2nN)
1

4+ε ≤
( C(ε)tn

log(2N)

) 1
2+ε/4

.

Using this in (4.18), we obtain

P
(
M > C(ε)t

)
≤ P

(
max
i,j
|aij| >

( C(ε)tn

log(2N)

) 1
2+ε/4

)
≤ 1

t2
.

Integration completes the proof. �

We are now ready to state and prove a partial case of Theorem 1.1 for almost
square matrices.
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Corollary 4.11. Let ε ∈ (0, 1) and let N, n be positive integers satisfying
N ≤ n1+ε/10. Let A be an N×n random matrix whose entries are independent
random variables with mean zero and (4 + ε)-th moment bounded by 1. Let B
be an n×N matrix such that ‖B‖ ≤ 1. Then

E‖BA‖ ≤ C(ε)
√
n.

Proof. Without loss of generality we may assume that N ≥ n by adding an
appropriate number of zero rows to A and zero columns to B. Also, using the
standard symmetrization, we can assume that the random variables aij are
symmetric. Let M be the random variable as in Lemma 4.10, and let t ≥ 1.
By the definition, {M ≤ t} is the product event. Therefore, conditioning on
this event (i) preserves the independence of the entries of A; (ii) makes all
these entries bounded as in (4.17); (iii) can only reduce their moments by
Lemma 2.9, thus for all i, j we have

E
(
|aij|2+ε/4 |M ≤ t

)
≤ E|aij|2+ε/4 ≤ 1.

Therefore, we can apply Corollary 4.2 conditionally, with ε/4 and with M
replaced by max(M, 10), which gives[

E
(
‖BA‖2 |M ≤ t

)]1/2 ≤ C0(ε)
√
tn for t ≥ 1.

Additionally, by Lemma 4.10 we have

P
(
M > C(ε)t

)
≤ 1

t2
for t ≥ 1.

By Lemma 2.10, this yields

E‖BA‖ ≤ (E‖BA‖2)1/2 ≤ C1(ε)
√
n

as claimed. �

5. Completion of the proof of Theorem 1.1

Proof of Theorem 1.1. By adding an appropriate number of zero rows to B or
zero columns to A we can assume that m = n, thus B is an n × N matrix.
Consider the exponent

K = K(ε) =
1

2
+

1

ε
.

As usual, let B1, . . . , BN be the columns of the matrix B. Consider the subset
I ⊂ {1, . . . , N} of large columns defined as

I :=
{
i : ‖Bi‖2 > C0(ε) log−K(2n)

}
.

Here we choose C0(ε) sufficiently large so that, by (2.4) and Markov’s inequal-
ity, we have

N0 := |I| < C0(ε)
−2n log2K(2n) ≤ n1+ε/10.
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Denote by AI the N0 × n submatrix of A whose rows are in I, by BI the
n × N0 submatrix of B whose columns are in I (and similarly for Ic). The
decomposition BA = BIAI +BIcAIc implies by the triangle inequality that

(5.1) ‖BA‖ ≤ ‖BIAI‖+ ‖BIcAIc‖.
This splits our problem into two subproblems, one for I and one for Ic. Of
course, if I or Ic is empty then the corresponding matrix is zero and we can
skip its estimation.

The matrices AI , BI are almost square, so Corollary 4.11 applies for them,
giving

(5.2) E‖BIAI‖ ≤ C(ε)
√
n.

On the other hand, the columns of the matrix BIc are small by the definition
of I:

‖Bi‖2 ≤ C0(ε) log−K(2n) for every i ∈ Ic.
Therefore, Theorem 3.9 applies to the matrices AIc , BIc , which gives

(5.3) E‖BIcAIc‖ ≤ C1(ε)
√
n.

Putting estimates (5.2) and (5.3) into (5.1), we conclude that

E‖BA‖ ≤ C2(ε)
√
n.

Theorem 1.1 is proved. �
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[13] Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica
1 (1981), 233–241

[14] A. A. Giannopoulos, M. Hartzoulaki, A. Tsolomitis, Random points in isotropic uncon-
ditional convex bodies, J. London Math. Soc. 72 (2005), 779–798.

[15] R. Kannan, L. Lovász, M. Simonovits, Random walks and O∗(n5) volume algorithm for
convex bodies, Random Structures and Algorithms 2 (1997), 1–50.

[16] A. Khorunzhy, Sparse random matrices: spectral edge and statistics of rooted trees, Adv.
in Appl. Probab. 33 (2001), 124–140

[17] R. Latala, Some estimates of norms of random matrices, Proc. Amer. Math. Soc. 133
(2005), 1273–1282

[18] M. Ledoux, The concentration of measure phenomenon. Mathematical Surveys and
Monographs, 89. American Mathematical Society, Providence, RI, 2001

[19] M. Ledoux and M. Talagrand, Probability in Banach spaces. Isoperimetry and processes,
Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 23 Springer-Verlag, Berlin,
1991.

[20] A. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, Smallest singular value of
random matrices and geometry of random polytopes, Adv. Math. 195 (2005), 491–523.

[21] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006),
1021–1049.

[22] M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164 (1999),
60–72

[23] M. Rudelson, Lower estimates for the singular values of random matrices, C. R. Math.
Acad. Sci. Paris 342 (2006), no. 4, 247–252.

[24] M. Rudelson, Invertibility of random matrices: norm of the inverse, Ann. of Math. (2)
168 (2008), 575–600

[25] M. Rudelson, R. Vershynin, The Littlewood-Offord Problem and invertibility of random
matrices, Advances in Mathematics 218 (2008), 600–633

[26] M. Rudelson, R. Vershynin, The least singular value of a random square matrix is
O(n−1/2), Comptes rendus de l’Académie des sciences - Mathématique 346 (2008),
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