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CAN WE SPOT A FAKE?

SHAHAR MENDELSON, GRIGORIS PAOURIS, AND ROMAN VERSHYNIN

Abstract. The problem of detecting fake data inspires the following
seemingly simple mathematical question. Sample a data point X from
the standard normal distribution in Rn. An adversary observes X and
corrupts it by adding a vector rt, where they can choose any vector t
from a fixed set T of adversary’s “tricks”, and where r > 0 is a fixed
radius. The adversary’s choice of t = t(X) may depend on the true
data X. The adversary wants to hide the corruption by making the
fake data X + rt statistically indistinguishable from the real data X.
What is the largest radius r = r(T ) for which the adversary can create
an undetectable fake? We show that for highly symmetric sets T , the
detectability radius r(T ) approximately equals twice the scaled Gaussian
width of T . The upper bound actually holds for arbitrary sets T and
generalizes to arbitrary, non-Gaussian distributions of real data X. The
lower bound may fail for not highly symmetric T , but we conjecture
that this problem can be solved by considering the focused version of
the Gaussian width of T , which focuses on the most important directions
of T .
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1. Introduction

The ongoing AI boom is revolutionizing human-computer interaction.
But not all interaction is good: generative AI has made it easy to create
fake data.

When can we detect a fake?

This general question can be nontrivial even in stunningly simple scenar-
ios. Imagine we sample a data point X from the standard normal distribu-
tion on Rn. An adversary observes X and corrupts it by adding a vector
rt, where they can choose any vector t = t(X) ∈ T from a fixed set T ⊂ Rn
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of adversary’s “tricks”, and where r > 0 is a fixed radius. Allowing the
adversary’s choice of t = t(X) to depend on X allows the adversary may
to manipulate different data in different ways. The adversary wants to hide
the corruption by making the fake data X+rt statistically indistinguishable
from the real data X. When can the adversary succeed?

Question 1.1 (Detectability radius). For a given set T ⊂ Rn, what is the
smallest radius r(T ) such that for any r > r(T ) we can always detect a fake
with high probability?

If r is very small, the fake can never be detected, since the adversary can
always succeed: a tiny shift of the normal distribution is close to the original
normal distribution. If r is very large, the fake can always be detected: a
hugely shifted vector has an abnormally large length, and this can be easily
detected. So where is the phase transition r(T )? And what are the optimal
strategies for the tester and for the adversary?

1.1. A geometric viewpoint. Any test can be encoded by a subset A ⊂
Rn: for any point in A the tester says “true”, and for any point in the
complement of A the tester says “fake”. A good test recognizes true data as
true, and does not recognize fake data as true, both with a high probability.
Thus, the tester’s goal is to find a set A that minimizes the probability of
error, so that

P{X ∈ A} ≥ 0.9 and P{∃t ∈ T : X + rt ∈ A} ≤ 0.1. (1.1)

We have chosen the values 0.9 and 0.1 for illustrative purposes only; they
can be arbitrary in general.

Using Minkowski addition, the second inequality in (1.1) can be expressed
as P{X ∈ A − rT} ≤ 0.1. Thus, denoting by γn the standard Gaussian
measure on Rn, the tester’s goal is to find a subset A ⊂ Rn satistying

γn(A) ≥ 0.9 and γn(A− rT ) ≤ 0.1. (1.2)

The detectablity radius we introduced in Question 1.1 can be formally defined
as the largest radius of an undetectable fake:

r(T ) := sup {r > 0 : there exists no set A ⊂ Rn that satisfies (1.2)} .

1.2. Related work. A lot of effort has been made to compute the de-
tectability radius for an outsider adversary whose choice of the vector t ∈ T
that is not allowed to depend on X. Instead of (1.2), in the “outsider ad-
versary” scenario the tester is satisfied with the following weaker goal: find
a subset A ⊂ Rn that satisfies

γn(A) ≥ 0.9 and sup
t∈T

γn(A− rt) ≤ 0.1. (1.3)

The study of this “outsider adversary” problem can be traced back to
Tuckey’s idea of “higher criticism” [22], see [11, 12, 13]. Higher criticism
was recently revisited from the standpoint of high-dimensional statistics,
and was studied for various specific sets T including the spheres in the ℓp



CAN WE SPOT A FAKE? 3

metric [15], the indicators of paths and more general clusters in a given
graph [2, 3], the set of unit sparse vectors [7, 16, 11, 12, 13, 9, 14, 17], and
more generally a set containing all unit vectors with given sparsity patterns
[1]. Extensions for sparse regression has been studied in [4, 18, 10, 19]. The
only work on the “insider adversary” that we know of is the concurrent work
[20], which studies the detectability radius of the discrete cube T = {−1, 1}n
and its sparsified versions.

1.3. Main results. Returning to our “insider adversary” problem, it turns
out that in many situations, the detectability radius r(T ) is captured by the
quantity that we call the scaled Gaussian width of T . It is defined as follows:

w̄(T ) = E sup
t∈T

〈
X,

t

∥t∥22

〉
(1.4)

where X is a standard normal random vector in Rn. This is a scaled version
of the more traditional quantity called Gaussian width, which is

w(T ) = E sup
t∈T

⟨X, t⟩. (1.5)

The Gaussian width describes the complexity of the set T . This concept
plays an important role in high-dimensional probability, asymptotic convex
geometry and high-dimensional inference [23, 5, 6].

The unorthodox scaling in (1.4) is justified by the contribution of the
points in T near the origin. Since smaller distortions are easier to hide,
having such points in T makes the adversary’s job easier and the tester’s
job harder. So a quantity that captures the detectability radius r(T ) should
be more sensitive to points in T that are close to the origin than to those that
are far from the origin. Such a sensitivity is achieved in (1.4) by dividing
by ∥t∥22.

The following theorem summarizes our main results.

Theorem 1.2 (Detectability radius, informal). For any set T ⊂ Rn, we
have

r(T ) ≤ 2w̄(T ) (1 + o(1)) . (1.6)

Moreover, for any highly symmetric set T we have

r(T ) ≥ 2w̄(T ) (1− o(1)) . (1.7)

The first part of Theorem 1.2 identifies the regime in which the fake is
detectable. A formal, non-asymptotic version of (1.6) is provided in Theo-
rem 2.1. We argue in Section 2.1 that a simple proximity test can detect a
fake in this regime: if the point is closer to the origin than to any point in
T , return “real”; otherwise return “fake”.

The second part of Theorem 1.2 identifies the regime in which there exist
undetectable fakes. The meaning of “highly symmetric” is explained in
Definition 3.1, and a formal, non-asymptotic version of (1.6) is provided in
Theorem 3.2. We argue in Section 3.2 that an undetectable fake can be
produced in this regime by a sign flipping strategy: choose a point t(X) ∈ T
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such that adding rt to the outcome X is equivalent to reversing the signs of
some coordinates of X.

1.4. Example: the adversary adds any vector. To illustrate the in-
tuition behind Theorem 1.2, consider the most basic example where the
adversary is allowed to add to X any vector of length at least r. In other
words, the set of the adversary’s tricks is

T = Tn = {t ∈ Rn : ∥t∥2 ≥ 1} . (1.8)

The scaled Gaussian width of T equals the Gaussian width of the unit Eu-
clidean ball in Rn, and it is approximately

√
n, see [23, Example 7.5.7]. Thus

Theorem 1.2 gives

r(Tn) = 2
√
n(1 + o(1)).

There is a simpler way to obtain the same conclusion. The Euclidean
norm of the standard normal random vector X is approximately

√
n [23,

Example 7.5.3]. Therefore, if the radius r is significantly larger than 2
√
n,

adding to X a vector rt for any t ∈ T would make the norm of the sum
significantly larger than

√
n. So the norm of the fake data X + rt must be

significantly larger than the typical norm of the real data X. This abnor-
mality can be easily detected.

On the other hand, let us take r = 2
√
n and simplify reality a little by

pretending that the Euclidean norm of X is exactly
√
n. Then the adversary

can make an undetectable fake by adding the vector −2X ∈ rT to X.
Indeed, this effectively flips the vector X about the origin, which does not
change the distribution of X at all.

1.5. Example: the adversary adds a sparse vector. To make the pre-
vious example more interesting, imagine that the adversary has limited re-
sources and can change at most s coordinates of X. The choice of which
coordinates to change is up to the adversary and may depend on X. In
other words, the adversary’s set of tricks is

T = Tn,s = {t ∈ Rn : ∥t∥2 ≥ 1, ∥t∥0 ≤ s} . (1.9)

Here ∥t∥0 denotes the sparsity of t, which equals the number of nonzero
coordinates of t. The set Tn,s is a highly symmetric, and its scaled Gaussian
width satisfies

w̄(Tn,s) ≍
√
s ln(en/s),

see [23, Section 10.3.3]. Here the sign “≍” hides absolute constant factors.
Thus, Theorem 1.2 gives

r(Tn,s) ≍
√
s ln(en/s).

The proximity test in this case reduces to checking whether the sum of
squares of the largest s coefficients is abnormally large. The sign flipping
strategy reduces to reversing the signs of the largest s coefficients.
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1.6. What about non-Gaussian data? Real world data is rarely Gauss-
ian. The first part of Theorem 1.2, which identifies a regime in which the
fake is detectable, can be easily generalized to non-Gaussian random vectors
X. A version of this result, Theorem 4.1, holds for a completely arbitrary
distribution of X.

As for the second part of Theorem 1.2, which identifies a regime in which
there exist undetectable fakes, extending it to general distributions is trick-
ier. Our proof of this result is based on sign flipping strategy, whose validity
explores the symmetries of the distribution of X. A more general version
this result, Theorem 4.2, holds for any random vector X whose coordinates
Xi are independent, symmetric, and bounded random variables. It remains
an interesting question to what extent we can relax the assumptions of in-
dependence, symmetry and boundedness.

1.7. What about general sets T? While the first part of Theorem 1.2 is
valid for general sets T , the second part requires T to be highly symmetric,
where the rigorous meaning of “highly symmetric” is given in Definition 3.1.

This latter result can fail miserably for general sets T : the scaled Gaussian
width can hugely overestimate the detectability radius. A simple example
is where T consists of all unit vectors in Rn whose first coordinate is either
1/2 or −1/2. An elementary calculation carried out in Section 5.1 shows
that w̄(T ) ≍

√
n while r(T ) ≍ O(1).

In full generality, we suspect that the detectability radius r(T ) must be
captured by some geometric quantity w̃(T ) that is generally smaller than
the scaled Gaussian width w̄(T ), and which is focused only on the most
important directions of T . We can call such quantity the focused Gaussian
width. In Section 5 we define the focused Gaussian width and show that

r(T ) ≲ w̃(T ) ≤ w̄(T ).

A fascinating problem remains whether the first inequality can be reversed
for a general set T , i.e. whether the detectability radius is always equivalent
to the focused Gaussian width.

2. When is a fake detectable?

Let us begin by showing that a fake is detectable whenever the radius
r is significantly larger than 2w̄(T ), where w̄(T ) is the scaled Gaussian
width defined in (1.4). The error term that quantifies “significantly larger”
depends on the magnitude of the smallest change the adversary can make.
This magnitude is the inradius of T , defined as

ρ(T ) = inf
t∈T

∥t∥2. (2.1)

Theorem 2.1 (When the fake is detectable). Let X be a standard normal
random vector in Rn. Let T ⊂ Rn be any set and u > 0 be any number.
Assume that

r ≥ 2w̄(T ) +
u

ρ(T )
. (2.2)
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Then there exists a set A ⊂ Rn satisfying

P{X ∈ A} > 1− e−u2/8 and P{X ∈ A− rT} < e−u2/8.

Proof. Consider the set

K :=
{
x ∈ Rn | ⟨x, t⟩ < ∥t∥22 for every t ∈ T

}
.

We claim that
K

2
∩
(
T − K

2

)
= ∅. (2.3)

Indeed, if this were not true, there would exist vectors x, y ∈ K and t ∈ T
satisfying x/2 = t−y/2, or x+y = 2t. Multiplying by t on both sides would
give

⟨x, t⟩+ ⟨y, t⟩ = 2⟨t, t⟩ = 2∥t∥22. (2.4)

On the other hand, the definition ofK implies ⟨x, t⟩ < ∥t∥22 and ⟨y, t⟩ < ∥t∥22.
Adding these two inequalities creates a contradiction with (2.4), and so
Claim (2.3) is proved.

We have

P
{
X ∈ r

2
K
}
= P

{
sup
t∈T

〈
X,

t

∥t∥22

〉
<

r

2

}
(by definition of K)

≥ P
{
sup
t∈T

〈
X,

t

∥t∥22

〉
< w̄(T ) +

u

2ρ(T )

}
(by assumption on r)

> 1− e−u2/8,

where the last step follows by applying the Gaussian concentration inequality
(see [8]) for the 1/ρ(T )-Lipschitz function f(x) = supt∈T

〈
x, t/∥t∥22

〉
.

Since (2.3) can be rewritten as

r

2
K ∩

(
rT − r

2
K
)
= ∅,

the previous bound yields

P
{
X ∈ rT − r

2
K
}
≤ 1− P

{
X ∈ r

2
K
}
< e−u2/8.

Therefore, the conclusion of the theorem holds for

A =
r

2
K. □

Remark 2.2 (The error term is small). When we look at the assumption
(2.2), it is helpful to regard 2w̄(T ) as the main term and u/ρ(T ) as the
error term. The error term is typically smaller than the main term, and
often much smaller. Indeed, the Gaussian width of any origin-symmetric set
T satisfies w(T ) ≥

√
2/π supt∈T ∥t∥2, see [23, Proposition 7.5.2]. Rescaling

and rearranging the terms, we conclude that the scaled Gaussian width of
any origin-symmetric set T satisfies

1

ρ(T )
≤

√
π

2
w̄(T ).
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Moreover, in most interesting cases 1/ρ(T ) is much smaller than w̄(T ). For
example, if T is the unit Euclidean sphere in Rn, then we have

ρ(T ) = 1 while w̄(T ) ≈
√
n.

Similarly, if Tn,s is the set of s-sparse vectors in Rn of norm at least 1, which
we introduced in Section 1.5, then we by [23, Section 10.3.3] we have

ρ(T ) = 1 while w̄(Tn,s) ≍
√
s ln(en/s).

2.1. How to spot a fake? A proximity test. Theorem 2.1 identifies a
regime where a fake can be detected: there is a test that can accurately
predict whether a data x has been sampled from the standard normal dis-
tribution, or alternatively a point from rT has been added to it. What is
this test?

This test is encoded by a subset A ⊂ Rn: upon seeing a data x ∈ Rn,
the tester returns “real” if x ∈ A and “fake” if x ∈ Ac. In the proof of
Theorem 2.1, we made the following choice of A:

A =
r

2
K =

{
x ∈ Rn | ⟨x, t⟩ < r

2
∥t∥22 for every t ∈ T

}
.

Rewriting the inequality above as ⟨x, rt⟩ < 1
2∥rt∥

2
2, we see that it is simply

saying that the point x is closer to the origin than to the point rt. Thus,
the proof of Theorem 2.1 yields the following

Proximity test. If the data point x is closer to the origin
than to any point in the set rT , return “true”; otherwise
return “fake”.

If the radius r satisfies (2.2), the proximity test succeeds: the probability
of a false positive error and the probability of a false negative error are both

bounded by e−u2/8.

3. When is a fake undetectable?

Next, let us consider the opposite situation. We will show how the adver-
sary can create an undetectable fake whenever the radius r is significantly
larger than 2w̄(T ), where w̄(T ) is the scaled Gaussian width defined in (1.4).
The error term that quantifies “significantly larger” will be exactly the same
as in Theorem 2.1 and it will depend on the inradius ρ(T ) of T , defined in
(2.1).

We will only consider highly symmetric sets of tricks T in this regime,
and we will demonstrate in Section 5.1 how the result can fail if T is not
highly symmetric.

Definition 3.1 (Highly symmetric set). We say that a set T ⊂ Rn is highly
symmetric if, whenever T contains a point x, the set T must also contain
any point y ∈ Rn that satisfies supp(y) = supp(x) and ∥y∥2 ≥ ∥x∥2.
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An example of a highly symmetric set is the set Tn of all vectors in Rn

whose norm is bounded below by 1, which we considered in (1.8). A more
general example is the set of all s-sparse vectors in Rn whose Euclidean
norm is at least 1, which we considered in (1.9).

Theorem 3.2 (Where the fake is undetectable). Let X be a standard normal
random vector in Rn. Let T ⊂ Rn be a highly symmetric set and u > 0 be
any number. Assume that

0 ≤ r ≤ 2w̄(T )− u

ρ(T )
. (3.1)

Then for any set A ⊂ Rn we have

P{X ∈ A− rT} ≥ P{X ∈ A} − e−u2/8.

Proof of Theorem 3.2. Definition 3.1 of a highly symmetric set T implies
that the answer to the question “does a given point x ∈ Rn belong to T?”
depends only on the support of x and whether the norm of x is sufficiently
large. Let S denote the family of subsets of {1, . . . , n} that are supports of
points in T , that is

S := {supp(x) : x ∈ T} .
For every set I ∈ S, let ν(I) denote the smallest Euclidean norm of a vector
in T whose support equals I:

ν(I) := min {∥x∥2 : x ∈ T, supp(x) = I} .
Then we can express the set T as follows:

T := {x ∈ Rn : ∃I ∈ S such that supp(x) = I, ∥x∥2 ≥ ν(I)} . (3.2)

A simple computation shows that the Gaussian width and the inradius of T
are

w̄(T ) = Emax
I∈S

∥XI∥2
ν(I)

, ρ(T ) = min
I∈S

ν(I),

where xI ∈ RI denotes the restriction of a vector x ∈ Rn onto the coordinates
in I.

Apply the Gaussian concentration inequality (see [8]) for the 1/ρ(T )-
Lipschitz function f(x) = maxI∈S ∥xI∥2/ν(I). We obtain that with proba-

bility at least 1− e−u2/8, the following holds:

max
I∈S

∥XI∥2
ν(I)

≥ w̄(T )− u

2ρ(T )
≥ r

2
, (3.3)

where the second inequality is due to the assumption on r.
Whenever the event in (3.3) occurs, there exists a set I = I(X) ∈ S such

that

∥2XI∥2 ≥ rν(I).

By definition of T , this implies that −2XI ∈ rT , so there exists t = t(X) ∈ T
such that −2XI = rt. Whenever the event (3.3) does not hold, set I(X) = I0
and t(X) = t0 for some arbitrary but fixed I0 ∈ S and t0 ∈ T . Summarizing,
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we have constructed a random set I = I(X) ∈ S and a random point
t = t(X) ∈ T such that

P{−2XI = rt} ≥ 1− e−u2/8. (3.4)

Moreover, since the quantity ∥XI∥2 in the event (3.3) is determined by the
absolute values of the coefficients of X, we can arrange that the set I is
determined by the absolute values of the coefficients of X.

Adding the vector −2XI to the vector X is equivalent to reversing the
signs of the coefficients of X indexed by I. And since the choice of I is de-
termined by the absolute values of the coefficients of X and is independent
of their signs, reversing the coordinates of X indexed by I does not change
the distribution of X. (This is a consequence of the symmetry of the Gauss-
ian distribution, which we explain in detail in Lemma 3.3 below.) Hence
X − 2XI has the same distribution as X. Therefore, for any set A ⊂ Rn we
have

P{X ∈ A} = P{X − 2XI ∈ A}
≤ P{X − 2XI ∈ A and − 2XI = rt}+ P{−2XI ̸= rt}

≤ P{X + rt ∈ A}+ e−u2/8,

where the in last step we used (3.4). Since t ∈ T , rearranging the terms
completes the proof. □

Let us now explain the crucial fact used in the proof above, namely that
sign flipping does not change the distribution.

Lemma 3.3 (Sign flipping). Let X = (X1, . . . , Xn) be a random vector
in Rn whose coordinates Xi are independent and have symmetric distribu-
tions.1 Let θ = (θ1, . . . , θn) ∈ {−1, 1}n be a random vector whose value is
determined by the absolute values of the coefficients of X. Then the random
vector (θ1X1, . . . , θnXn) has the same distribution as X.

Proof. The random vector of interest has coefficients

θiXi = θi sgn(Xi)|Xi|.
Condition on the absolute values of the coefficients of X. This fixes the
values of |Xi| and θi, while by symmetry sgn(Xi) are (conditionally) inde-
pendent Rademacher random variables. Since the signs θi are now fixed, the
symmetry of Rademacher distribution implies that

θi sgn(Xi) ≡ sgn(Xi),

where we use the sign “≡” to indicate the equality of (conditional) joint
distributions of the coefficients. Multiplying by the fixed numbers |Xi|, we
get

θi sgn(Xi)|Xi| ≡ sgn(Xi)|Xi|.

1A random variable ξ has symmetric distribution if ξ has the same distribution as −ξ.
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In other words,

θiXi ≡ Xi.

Since the conditional distributions are equal almost surely (in fact, deter-
ministically), the original distributions are equal, too. □

3.1. Undetectability. Let us explain why the conclusion of Theorem 3.2
can be interpreted as existence of undetectable fakes.

Any fake detection test can be encoded by a subset A ⊂ Rn: upon seeing
a data x ∈ Rn, the tester returns “real” if x ∈ A and “fake” if x ∈ Ac.
Rewriting the conclusion of Theorem 3.2 as

P{X ∈ Ac}+ P{X ∈ A− rT} ≥ 1− e−u2/8,

we see that the two probabilities on the left hand side can not be simulta-
neously small: we must have

min
(
P{X ∈ Ac}, P{X ∈ A− rT}

)
≥ 1

2
− 1

2
e−u2/8.

This means that no test can reliably detect a fake: either the false positive
rate or the false negative rate must be close to 50% or higher.

3.2. How to evade detection? A sign flipping strategy. Theorem 3.2
tells us that for any radius r below a certain threshold, the adversary has a
strategy to create an undetectable. What is this strategy?

To create a fake, the adversary looks at the true data x, picks a point
t = t(x) ∈ T , and outputs x + rt. The proof of Theorem 3.2 contains a
recipe for choosing t. We express the set T via (3.2), find a set of indices

I = argmax
I∈S

∥xI∥2
ν(I)

and choose t ∈ T such that rt = −2xI . (And if such t does not exist, the
adversary gives up.) Adding such rt to x is equivalent to reversing the signs
of the coefficients of x indexed by I. Thus, the proof of Theorem 3.2 yields
the following strategy for the adversary:

Sign flipping strategy. Given a data point x and a set
T as in (3.2), choose a set of indices I that maximizes the
ratio ∥xI∥2/ν(I) and reverse the signs of the coefficients of x
indexed by I. Do this only if such a reversal can be realized
as adding some point from rT to x. Otherwise give up.

If the radius r satisfies (3.1), then the sign flipping strategy succeeds with
high probability. It creates fake data that is statistically indistinguishable
from the true data. As we pointed out in Section 3.1, for any test either the
false positive rate or the false negative rate must be close to 50% or higher.
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4. Extensions for non-Gaussian data

Since real world data is rarely Gaussian, it is natural to wonder whether
our results generalize to random vectors X with general distributions.

Particularly straightforward is the generalization of Theorem 2.1, which
identifies the regime in which fakes are detectable. Consider straightforward
generalizations of the concepts of Gaussian width (1.5) and scaled Gaussian
width (1.4), in which the standard normal random vector X is replaced with
a given arbitrary random vector X taking values in Rn. This leads to the
concept of X-width and scaled X-width, respectively:

wX(T ) = E sup
t∈T

⟨X, t⟩ and w̄X(T ) = E sup
t∈T

〈
X,

t

∥t∥22

〉
.

Then Theorem 2.1 generalizes as follows.

Theorem 4.1 (Where the fake is detectable: general distributions). Let
X be any random vector taking values in Rn. Let T ⊂ Rn be any origin-
symmetric set2 and u > 0 be any number. Assume that

r > 2u · w̄X(T ).

Then there exists a set A ⊂ Rn such that

P{X ∈ A} > 1− 1/u and P{g ∈ A− rT} < 1/u.

Proof. Follow the proof of Theorem 2.1 but use Markov’s inequality instead
of the Gaussian concentration inequality. We assumed that T is origin-
symmetric to make sure that the random variable supt∈T

〈
X, t/∥t∥22

〉
takes

only non-negative values, which makes Markov’s inequality applicable. □

As for Theorem 2.1, which identifies the regime in which fakes are de-
tectable, it is less clear to which non-Gaussian distributions it can be gen-
eralized. The proof of Theorem 2.1 uses a sign-flipping strategy that relies
crucially on certain symmetries of the Gaussian distribution. It can be ex-
tended to any distribution that is sufficiently symmetric:

Theorem 4.2 (Where the fake is undetectable: non-Gaussian data). Let
X = (X1, . . . , Xn) be a random vector whose coordinates Xi are independent,
symmetric random variables taking values in the interval [−1, 1]. Let T ⊂ Rn

be a highly symmetric set and u > 0 be any number. Assume that

r ≤ 2w̄(T )− u

ρ(T )
.

Then for any set A ⊂ Rn we have

P{X ∈ A− rT} ≥ P{X ∈ A} − 2e−u2/16.

2The assumption that T is origin symmetric, i.e. that T = −T , is a bit annoying, but
it is unavoidable in this statement, since a set T consisting of a single point must satisfy
w̄(T ) = 0. However, it is easy to get around this assumption by replacing any set T with
the origin-symmetric set T ∪ −T .
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Proof. Follow the proof of Theorem 3.2 but use Talagrand’s convex concen-
tration inequality [21, Theorem 6.6] instead of the Gaussian concentration
inequality. □

5. Is the detectability radius equivalent to the focused width?

5.1. The upper bound is not always sharp. Theorem 2.1 says that a
fake can be detected if the radius r is somewhat larger than 2w̄(T ). The-
orem 3.2 demonstrates that this result is optimal for for highly symmetric
sets T .

If a set T does not have enough symmetries, Theorem 3.2 can fail. Con-
sider, for example, the set of all unit vectors whose first coordinate equals
±1/2, that is

T =

{
t ∈ Rn : ∥t∥2 = 1, |t1| =

1

2

}
. (5.1)

A simple calculation yields

w̄(T ) = w̄(T ) ≍
√
n,

where the “≍” sign hides absolute constant factors. Thus, Theorem 2.1 says
that fake detection is possible whenever the radius satisfies r ≳

√
n.

However, this result is too conservative. The detection in this example is
possible even if the radius is an absolute constant. For example, if r = 100,
the first coordinate of the fake vector X + rt is

(X + rt)1 = X1 ± 50.

Comparing this to the first coordinate of the real vector X, which is X1 ∼
N(0, 1), we see that the first coordinate of any fake vector must have a huge
non-zero mean. This can be easily tested. Hence the scaled Gaussian width
vastly overestimates the detection radius:

r(T ) = O(1) while w̄(T ) ≍
√
n,

This violates Theorem 3.2.

5.2. Focused width. The example above makes us wonder what causes
the scaled Gaussian to overestimate the detection radius, and how to fix
this problem. The definition of the Gaussian width takes into account all
directions t ∈ T , while not all directions are equally useful to an adversary:
some tricks t ∈ T may be more “revealing” and thus less useful. We wonder
if forcing the Gaussian width to focus on the most important directions
might solve the attention problem.

This motivates the following definition of the focused Gaussian width. To
make it more broadly applicable, let us define it not just for Gaussian X
but for general distributions.

Definition 5.1 (Focused Gaussian width). The focused Gaussian width of
T is defined as

w̃(T ) = inf
S

w(S)



CAN WE SPOT A FAKE? 13

where the infimum is over all origin-symmetric sets S ⊂ Rn satisfying

∀t ∈ T ∃s ∈ S : ⟨t, s⟩ ≥ 1. (5.2)

In other words, w̃(T ) is the smallest Gaussian width of an origin-symmetric
set whose polar is disjoint from T .

More generally, if X is an arbitrary random vector taking values in Rn,
the focused X-width is defined as

w̃X(T ) = inf
S

wX(S).

The set S in this definition encodes the directions of “focus”, and taking
the infimum over S encourages the width to focus on the most important
directions.

To compare with the scaled width, it is convenient to rewrite the definition
of the focused X-width equivalently as follows:

w̃X(T ) = inf
H

w̄X(H) (5.3)

where the infimum is over all measurable sets H ⊂ Rn satisfying

∀t ∈ T ∃h ∈ H : ⟨t, h⟩ ≥ ∥h∥22. (5.4)

To check the equivalence, choose h = s/∥s∥22, or s = h/∥h∥22.
Choosing H = T and h = t in (5.4), we immediately obtain:

Lemma 5.2 (Focusing can only reduce the width). For any random vector
X taking values in Rn and for any set T ⊂ Rn, we have

w̃X(T ) ≤ w̄X(T ).

5.3. Does focus help? The next result states that Theorem 2.1 can be
strengthened by replacing the width with the focused width.

Theorem 5.3 (Where the fake is detectable: focused width). Let X be any
random vector taking values in Rn. Let T ⊂ Rn be any origin-symmetric set
and u > 0 be any number. Let

r > 2u · w̃X(T ).

Then there exists a set A ⊂ Rn such that

P{X ∈ A} > 1− 1/u and P{X ∈ A− rT} < 1/u.

Proof. By the assumption on r and the alternative definition of the focused
width (5.3), there exists a set H ⊂ Rn satisfying (5.4) and such that

r > 2u · w̄X(H).

Consider the set

K :=
{
x ∈ Rn | ⟨x, h⟩ < ∥h∥22 for every h ∈ H

}
.

We claim that
K

2
∩
(
T − K

2

)
= ∅. (5.5)
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Indeed, if this were not true, there would exist vectors x, y ∈ K and t ∈ T
such that x/2 = t−y/2, or x+y = 2t. By (5.4), we can find a vector h ∈ H
satisfying

⟨t, h⟩ ≥ ∥h∥22.
Multiplying by h on both sides of the identity x+ y = 2t would give

⟨x, h⟩+ ⟨y, h⟩ = 2⟨t, h⟩ ≥ 2∥h∥22. (5.6)

On the other hand, by definition of K we have ⟨x, h⟩ < ∥h∥22 and ⟨y, h⟩ <
∥h∥22. This contradicts (5.6), and so Claim (5.5) is proved.

Then

P
{
X ∈ r

2
K
}
= P

{
sup
h∈H

〈
X,

h

∥h∥22

〉
<

r

2

}
(by definition of K)

≥ P
{
sup
h∈H

〈
X,

h

∥h∥22

〉
< u · w̄X(H)

}
(by assumption on r)

> 1− 1/u,

where the last step follows by applying Markov’s inequality. Note that the
assumption that T is origin-symmetric guarantees that the random variable
supt∈T

〈
X, t/∥t∥22

〉
takes only non-negative values, which makes Markov’s

inequality applicable.
Since (5.5) can be rewritten as

r

2
K ∩

(
rT − r

2
K
)
= ∅,

the previous bound yields

P
{
X ∈ rT − r

2
K
}
≤ 1− P

{
X ∈ r

2
K
}
< 1/u.

Therefore, the conclusion of the theorem holds for

A =
r

2
K. □

5.4. Revisiting a challenging example. Let us revisit the example from
Section 5.1, which shows that the usual Gaussian width can vastly overesti-
mate the detection radius. There we considered the set

T =

{
x ∈ Rn : ∥x∥2 = 1, |x1| =

1

2

}
.

We noticed a discrepancy: the scaled Gaussian width of T is of the order of√
n, while the fake detection is possible even when the radius r is around an

absolute constant.
Let us now compute the focused Gaussian width of T . Consider the set

S = {−2e1, 2e1}
where e1 = (1, 0, 0, . . . , 0). The condition (5.2) is satisfied, and so

w̃(T ) ≤ w(S) = 2E|g| = 2

√
2

π
.
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So the focused Gaussian width of T is O(1) – much smaller than the usual
Gaussian width.

As opposed to the Gaussian width, the focused Gaussian width correctly
estimates the detectability radius in this example. Indeed, Theorem 5.3
guarantees that the fake detection is possible if the radius is of the order of
O(1). In fact, we described such a test in Section 5.1: check if the magnitude
of the first coordinate is abnormally large.

5.5. A conjecture. Inspired by the example above, one can wonder if the
focused Gaussian width is always equivalent to the detectability radius, i.e.

r(T ) ≍ w̃(T ).

Theorem 5.3 gives r(T ) ≲ w̃(T ). It remains a question whether this inequal-
ity can always be reversed. In other words, does a version of Theorem 3.2
hold for any origin-symmetric set T if we replace the scaled Gaussian width
w̄(T ) with the focused Gaussian width w̃(T )?
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