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Abstract. We ask whether most Boolean functions are determined by
their low frequencies. We show a partial result: for almost every function
f : {−1, 1}p → {−1, 1} there exists a function f ′ : {−1, 1}p → (−1, 1)
that has the same frequencies as f up to dimension (1/2− o(1))p.

1. Introduction

1.1. Uniqueness of Boolean data. When is a high-dimensional distribu-
tion determined by its low-dimensional marginals? To be specific, consider
a random vector X = (X1, . . . , Xp) that takes values in {0, 1}p. We may
wonder if there exist a random vector Y = (Y1, . . . , Yp) that also takes values
in {0, 1}p, whose all marginal distributions up to a given dimension d < p
are the same as those1 of X, but whose distribution is different from that of
X everywhere on the cube.2 If this does happen, we call the distribution of
X non-unique with respect to marginals up to dimension d.

Some distributions are very much unique. For example, it is easy to check
the following:

Example 1.1. If X1 = · · · = Xp almost surely, then the distribution of X is
unique with respect to marginals up to dimension 2.

However, we will show that “most” distributions on the cube are not
unique with respect to marginals up to almost half the dimension:

Theorem 1.2. If p is sufficiently large, then for most of the subsets S ⊂
{0, 1}p the uniform distribution on S is non-unique with respect to the
marginals of dimension 0.49p.

As we will see from the proof, “most” means all but at most 2cp subsets
where c ∈ (0, 1) is an absolute constant, and the number 0.49 can be replaced
by any constant smaller than 1/2.

Partially supported by NSF DMS-1954233, NSF DMS-2027299, U.S. Army 76649-CS,
and NSF+Simons Research Collaborations on the Mathematical and Scientific Founda-
tions of Deep Learning.

1By this we mean that for any subset of coordinates J or cardinality |J | ≤ d, the
distributions of the random vectors (Xj)j∈J and (Yj)j∈J are the same.

2By this we mean that P
{
X = θ

}
̸= P

{
Y = θ

}
for all θ ∈ {0, 1}p.

1



2 ROMAN VERSHYNIN

We will prove Theorem 1.2 by showing that for most S, there exists a
random vector Y = Y (S) ∈ {0, 1}p that has the same marginals up to
dimension 0.49p as random vector X uniformly distributed on S, and yet

0 < P
{
Y = θ

}
<

1

|S|
for all θ ∈ {0, 1}p.

This yields non-uniqueness, since P
{
X = θ

}
takes values 0 and 1/|S| only.

1.2. Uniqueness of Boolean functions. Theorem 1.2 can be restated in a
functional form. It is equivalent to saying that for most Boolean functions f :
{0, 1}p → {0, 1} there exists a function f ′ : {0, 1}p → (0, 1) such that f and
f ′ have the same marginals3 up to dimension 0.49p. (To see the connection,
let f(θ) be the indicator function of S and set f ′(θ) = |S|P

{
Y = θ

}
.)

Furthermore, by translation we can replace 0 with −1 everywhere in the
previous paragraph. This allows to put Theorem 1.2 in the context of
Fourier analysis on the Boolean cube. Recall that Rademacher functions
rj : {−1, 1}p → {−1, 1} are defined as

rj(θ) = θj , j = 1, . . . , p.

Walsh functions wJ : {−1, 1}p → {−1, 1} are indexed by subsets J ⊂ [p]
and are defined as

wJ =
∏
j∈J

rj , (1.1)

with the convention w∅ = 1. The canonical inner product on the Boolean
cube is defined as

⟨f, g⟩L2 =
1

2p

∑
θ∈{−1,1}p

f(θ) g(θ).

Walsh functions form an orthonormal basis of L2({−1, 1}p).
In Section 3, we shall prove:

Theorem 1.3. If p is sufficiently large, then for most of the functions f :
{−1, 1}p → {−1, 1} there exists a function f ′ : {−1, 1}p → (−1, 1) that has
the same frequencies4 as f up to dimension 0.49p.

To see how Theorem 1.3 yields Theorem 1.2 in its functional form, note
that the set of frequencies of f up to dimension d uniquely determines the
set of marginals of f up to dimension d. For example, consider the two-
dimensional marginal of f corresponding to setting the first coordinate to
1 and second to −1. We claim this marginal can be expressed in terms of

3This means that for any given set of coordinates J ⊂ [p] with |J | ≤ 0.49p and any given
values (τj)j∈J , we have

∑
θ f(θ) =

∑
θ f

′(θ) where the summation is over all θ ∈ {0, 1}p
whose values on the coordinates in J equal (τj).

4This means that for any set J ⊂ [p] with |J | ≤ 0.49p, we have ⟨f, wJ⟩ = ⟨f ′, wJ⟩.
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the frequencies ⟨f, wJ⟩ up to dimension |J | ≤ 2. To do so, consider the set
Θ = {θ ∈ {−1, 1}p : θ1 = 1, θ2 = −1}; then the marginal is

1

2p

∑
θ∈Θ

f(θ) = ⟨f,1Θ⟩ =
〈
f,
(1 + r1

2

)(1− r2
2

)〉
=

1

4

(
⟨f, 1⟩+ ⟨f, r1⟩ − ⟨f, r2⟩ − ⟨f, r1r2⟩

)
=

1

4

(
⟨f, w∅⟩+ ⟨f, w{1}⟩ − ⟨f, w{2}⟩ − ⟨f, w{1,2}⟩

)
.

One can express other marginals in terms of frequencies similarly. This
shows that Theorem 1.3 yields Theorem 1.2 indeed.

Question 1.4. Can we replace the range (−1, 1) of f ′ by {−1, 1} in The-
orem 1.3? In other words, is it true that most Boolean functions are not
determined by frequencies up to almost half the dimension?

Question 1.5. Is half dimension an optimal threshold in Theorem 1.3 and/or
Question 1.4?

2. Background

Our proof of Theorem 1.3 is based on one combinatorial result about hy-
perplane arrangements and one probabilistic result – a version of Rudelson’s
sampling theorem.

2.1. Hyperplane arrangements. A hyperplane arrangement is a collec-
tion of N hyperplanes in Rn. Removing these hyperplanes from Rn leaves
an open set, and the connected components of this set are called regions.
Counting the regions of a given hyperplane arrangement is a well studied
problem in enumerative combinatorics, see e.g. [1, 6, 7, 3].

For our purposes, two simple observations of Yu. Zuev [8] will be suffi-
cient. Fix an arrangement of N hyperplanes in Rn. The intersection of any
subfamily of these original hyperplanes is called an intersection subspace.
The dimension of an intersection subspace can range from zero (a single
point) to n, since intersecting an empty set of hyperplanes yields the entire
space Rn.

Lemma 2.1 (Zuev [8]). For any hyperplane arrangement, the number of
regions is bounded below by the number of intersection subspaces.

For example, an arrangement of N hyperplanes in general position in Rn

produces exactly
(
N
≤n

)
intersection subspaces, since intersecting any subset

of such hyperplanes of cardinality at most n yields a different subspace.
Zuev’s Lemma 2.1 implies that such hyperplane arrangement has at least(
N
≤n

)
regions. This bound is in fact an identity, since any arrangement of N

hyperplanes in Rn has at most
(
N
≤n

)
regions [1]; see also [3, Proposition 2.4].

In general, it could be hard to count intersection subspaces directly. This
task, however, can be facilitated by the following simple observation. For
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convenience, let us focus here on central hyperplane arrangements, those
where all the hyperplanes pass through the origin. A central arrangement
can be expressed as the form5 {x⊥1 , . . . , x⊥N} where xi ∈ Rn is a vector
orthogonal to the i-th hyperplane.

Definition 2.2 (Resilience). Fix a system of vectors x1, . . . , xN ∈ Rn. We
call a subset I ⊂ [N ] resilient if the linear span of {xi}i∈I does not contain
any vector from {xi}i∈Ic.

Lemma 2.3 (Implicit in Zuev [8]). For any central hyperplane arrangement
{x⊥1 , . . . , x⊥N}, the number of intersection subspaces is bounded below by the
number of resilient subsets.

Proof. Any pair of distinct resilient subsets I and J satisfies

span{xi}i∈I ̸= span{xj}j∈J ,

since for any i0 ∈ I \ J , the definition of resilience yields xi0 ̸∈ span{xj}j∈J .
Hence the orthogonal complements of span{xi}i∈I and span{xj}j∈J are dif-
ferent, which we can write as ⋂

i∈I
x⊥i ̸=

⋂
j∈j

x⊥j .

Each side of this relation defines an intersection subspace. Thus, we obtained
an injection from resilient subsets to intersection subspaces. The proof is
complete. □

2.2. Sampling. In addition to hyperplane arrangements, our argument uses
a version of Rudelson’s sampling theorem [2]; see also [5, Theorem 5.6.1].
The version we need can be most conveniently deduced from matrix Bern-
stein inequality, which is due to J. Tropp [4]; see also [5, Theorem 5.4.1] for
an exposition.

Theorem 2.4 (Matrix Bernstein’s inequality). Let Z1, . . . , ZN be indepen-
dent, mean zero, k × k symmetric random matrices, such that ∥Zi∥ ≤ M
almost surely for all i. Then, for every t ≥ 0, we have

P
{∥∥∥∥ N∑

i=1

Zi

∥∥∥∥ ≥ t
}
≤ 2k exp

(
− t2/2

σ2 +Mt/3

)
,

where σ2 =
∥∥∥∑N

i=1 EZ2
i

∥∥∥. Here ∥·∥ denotes the operator norm of a matrix.

We are ready to state and prove a version of Rudelson’s sampling theorem.

5Throughout the paper, x⊥ denotes the hyperplane orthogonal to the vector x in Rn.
More generally, for a subset E ⊂ Rn, we denote by E⊥ the set of vectors in Rn that are
orthogonal to all vectors in E. In particular, if E is a linear subspace, E⊥ is its orthogonal
complement.
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Theorem 2.5 (Sampling with independent selectors). Let x1, . . . , xK ∈ Rk

be vectors satisfying

1

K

K∑
i=1

xix
T
i = Id

and such that ∥xi∥2 ≤ 10
√
k for all i. Let K ≥ N ≥ Ck log k where C is a

sufficiently large absolute constant. Consider independent Bernoulli random
variables δ1, . . . , δK satisfying E δi = N/K. Then

0.99 · Id ⪯ 1

N

K∑
i=1

δixix
T
i ⪯ 1.01 · Id

with probability at least 1− 1
4k

−10.

Proof. We are going to apply matrix Bernstein inequality for the random
matrices

Zi := (δi − δ)xix
T
i , where δ := E δi =

N

K
.

By assumption, we have

∥Zi∥ =
∥∥xixTi ∥∥ =∥xi∥22 ≤ 100k =: M.

Furthermore,

0 ⪯ EZ2
i = δ(1− δ)∥xi∥22 xix

T
i ⪯ 100δk · xixTi .

Thus

σ2 =

∥∥∥∥ N∑
i=1

EZ2
i

∥∥∥∥ ≤ 100δk

∥∥∥∥ K∑
i=1

xix
T
i

∥∥∥∥ = 100δkK = 100kN.

Applying matrix Bernstein inequality (Theorem 2.4) and using the bounds
on M and σ, we obtain

P


∥∥∥∥ 1

N

N∑
i=1

δixix
T
i − Id

∥∥∥∥ ≥ 0.01

 = P


∥∥∥∥ N∑
i=1

Zi

∥∥∥∥ ≥ 0.01N


≤ 2k · exp

(
− cN

k

)
≤ 1

4
k−10

where the last inequality is guaranteed if N ≥ Ck log k with a sufficiently
large absolute constant C. This completes the proof. □

We will need a version of sampling theorem for a similar but not identical
model of sampling without replacement.

Theorem 2.6 (Sampling without replacement). Let x1, . . . , xK ∈ Rk be
vectors satisfying

1

K

K∑
i=1

xix
T
i = Id
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and such that ∥xi∥2 ≤ 10
√
k for all i. Let N ≥ Ck log k where C is a

sufficiently large absolute constant. Let I be a random subset of [K] with
cardinality |I| = N . Then

0.9 · Id ⪯ 1

N

∑
i∈I

xix
T
i ⪯ 1.1 · Id

with probability at least 1− k−10.

Proof. Apply Theorem 2.5 for 0.99N instead of N . It follows that a random
set

I0 := {i : δi = 1} ⊂ [K]

satisfies
1

0.99N

∑
i∈I0

xix
T
i ⪰ 0.99 · Id (2.1)

with probability at least 1− 1
4k

−10.
Since E δi = 0.99N/K, the expected cardinality of the set I0 is E|I0| =

0.99N . Moreover, Chernoff inequality (see e.g. Exercise 2.3.5 in my book)
implies that |I0| is concentrated around its expectation, and in particular

|I0| ≤ N (2.2)

with probability at least 1− 2e−cN .
Let us create a random set I of cardinality exactly N from I0 by the

following rule. If |I0| < N , add to I0 exactly N −|I0| elements chosen from
[K] \ I0 at random and without replacement. If |I0| > N , remove from
I0 exactly |I0| − N elements chosen at random and without replacement.
Clearly, I obtained this way is a random subset of [K] of cardinality |I| = N .

Suppose I0 satisfies both (2.1) and (2.2); this occurs with probability at
least 1− 1

4k
−10 − 2e−cN ≥ 1− 1

2k
−10. In this case, I ⊃ I0 and so

1

N

∑
i∈I

xix
T
i ⪰ 1

N

∑
i∈I0

xix
T
i ⪰ 0.992 · Id ⪰ 0.9 · Id.

A similar argument but for 1.01N instead of 0.99N yields

1

N

∑
i∈I

xix
T
i ⪯ (1.01)2 · Id ⪯ 1.1 · Id

with probability at least 1− 1
2k

−10. Taking the intersection of the two bounds
completes the proof. □

3. Proof of Theorem 1.3

3.1. Reduction to sign patterns. Fix d < p. Let us call a function
f : {−1, 1}p → {−1, 1} non-unique if there exists a function f ′ : {−1, 1}p →
(−1, 1) that has the same frequencies as f ′ up to dimension d. Our goal is
to show that most of the functions f are non-unique for d = 0.49p.
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Consider the following linear subspace of real-valued functions on the
Boolean cube:

H :=
{
h : {−1, 1}p → R : ⟨h,wJ⟩ = 0 ∀J ⊂ [p], |J | ≤ d

}
. (3.1)

Lemma 3.1. f is non-unique if f ≡ signh for some h ∈ H.

Proof. Suppose f ≡ signh for some h ∈ H. Let ε > 0 be small enough
and set f ′ := f − εh. By definition of H, the functions f and f ′ have the
same frequencies up to dimension d. Moreover, if f(θ) = 1 then h(θ) > 0
and hence f ′(θ) < 1. Similarly, if f(θ) = −1 then h(θ) < 0 and hence
f ′(θ) > −1. Therefore, if ε is sufficiently small, f ′(θ) ∈ (−1, 1) for any
θ. □

Lemma 3.1 shows that the number of non-unique functions f is bounded
below by the number of functions of the form signh where h ∈ H, which
we call sign patterns generated by H. Hence, in order to show that most
of the functions f are non-unique, it suffices to show that the subspace H
generates a lot of sign patterns.

3.2. From sign patterns to hyperplane arrangements. To count dif-
ferent sign patterns generated by H, we express this as a problem about
hyperplane arrangements.

Let eθ : {−1, 1}p → {0, 1} denote the point evaluation function at θ ∈
{−1, 1}p. Consider two functions h, h′ ∈ H. We have signh ̸≡ signh′ if and
only if there exists θ ∈ {−1, 1}p such that ⟨h, eθ⟩ and ⟨h′, eθ⟩ have opposite
signs. This happens if and only if h and h′ are separated by at least one
hyperplane e⊥θ ∩H inH. The latter is equivalent to h and h′ lying in different

regions of the hyperplane arrangement {e⊥θ ∩H}θ∈{−1,1}p in the subspace H.
Therefore, the number of different sign patterns generated by H (and thus
also the number non-unique functions f) is bounded below by the number
of regions of the hyperplane arrangement {e⊥θ ∩H}θ∈{−1,1}p in the subspace
H.

Denoting by PH the orthogonal projection onto H, we see that the vector
PHeθ is orthogonal to the hyperplane e⊥θ ∩H in H. Now apply Lemmas 2.1
and 2.3 for our hyperplane arrangement in H. We conclude that the number
of regions (and thus also the number of sign patterns generated by H, and
thus also the number of non-unique functions f) is bounded below by the
number of resilient subsets for the collection {PHeθ}θ∈{−1,1}p .

3.3. A necessary condition for non-resilience. To complete the proof,
we will show that most of the subsets are resilient. Let us see what happens
when the complement Θc of some subset Θ ⊂ {−1, 1}p is not resilient. By
definition, there exists θ0 ∈ Θ such that

PHeθ0 ∈ span{PHeθ}θ∈Θc .
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This means that there exist real numbers (aθ)θ∈Θc such that

PHeθ0 =
∑
θ∈Θc

aθPHeθ.

This in turn means that

eθ0 −
∑
θ∈Θc

aθeθ ∈ H⊥ = span
{
wJ : J ⊂ [p], |J | ≤ d

}
.

Therefore, there exist real numbers (bJ)J⊂[p], |J |≤d such that

eθ0 −
∑
θ∈Θc

aθeθ =
∑

J⊂[p], |J |≤d

bJwJ .

If we evaluate this identity at any point θ ∈ Θ \ {θ0}, the left hand side of
it vanishes, and we have ∑

J⊂[p], |J |≤d

bJwJ(θ) = 0.

Express this identity this as an orthogonality relation in R(
p
≤d), namely

⟨b, w(θ)⟩ = 0

where

b = (bJ)J⊂[p], |J |≤d and w(θ) := (wJ(θ))J⊂[p], |J |≤d. (3.2)

Summarizing, we showed the following.

Lemma 3.2 (A necessary condition for non-resilience). If Θc is not resilient

for some Θ ⊂ {−1, 1}p then there exists θ0 ∈ Θ and b ∈ R(
p
≤d) such that

⟨w(θ), b⟩ = 0 for all θ ∈ Θ \ {θ0}.

3.4. Applying the sampling theorem.

Lemma 3.3. Assume that 2p ≥ C
(

p
≤d

)
log

(
p
≤d

)
where C is a sufficiently

large absolute constant. Let Θ be a random subset of {−1, 1}p with cardi-
nality |Θ| = 0.1 · 2p. Then, with probability at least 1 − p−10, the following
uniform lower bound holds:

1

0.1 · 2p
∑
θ∈Θ

⟨w(θ), b⟩2 ≥ 0.9∥b∥22 for all b ∈ R(
p
≤d). (3.3)

Proof. Orthonormality of Walsh basis (1.1) can be expressed as

1

2p

∑
θ∈{−1,1}p

wJ(θ)wJ ′(θ) = δJ,J ′ for any J, J ′ ⊂ [p].

Using our notation (3.2), this becomes

1

2p

∑
θ∈{−1,1}p

w(θ)w(θ)T = Id.
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(The identity on the right side is in R(
p
≤d).) Moreover, since all coordinates

of w(θ) are ±1, we have∥∥w(θ)∥∥2
2
=

(
p

≤ d

)
for all θ. (3.4)

Apply Rudelson’s Sampling Theorem 2.6 for k =
(

p
≤d

)
and N = 0.1 · 2p.

We get
1

0.1 · 2p
∑
θ∈Θ

w(θ)w(θ)T ⪰ 0.9 · Id

with probability at least 1− k−10 ≥ 1− p−10. Multiplying by bT on the left
and by b on the right, we obtain (3.3). □

3.5. Completion of the proof. If 1 ≤ d ≤ 0.49p then 2p ≥ C
(

p
≤d

)
log

(
p
≤d

)
,

so the assumptions of Lemma 3.3 hold. Thus, the uniform lower bound (3.3)
holds for most of the subsets Θ ⊂ {−1, 1}p with cardinality 0.1 · 2p.

We claim that for any subset Θ satisfying (3.3), the complement Θc is
resilient. This will be enough to complete the proof of Theorem 1.3. Indeed,
it would follow that most of the subsets of {−1, 1}p of cardinality 0.9 ·2p are
resilient. Since a subset of a resilient subset is resilient, most of the subsets
of {−1, 1}p of cardinality bounded by 0.9 · 2p are resilient. Thus, most of
the subsets of {−1, 1}p are resilient, completing the proof.

Assume for contradiction that Θc is not resilient. Then the necessary

condition (Lemma 3.2) implies the existence of θ0 ∈ Θ and b ∈ R(
p
≤d) such

that ∑
θ∈Θ\{θ0}

⟨w(θ), b⟩2 = 0. (3.5)

On the other hand,∑
θ∈Θ\{θ0}

⟨w(θ), b⟩2 =
∑
θ∈Θ

⟨w(θ), b⟩2 − ⟨w(θ0), b⟩2.

By Lemma 3.3, the first term on the right hand side is bounded below by
0.1 · 2p · 0.9∥b∥22. The second term on the right hand side is bounded above
by ∥∥w(θ0)∥∥22 ·∥b∥22 = (

p

≤ d

)
∥b∥22

due to (3.4). Therefore we have∑
θ∈Θ\{θ0}

⟨w(θ), b⟩2 > 0 (3.6)

as long as

0.1 · 2p · 0.9 >

(
p

≤ d

)
,

which is true if d = 0.49p if p is sufficiently large. The contradiction of (3.5)
and (3.6) completes the proof of Theorem 1.3. □



10 ROMAN VERSHYNIN

References

[1] Robert Creighton Buck. Partition of space. The American Mathematical Monthly,
50(9):541–544, 1943.

[2] Mark Rudelson. Random vectors in the isotropic position. Journal of Functional Anal-
ysis, 164(1):60–72, 1999.

[3] Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric com-
binatorics, 13:389–496, 2004.

[4] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12:389–434, 2012.

[5] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge university press, 2018.

[6] RO Winder. Partitions of n-space by hyperplanes. SIAM Journal on Applied Mathe-
matics, 14(4):811–818, 1966.

[7] Thomas Zaslavsky. Facing up to Arrangements: Face-Count Formulas for Partitions
of Space by Hyperplanes: Face-count Formulas for Partitions of Space by Hyperplanes,
volume 154. American Mathematical Soc., 1975.

[8] Yu A Zuev. Combinatorial-probability and geometric methods in threshold logic.
Diskretnaya Matematika, 3(2):47–57, 1991.

Department of Mathematics, University of California, Irvine
Email address: rvershyn@uci.edu


	1. Introduction
	1.1. Uniqueness of Boolean data
	1.2. Uniqueness of Boolean functions

	2. Background
	2.1. Hyperplane arrangements
	2.2. Sampling

	3. Proof of Theorem 1.3
	3.1. Reduction to sign patterns
	3.2. From sign patterns to hyperplane arrangements
	3.3. A necessary condition for non-resilience
	3.4. Applying the sampling theorem
	3.5. Completion of the proof

	References

