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Abstract. We investigate the best constant J(n,d) such that Jackson’s inequality

inf
deg(g)≤d

∥f − g∥∞ ≤ J(n,d)s(f ),

holds for all functions f on the hypercube {0,1}n, where s(f ) denotes the sensitivity of f . We
show that the quantity J(n,0.499n) is bounded below by an absolute positive constant, indepen-
dent of n. This complements Wagner’s theorem, which establishes that J(n,d) ≤ 1. As a first
application we show that reverse Bernstein inequality fails in the tail space L1

≥0.499n improving

over previously known counterexamples in L1
≥C loglog(n). As a second application, we show that

there exists a function f : {0,1}n → [−1,1] whose sensitivity s(f ) remains constant, independent
of n, while the approximate degree grows linearly with n. This result implies that the sensitivity
theorem s(f ) ≥ Ω(deg(f )C ) fails in the strongest sense for bounded real-valued functions even
when deg(f ) is relaxed to the approximate degree. We also show that in the regime d = (1− δ)n,
the bound

J(n,d) ≤ Cmin{δ,max{δ2,n−2/3}}
holds. Moreover, when restricted to symmetric real-valued functions, we obtain Jsymmetric(n,d) ≤
C/d and the decay 1/d is sharp. Finally, we present results for a subspace approximation prob-
lem: we show that there exists a subspace E of dimension 2n−1 such that infg∈E ∥f −g∥∞ ≤ s(f )/n
holds for all f .
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1. Introduction

1.1. Approximation of real-valued functions on the hypercube. Let n ≥ 1 be an integer, and
let {0,1}n be the n-dimensional hypercube. Set [n] := {1, . . . ,n}. Any function f on the hypercube
admits Fourier–Walsh series representation

f (x) =
∑
S⊂[n]

f̂ (S)WS(x) where WS(x) = (−1)
∑
j∈S xj .

Here x = (x1, . . . ,xn) ∈ {0,1}n, f̂ (S) = Ef (X)WS(X), and X ∼ unif({0,1}n). The degree of f is the
minimal number deg(f ) such that f̂ (S) = 0 for all |S | > deg(f ) where |S | denotes the cardinality
of the subset S ⊂ {1, . . . ,n}. Clearly deg(f ) conincides with the degree of a multilinear poly-
nomial g : Rn → R such that g = f on {0,1}n. For any p ≥ 1 let ∥f ∥p = (E|f (X)|p)1/p, where
X ∼Unif({0,1}n). If p =∞ we simply set ∥f ∥∞ := maxx∈{0,1}n |f (x)|.

For any f : {0,1}n→ R, and any d, 0 ≤ d ≤ n, we are interested in the best uniform polyno-
mial approximation of f on the hypercube, which is measured by

End (f ) def= inf
deg(g)≤d

∥f − g∥∞.

A recent breakthrough result due to Hao Huang [Hun19], resolving the long standing sensi-
tivity conjecture, states that all Boolean functions f : {0,1}n→ {0,1} satisfy

s(f ) ≥ c0deg(f )c, (1)
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where c0, c > 0 are universal constants. In an equivalent form, Huang’s result can be stated as
a Jackson’s inequality on the hypercube: all Boolean functions f : {0,1}n→ {0,1} satisfy

End (f ) ≤ c1

dc2
s(f ), (2)

where s(f ) denotes the sensitivity of f , i.e.

s(f ) := max
x∈{0,1}n

n∑
j=1

|f (x)− f (xj )|, xj := (x1, . . . ,xj−1,1− xj ,xj+1, . . . ,xn)

and where c1, c2 > 0 are universal constants, see Subsecton 2.4.
A related result is Pisier’s inequality due to Wagner [Wag97] which unlike (2) holds for all

real-valued functions but with a weaker upper bound. More precisely we have

En0 (f ) = inf
c∈R
∥f − c∥∞ ≤ s(f ) for all f : {0,1}n→R. (3)

It is natural to wonder how the approximaton error End (f )/s(f ) behaves for an arbitrary real
valued f : {0,1}n→R and any degree d ∈ [0,n].

1.2. Approximation by low-degree polynomials. Our first result shows that if f is symmetric,
that is if the value f (x1, . . . ,xn) is independent of a permutation of the variables x1, . . . ,xn, then
the approximation error is O(1/d).

Proposition 1 (Approximability of symmetric functions by low-degree polynomials). There
exists a universal constant C > 0 such that for any symmetric function f : {0,1}n → R and any
d ∈ (0,n], we have

End (f ) ≤ C
d
s(f ). (4)

Moreover, this bound is optimal. For every n ∈ N and any d ∈ (0,n], there exists a symmetric
function f : {0,1}n→R with s(f ) > 0 such that

End (f ) ≥ 1
8d
s(f ). (5)

However, an estimate of the type (2) fails in the strongest possible sense as soon as we drop
the assumption of f being symmetric or Boolean:

Theorem 1 (Inapproximability of general functions by low-degree polynomials). For any pos-
itive c1 < 1/2, there exists c2 > 0 such that for all n ≥ 1 there exists a function f : {0,1}n→ R with
s(f ) > 0 satisfying

Enc1n(f ) ≥ c2s(f ). (6)

The original formulation of Huang’s result (1), namely

s(f ) ≥
√

deg(f ) (7)

is valid for all Boolean functions, but due to inhomogeneity such estimate can not generalize
to real valued functions f : {0,1}n → [−1,1]. A simple counterexample is f (x) = 1

n (−1)x1+···+xn

where s(f ) = 2 while deg(f ) = n.
One may wonder if there is a chance to have an estimate of the form (7) for all f : {0,1}n→

[−1,1] if we replace deg(f ) by the approximate degree d̃eg(f ), which is defined as the smallest
number ℓ such that Enℓ (f ) ≤ 1/3, where 1/3 here is by convention and can be replaced by any
number in (0,1). Notice that the approximate degree of the counterexample above is zero for
n ≥ 3. The proof of Theorem 1 implies that the answer to this question is negative.

Corollary 2 (No sensitivity bound for real-valued functions via approximate degree). Let h be
any function on the real line, which increases to infinity as x→∞. The inequality

s(f ) ≥ h
(
d̃eg(f )

)
does not hold for all functions f : {0,1}n→ [−1,1] and all n ≥ 1.
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1.3. Failure of reverse Bernstein inequality in the tail space L1
≥0.499n. For any d ∈ [0,n] and

any p ≥ 1, let Lp≥d denote the d’th tail space equipped with the norm ∥ · ∥p and consisting
of all functions f on the hypercube that can be represented as f (x) =

∑
|S |≥d aSWS(x). Set

∆f (x) =
∑n
j=1(f (x)− f (xj )). Theorem 1 gives the following

Corollary 3. For any c1 ∈ (0,1/2), there exists c2 > 0 that depends only on c1 and such that for any
n ≥ 1 there exists a function f ∈ L1

≥c1n
, f . 0, with the property

∥f ∥1 ≥ c2∥∆f ∥1.

In [MN14] Mendel and Naor showed that if the reverse Bernstein inequality ∥f ∥p ≤
Cp
n ∥∆f ∥p

were to hold in the tail space Lp≥n/10 for vector-valued functions then this would simplify their
construction of vector-valued expanders (see Remark 7.5 in [MN14]). They also proved (see
[MN14, equation 145]) that the inequality fails in the tail space L1

≥c loglogn. Corollary 3 shows
that one can find a counterexample to the reverse Bernstein inequality even in the smaller
space L1

≥cn. Before we conclude this section, we point out that for any p ∈ (1,∞), the reverse
Bernstein inequality in the tail space Lp≥d remains a major open problem, see [HMO17, EI20,
EI23] for some partial results.

1.4. Approximation by low-dimensional subspaces. In fact, the existence of a poorly approx-
imable function f in Theorem 1 is not due to the nature of the space of polynomials of degree
at most d. It is just a consequence of the dimension of this space, which equals

( n
≤d

)
=

∑d
j=0

(n
j

)
.

The proof of Theorem 1 actually shows that no subspace of this dimension can be used to
approximate f . In the language of approximation theory, we find a lower bound on the Kol-
mogorov width of the set of functions of given sensitivity:

Theorem 4 (Inapproximability by low-dimensional subspaces). For any c1 ∈ (0,1/2), there exists
small c2 > 0 and large n0 > 0 such that for any n ≥ n0 and any subspace E of dimension at most( n
≤c1n

)
there exists a function f : {0,1}n→R with s(f ) > 0 satisfying

inf
g∈E
∥f − g∥∞ ≥ c2s(f ).

It is an interesting problem to understand what happens in Theorem 1 in the critical regime
where c1 = 1/2. Notice that if n is even, the dimension of the space of all polynomials of
degree at most n/2 is

( n
≤n/2

)
= 2n−1. In the next theorem we show that there exists a subspace

of dimension 2n−1 in the space of all functions on {0,1}n such that the approximation error
is at most s(f )/n. In particular, it shows that Theorem 4 is sharp, i.e., one cannot relax the
assumption c1 < 1/2.

Theorem 5 (Approximability by a subspace of half-dimension). There exists a subspace E of
dimension 2n−1 such that

inf
g∈E
∥f − g∥∞ <

s(f )
n

holds for all f : {0,1}n→R.

1.5. Approximation by high-degree polynomials. Let us revisit the high-degree approxima-
tion. How well can we approximate a general function f : {0,1}n → R by a polynomial of
degree d = (1 − δ)n where δ ∈ [0,1] is fixed? In other words, what is the smallest mulitplier
J(n,d) that makes Jackson-type inequality

End (f ) ≤ J(n,d)s(f )

hold true in this regime? Pisier’s inequlity (3) with Theorem 1 show that if δ ∈ (1/2,1] then

c1 ≤ J(n,d) ≤ 1
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where c1 = c1(δ) > 0 depends only on δ. At the opposite end of the spectrum, setting δ = 0
makes J(n,d) = 0, since the function f itself can be expressed as a polynomial of degree d = n.
This makes us wonder whether and how J(n,d) decreases to zero if we let δ decrease to 0. For
example, is it true that J(n,3n/4)→ 0 as n→ ∞? The following result gives a bound of this
kind. For x = (x1, . . . ,xn) and y = (y1, . . . , yn) in {0,1}n set

x⊕ y = (x1 + y1 mod(2), . . . ,xn + yn mod(2)).

Pick any polynomial h of degree at most d on the real line, which satisfies Eh(X) = 1 where
X ∼ Bin(n,1/2), and let H(x1, . . . ,xn) = h(x1 + · · ·+ xn).

Theorem 6. We have

End (f ) ≤ max
x∈{0,1}n

|f (x)−Eyf (y)H(y ⊕ x)| ≤ 3
s(f )
n

EX |h(X)|, (8)

where y ∼Unif({0,1}n), and X ∼ Bin(n,1/2).

Combining (8) with a quadrature argument in Section 2.9, we obtain

Corollary 7. For any f : {0,1}n→R, and any d ∈ [0,n], we have

End (f ) ≤ 3
kn,⌊d/2⌋+1

n
s(f ) (9)

where kn,ℓ is the smallest positive root of degree ℓ Kravchuk polynomial, i.e., polynomials orthogonal
with respect to the measure Bin(n,1/2).

Alternatively, combining (8) with a specific choice of h improves the bound (9) in the regime
δ ≤max{δ2,n−2/3}, where δ = 1− d/n.

Corollary 8. For any f : {0,1}n→R, and any d, 0 ≤ d ≤ n, we have

End (f ) ≤ 3
(
1− d

n

)
s(f ).

Corollaries 7 and 8, together with additional results on the smallest positive roots of Kravchuk
polynomials, provide us with the following bound.

Corollary 9 (Approximation by high-degree polynomials). For any f : {0,1}n → R, and any
d ∈ [0,n] we have

End (f ) ≤ Cmin{δ,max{δ2,n−2/3}}s(f ), (10)

where C > 0 is an absolute constant, and δ = 1− d/n.

1.6. Approximation of random Boolean functions. Our results so far have been about ar-
bitrary real-valued functions on the hypercube. Next we consider the same approximation
problem for a random Boolean function. We say that f : {0,1}n → {−1,1} is a random Boolean
function if {f (x)}x∈{0,1}n are independent identically distributed symmetric ±1 Bernoulli ran-
dom variables. The following result is due to [OS08] which shows that f≤d , where d is slighly
greater than n/2, is a good approximation in L∞ to f with high probability. Set

f>d(x) :=
∑
|S |>d

f̂ (S)WS(x),

and denote f≤d := f − f>d . It is clear that infdeg(g)≤d ∥f − g∥2 is achieved on g = f≤d .

Theorem 10 (Approximability of random Boolean functions by polynomials of degree > n/2).
If d ≥ n/2 + C

√
n logn, then a random Boolean function f : {0,1}n → {−1,1} can be uniformly

1/n10-approximated by a polynomial of degree d. Specifically, we have

∥f>d∥∞ ≤
1
n10 (11)

with probability at least 1− 2−n.
4



The original proof of Theorem 10 in [OS08] did not use f≤d as an approximating polynomial,
however, their argument still implies the bound (11). In Subsection 2.12 we will present a
direct and simpler proof of Theorem 10.

It is an interesting and open porblem, Wang–Williams conjecture, see also [BV19, Conjec-
ture 8.2], what should be the correct term instead of C

√
n log(n) in Theorem 10. In general the

degree n/2 is needed in Theorem 10, i.e., half of the Boolean functions cannot be uniformly
well approximated by polynomials of degree at most n/2. This result is due to [An95]. Since
the proof is short we decided to present it in Subsection 2.13 for completeness.

Theorem 11 (Degree n/2 is a sharp threshold). At least 50% of all Boolean functions f : {0,1}n→
{−1,1} satisfy

inf
deg(g)≤n/2

∥f − g∥∞ ≥ 1.

Equivalently, at least 50% of all Boolean functions are not sign-representable by any PTF of degree
≤ n/2, where P T F stands for polynomial threshold function, i.e., sign of degree at most d real-valued
polynomial on the hypercube.

2. Proofs

2.1. Proof of Proposition 1. First we verify the upper bound (4) in Proposition 1. Since f is
symmetric, the value of f at any point x = (x1, . . . ,xn) ∈ {0,1}n is uniquely determined by the
Hamming weight x1 + · · ·+ xn. In other words, for any symmetric function f : {0,1}n→R there
exists a function ϕ : {0, . . . ,n} →R such that

f (x1, . . . ,xn) = ϕ(x1 + · · ·+ xn) for all x ∈ {0,1}n. (12)

Conversely, for any function ϕ : {0, . . . ,n} → R, the function f : {0,1}n → R defined by (12) is
symmetric. This observation allows us to use symmetry to greatly simplify the computations
of the approximation error and sensitivity.

Lemma 1 (Approximation error for symmetric functions). For any symmetric f : {0,1}n→R we
have

inf
deg(g)≤d

∥f − g∥∞ = inf
deg(g)≤d

g is symmetric

∥f − g∥∞ = inf
deg(h)≤d

max
k∈{0,...,n}

|ϕ(k)− h(k)|,

where ϕ : R→R is a function that satisfies (12).

Proof. To check the first equality, recall that by definition, the left hand-side term is less or
equal than the right hand-side term. For the reverse direction, for any g, we can obtain a
symmetric function with smaller error

g̃(x) :=
1
n!

∑
σ∈Sn

g(xσ (1), . . . ,xσ (n)),

where Sn is the symmetry group of [n]. Since

∥f (x)− g̃(x)∥∞ ≤
1
n!

∑
σ∈Sn

∥f (x)− g(σ (x))∥∞ = ∥f (x)− g(x)∥∞,

where the last equality follows from the fact that f is symmetric and f (x) = f (xσ (1), . . . ,xσ (n)).
For the right hand-side equality, we again notice that any symmetric polynomial g on the

hypercube {0,1}n of degree at most d can be written as h(x1 + · · ·+ xn), where h is a polynomial
on the real line of degree at most d. □

Lemma 2 (Sensitivity of symmetric functions). For any symmetric f : {0,1}n→R we have
n
2

max
k∈[n]
|ϕ(k)−ϕ(k − 1)| ≤ s(f ) ≤ nmax

k∈[n]
|ϕ(k)−ϕ(k − 1)|,

where ϕ : R→R is a function that satisfies (12).
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Proof. The right hand-side inequality follows from the definition of s(f ). For the left hand-side
inequality, let m be the number that attains the maximum jump, i.e.,

|ϕ(m)−ϕ(m− 1)| = max
k∈[n]
|ϕ(k)−ϕ(k − 1)|.

Pick a vector x ∈ {0,1}n with |x| =m. We have

s(f )(x) =
n∑
i=1

|f (x)− f (xi)| ≥mmax
k∈[n]
|ϕ(k)−ϕ(k − 1)|.

Similarly, we obtain that

s(f )(xj ) ≥ (n−m+ 1)max
k∈[n]
|ϕ(k)−ϕ(k − 1)|,

where j is a coordinate at which xj = 1. Thus

s(f ) ≥max(s(f )(x), s(f )(xj )) ≥ n
2

max
k∈[n]
|ϕ(k)−ϕ(k − 1)|.

□

Lemma 3. For any real numbers a0, . . . , an, we have

inf
deg(h)≤d

max
k∈{0,...,n}

|ak − h(k)| ≤ Cn
d

max
k∈[n]
|ak − ak−1|

Proof. For any v : [a,b]→R, let

w(v, t) = sup
x,y∈[a,b],|x−y|≤t

|v(x)− v(y)|,

be the modulus of continuity of v. It is straightforward to verify that t 7→ w(v, t) is non-
decreasing, and t 7→ w(v, t) is sub-additive, i.e., w(v, t1 + t2) ≤ w(v, t1) + w(v, t2). Therefore,
it follows that

w(v, ta) ≤ (t + 1)w(v,a) ∀t > 1,∀a > 0. (13)

Jackson’s theorem for algebraic polynomials [Jac12] states that ∀v ∈ C([a,b]),

inf
deg(h)≤d

max
x∈[a,b]

|v(x)− h(x)| ≤ Cw(v,
b − a
2d

).

Take [a,b] = [0,n]. Set v(t) to be constant ak on each interval [k− 1
3 , k+ 1

3 ] (if k = 0 or n, then the
interval would be [0, 1

3 ] and [n− 1
3 ,n] respectively), and interpolate by a linear function on the

remaining parts the domain so that v(t) is continous. Then, clearly

w(v,
1
3

) = max
k∈[n]
|ak − ak−1|.

Thus, using (13) and the fact that d ≤ n, we have

w(v,
n

2d
) ≤

(3n
2d

+ 1
)
w(v,

1
3

) ≤ 3n
d

max
k∈[n]
|ak − ak−1|.

Then the lemma follows from

inf
deg(h)≤d

max
k∈{0,...,n}

|ak − h(k)| ≤ inf
deg(h)≤d

max
x∈[0,n]

|v(x)− h(x)| ≤ Cn
d

max
k∈[n]
|ak − ak−1|.

□
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Now the upper bound in Proposition 1 can be proved as follows: we have

End = inf
deg(g)≤d

∥f − g∥∞

= inf
deg(h)≤d

max
k∈{0,...,n}

|ϕ(k)− h(k)| (by Lemma 1)

≤ Cn
d

max
k∈[n]
|ϕ(k)−ϕ(k − 1)| (by Lemma 3)

≤ 2C
d
s(f ) (by Lemma 2).

The proof of the lower bound in Proposition 1 is based on a general lower bound of the
Kolmogorov width of a spaces C(K). Such a result was proved by G. G. Lorenz in [Lor60,
Theorem 3] by using a “hat-packing” argument similar to the one in the proof of Theorem 1.
A simplified version of Lorenz’s result can be stated as follows:

Theorem 12 (Lorenz’s bound). Consider a metric space (K,d) that consists of k+1 points. Suppose
that all pairwise distances between these points are bounded below by a > 0. LetH be a k-dimensional
linear space of real-valued functions onK . Then there exists a functionϕ : K →R that is 1-Lipschits,
i.e. satisfying |ϕ(x)−ϕ(y)| ≤ d(x,y) for all x,y ∈ K , which satisfies

∥ϕ − h∥∞ ≥
a
4

for all h ∈H.

To prove the lower bound in Proposition 1, we apply Lorenz’s Theorem 12 for the metric
space K = {0, . . . ,n} equipped with the usual distance, and for the space H of (restrictions of)
univariate polynomials on K whose degree is bounded by d. Then k := dim(H) = d + 1. Placing
the points at equal distances, we can find k + 1 points in K whose all pairwise distances are
at least a = ⌊n/(k + 1)⌋ = ⌊n/(d + 2)⌋. Therefore Lorenz’s Theorem 12 yields the existence of a
1-Lipschitz function ϕ on K that satisfies

inf
deg(h)≤d

max
k∈K
|ϕ(k)− h(k)| ≥ a

4
≥ n

8d
.

Recalling Lemma 1 and the representation of symmetric functions in (12), we conclude that
there exists a symmetric function f : {0,1}n→R such that

End (f ) = inf
deg(g)≤d

∥f − g∥∞ ≥
n

8d
.

On the other hand, Lemma 2 and the fact that ϕ is 1-Lipschitz imply

s(f ) ≤ nmax
k∈[n]
|ϕ(k)−ϕ(k − 1)| ≤ n.

Combining these two bounds concludes the proof of the lower bound in Proposition 1.

2.2. Proof of Theorem 1. The main idea of the proof is to construct a class of low sensitivity
functions that is complex enough, so that some of them can not be approximated efficiently.

We construct such class of functions by considering the maximal number of disjoint smooth
hamming balls (the hat functions defined in the latter sentence) that we can pack into the cube.
More specifically, for x ∈ {0,1}n, let hx be a hat function centered at the point x with radius m,
which is defined by assigning m−k

m to each point with hamming distance k to the center if k < m,
and zero otherwise. Let K be a maximal packing with distance 2m on the hypercube {0,1}n, i.e.,
a subset of {0,1}n with maximal number of elements such that the hamming distance between
any two point in the subset is strictly greater than 2m. Consider the class of functions

F :=

∑
x∈K

εxhx | εx ∈ {1,−1},∀x ∈ K

 .
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The cardinality of F is 2P (K,2m), where P (K,2m) denotes the packing number of K with distance
2m. Notice that

s(f ) =
n
m

for all f ∈ F.

Next we show that some of elements in F cannot be approximated by low degree polynomials.
Fix d ∈ {1, . . . ,n}. The polynomials of degree at most d form linear space

Ld B {g : deg(g) ≤ d} with dim(Ld) =
(
n
≤ d

)
CN,

where we used the notation
( n
≤k

)
:=

∑k
j=0

(n
j

)
.

For each x ∈ {0,1}n, consider the central hyperplane

Hx B {g ∈ Ld : g(x) = 0}.
There are 2n such hyperplanes which partition the space Ld into regions (here we think every
function on the cube as a vector in R

2n , and Ld \ (∪xhx) is a union of connected components,
which are called regions here). Notice that each region is the collection of polynomials g ∈ Ld
that have the same sign pattern sign(g), i.e., sign(g1) = sign(g2) if and only if g1, g2 are in the
same connected component. Thus, the number of all possible sign patterns sign(g) equals the
number of regions. On the other hand, for f ∈ F, in order to have infg∈Ld ∥f − g∥∞ < 1 = c2s(f ),
one must have sign(g) = sign(f ) on K . Thus, the number of f ∈ F that satisfy this inequality is
less or equal than the number of all possible sign patterns.

Schlaffli’s formula in the hyperplane arrangement literature [BV19, Lemma 2.2] states that
the number of sign patterns S generated by polynomials of degree at most d is at most 2

( 2n−1
≤N−1

)
which, in turn, is at most (

2n

≤N

)
whenever d ≤ n/2 because

(2n
N

)
= 2n

N

(2n−1
N−1

)
, and 2n

N = 2n

(2n
≤d)
≥ 2.

Thus if infg∈Ld ∥f − g∥∞ < c2s(f ) holds for all f ∈ F then we must have

2P (K,2m) ≤
(

2n

≤
( n
≤d

)). (14)

Let us show that this inequality is not possible in the regime d = c1n, where c1 < 1/2 is fixed,
and n is large. Indeed, consider binary entropy function E(p) = p log2(1/p)+(1−p) log2(1/(1−p)).
This is a concave function on [0,1], symmetric with respect to p = 1/2, and such that E(0) =
E(1) = 0, and E(1/2) = 1. Let m = c2n, where c2 ∈ (0,1/4) is so small that E(2c2) +E(c1)− 1 < 0.
Pick any n > 1

1−E(c1) . By [FlGr, Lemma 16.19] we have
( n
≤k

)
≤ 2nE(k/n), whenever k/n ∈ (0,1/2].

Thus (
2n

≤
( n
≤d

)) ≤ 2
2nE

(
( n
≤c1n)

2n

)
≤ 22nE(2n(E(c1)−1)) (15)

where in the second inequality we used [FlGr, Lemma 16.19], the fact that 2n(E(c1)−1) ∈ (0,1/2),
and E(t) is nondecreasing on (0,1/2].

Replacing volume by cardinality in [Ver18, Proposition 4.2.12] we have

2n/
(
n
≤ 2m

)
≤ P (K,2m), (16)

which is also addressed in [Ver18, Exercise 4.1.16]. Therefore validity of the inequality (14)
implies

1 ≤
(
n
≤ 2m

)
E(2n(E(c1)−1)) ≤ 2nE(2c2)E(2n(E(c1)−1)) ≤ 2 · 2n(E(2c2)+E(c1)−1)n(1−E(c1)),
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where in the last inequality we used the simple fact that E(t) ≤ 2t log2(1/t) for all t ∈ (0,1/2].
On the other hand the inequality 1 ≤ 2 · 2n(E(2c2)+E(c1)−1)n(1−E(c1)) fails for n sufficiently large
(say all n ≥ n0(c1)) due to the assumption E(2c2) + E(c1) − 1 < 0. However, notice that in the
beginning of the proof we could assume without loss of generality that n ≥ n0(c1) because for
small finite number of n’s with 1 ≤ n ≤ n0(c1) we can just take any function f of degree exactly
n and in this case we trivially have infdeg(g)≤c1n ∥f − g∥∞ ≥ c2(n)s(f ) holds for some c2(n) > 0.
This finishes the proof of the theorem.

2.3. Proof of Corollary 2. The example f : {0,1}n→ [−1,1] constructed in the proof of Theo-
rem 1 for sufficienlty large n has the property s(f ) = 1/c2, and Enc1n(f ) ≥ 1. Clearly this implies
˜deg(f ) ≥ c1n, and hence s(f ) ≥ h( ˜deg(f )) is not possible as n→∞.

2.4. Proof of equiavlence (1) and (2). First let us show the implication (1) implies (2). As-
sume s(f ) ≥ c0(deg(f ))c holds with some universal constants c0, c1 > 0. We claim that End (f ) ≤

1
c0dc

s(f ) holds for all Boolean f . Indeed, if deg(f ) = 0 then the claim is trivial. Assume

deg(f ) ≥ d, then 1
c0dc

s(f ) ≥ 1. Since End (f ) ≤ 1 the claim follows.
Next let us show the implication (2) implies (1). Assume End (f ) ≤ c1

dc2 s(f ) holds with some
universal constants c1, c2 > 0. Choose d = d̃eg(f )− 1. Then we obtain

1
3
≤ c1

(d̃eg(f )− 1)c2
s(f ). (17)

Since deg(f ) ≤ cd̃eg(f )8, see [NS93], we obtain (1). In this argument without loss of generality
we assume d̃eg(f ) > 100 this assumption avoids the issue in (17) when d̃eg(f ) = 1.

2.5. Proof of Corollary 3. Since s(f )(x) ≥ |∆f |(x) it follows that the inequality (6) in Theorem 1
holds true if we replace s(f ) by ∥∆f ∥∞. By the duality argument presented in [EI23, Theorem 1]
(in our case we use Laplacian instead of the discrete gradient), the estimate Enc1n(f ) ≥ c2∥∆f ∥∞
implies

sup
f (x)=

∑
|S |>c1n f̂ (S)WS (x)

∥f ∥1
∥∆f ∥1

≥ C > 0,

for some absolute constant C depending on c1.

2.6. Proof of Theorem4. The sign pattern argument presented in the proof of Theorem 1 works
verbatim for any subspace of the same dimension

( n
≤c1n

)
where n ≥ n0(c1).

2.7. Proof of Theorem 5. Without loss of generality, we can assume that s(f ) = 1. Every such
function is approximately harmonic: its value at any point x is within 1/n from the arithmetic
mean of the values at the neighbors of x. This follows from

|f (x)− 1
n

∑
i∈[n]

f (xi)| ≤ 1
n
|
∑
i∈[n]

f (x)− f (xi)| ≤ 1
n
s(f ). (18)

The cube consists of even points and odd points (according to the number of ones). Define E
as the set of all odd-harmonic functions – those whose value at every odd point is the arithmetic
mean of its neighbors (which are all even). The dimension of E is 2n−1 since it is defined by
2n−1 linear constrains – one per every odd point.

Pick any function f with s(f ) ≤ 1 and choose g ∈ E that coincides with f at all even points.
Since g ∈ E, the value of g at each odd point x is the arithmetic mean of the values of g at the
neighbors of x. By the fact that f is approximately harmonic, this value is within 1/n from f .

9



2.8. Proof of Theorem6. The first inequality in (8) is trivial since the convolution Eyf (y)H(y⊕
x) is a polynomial of degree at most d. We verify the second inequality

max
x∈{0,1}n

|f (x)−Eyf (y)H(y ⊕ x)| ≤ 3
s(f )
n

EX |h(X)|,

where y ∼Unif({0,1}n), andX ∼ Bin(n,1/2). Let x∗ ∈ {0,1}n be such that maxx |f (x)−Eyf (y)H(y⊕
x)| = |f (x∗)−Eyf (y)H(y ⊕ x∗)|. Set F(x) = f (x⊕ x∗). Notice that s(F) = s(f ), and

max
x
|f (x)−Eyf (y)H(y ⊕ x)| = |F(0, . . . ,0)−EyF(y ⊕ x∗)H(y ⊕ x∗)| =

|F(0, . . . ,0)−EyF(y)H(y)| ≤ E|F(0, . . . ,0)−F(y)||H(y)| =

1
2n

n∑
k=0

|h(k)|
∑
|y|=k
|F(0, . . . ,0)−F(y)|.

To complete the proof of the theorem it suffices to show

Lemma 4. For each k = 1, . . . ,n we have∑
|y|=k
|F(0, . . . ,0)−F(y)| ≤ 3s(F)

(
n− 1
k − 1

)
.

Proof. Without loss of generality assume s(F) = 1.
Consider the case k ≤ n

2 . We have∑
|y|=k
|F(0, . . . ,0)−F(y)| ≤ 1

k!

∑
|y|=k

∑
paths(a0−a1−···−ak)

|F(aj )−F(aj+1)|,

where inner sum runs over all monotone paths over vertices (0, . . . ,0) = a0, .., ak = y joining the
points (0, . . . ,0) and y. Here ∥aj+1 − aj∥ℓn1 = 1 and aj+1 ≻ aj i.e., (aj+1)k ≥ (aj )k for all k = 1, . . . ,n.
We claim that

1
k!

∑
|y|=k

∑
paths(a0−a1−···−ak)

|F(aj )−F(aj+1)| =
∑
|x|≤k−1

p|x| s(F)(x), (19)

where

pℓ :=
ℓ!(n− ℓ)!

k!(n− k)!(n+ 1)
− (−1)k+ℓ

n+ 1
, ℓ = 0, . . . , k.

Indeed, a direct calculation shows

pℓ + pℓ+1 =
ℓ!(n− ℓ − 1)!
k!(n− k)!

=
ℓ!(k − ℓ − 1)!

k!

(
n− ℓ − 1
k − ℓ − 1

)
for all ℓ = 0, . . . , k − 1, and pk = 0. For each y ∈ {0,1}n, |y| ≤ k − 1, the term |F(y)− F(yi)| appears
pℓ + pℓ+1 times in the right hand side of (19), where |y| = ℓ and |yi | = ℓ + 1. Let us count
the total number of paths passing through the edge [y,yi] in the left hand side of (19). We
enter the vertex y in ℓ! ways, and exit the vertex yi in (k − ℓ − 1)!

(n−ℓ−1
k−ℓ−1

)
ways, and this gives

ℓ!(k − ℓ − 1)!
(n−ℓ−1
k−ℓ−1

)
total number of paths.

Next we show
k∑
ℓ=0

|pℓ |
(
n
ℓ

)
≤ 2

(
n− 1
k − 1

)
.

The inequality simplifies to
k∑
ℓ=0

∣∣∣∣∣∣1− (−1)k+ℓ
(n
ℓ

)(n
k

) ∣∣∣∣∣∣ ≤ 2k(n+ 1)
n

.

The inequality follows from the fact that
(n
ℓ

)
≤

(n
k

)
for all ℓ = 0, . . . , k and all k ≤ n/2.
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Next, let us consider the case k ≥ n/2. The main result in [Wag97] says that |F(0, . . . ,0) −
F(1, . . . ,1)| ≤ s(F). Therefore, since

∑
|y|=k 1 =

(n
k

)
≤ 2

(n−1
k−1

)
it suffices to show∑

|y|=k
|F(1, . . . ,1)−F(y)| ≤

(
n− 1
k − 1

)
.

On the other hand for F̃(x) = F(x⊕ (1, . . . ,1)) we have s(F) = s(F̃), and∑
|y|=k
|F(1, . . . ,1)−F(y)| =

∑
|w|=n−k

|F̃(0, . . . ,0)− F̃(w)| ≤
(
n− 1

n− k − 1

)
≤

(
n− 1
k − 1

)
.

□

2.9. Proof of Corollary 7. We need the following lemma which follows from [DIM24, Theo-
rem 2.1 equation (2.7)].

Lemma 5. Let N be an odd integer, and let γ(t) denote the moment curve in R
N on the interval

[a,b], i.e., γ(t) = (t, . . . , tN ), t ∈ [a,b]. Then
∑(N+3)/2
k=1 ωkγ(tk) is an interior point of the convex hull

of the moment curve, where a = t1 < · · · < t(N+3)/2 = b and
∑(N+3)/2
k=1 ωk = 1,ωk ∈ (0,1).

Corollary 13. If a probaility measure µ on [a,b] is supported on finitely many but at least (N +3)/2
points, and the support includes the boundary points {a,b}, then

∫
γ(t)dµ(t) is an interior point of

the convex hull of the moment curve.

Proof. Notice that the integral is a convex combination of finitely many but more than (N+3)/2
points. Hence we can rewrite the convex combination as a convex combination of (N + 3)/2
points, including γ(a) and γ(b), and a convex combination of the reminder. By the above
Lemma 5, the first convex combination (when normilized, i.e., divided by the sum of its
weights) is an interior point of the convex hull. Since a convex combination of an interior
point and some other points in a convex set is again an interior point of the convex set, the
value of the integral is an interior point of the convex hull of the moment curve. □

Now we turn to the proof of Corollary 7. Notice that

inf
deg(h)≤d,E(h(X))=1

EX |h(X)| ≤ inf
deg(Q)≤⌊d/2⌋,EQ2(X)=1

EXQ2(X).

We can obtain the exact value of the right hand-side by the following quadrature argument.
Let p = ⌊d/2⌋. Consider the moment curve γ(t) = (t, . . . , t2p+1) on [0,n], and a random variable
X ∼ Bin(n,1/2). By Corollary 13, Eγ(X) is an interior point of the convex hull of γ([0,n]). By
[DIM24] there exist 0 < t1 < · · · < tp+1 < n such that

Eγ(X) =
p+1∑
k=1

ωkγ(tk),

for some ωk ∈ (0,1) with
∑p+1
k=1ωk = 1. This implies that for any polynomial P (t) of degree at

most 2p+ 1, we have that

EP (X) =
p+1∑
k=1

ωkP (tk).

In particular, choosing P (t) to be tiKn,p+1(t), i ∈ {0, . . . ,p}, where Kn,p+1 is the Kravchuk polyno-
mial of degree p+ 1 with respect to Bin(n,1/2), we obtain

0 = EXiKn,p+1(X) =
p+1∑
k=1

ωkt
i
kKn,p+1(tk), i ∈ {0, . . . ,p}.
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Since the matrix {tik}0≤i≤p,1≤k≤p+1 is a Vandermonde matrix with nonzero determinant, the lin-
ear system above only has the trivial solution, which means that tk are the roots of p+1 degree
Kravchuk polynomial Kn,p+1(t), and t1 = kn,p+1.

Let h be a polynomial of degree at most p with Eh2(X) , 0, then

EXh2(X)
Eh2(X)

=

∑p+1
k=1ωktkh

2(tk)∑p+1
k=1ωkh

2(tk)
≥ t1,

since EXh2(X)
Eh2(X) is a convex combination of t′ks. Thus, we have

inf
deg(h)≤p,Eh2(X),0

EXh2(X)
|Eh2(X)|

≥ t1.

On the other hand, if we take h to be a degree p polynomial that vanishes at tk’s for k =
2, . . . ,p+ 1, but does not vanish at t1, then

EXh2(X)
Eh2(X)

= t1,

which shows that the inequality above is an equality finishing the proof of the corollary.

2.10. Proof of Corollary 8. By Theorem 6, it suffices to show that

inf
deg(h)≤d,Eh(X)=1

EX |h(X)| ≤ n− d, X ∼ Bin(n,1/2).

Consider the following degree d polynomial

h̃(x) :=
n∏

k=n−d+1

(k − x),

and set h(x) = h̃(x)/Eh̃(X). Notice that h ≥ 0 on {0, . . . ,n} and Eh(X) = 1. Since h = 0 on {n− d +
1, . . . ,n} it follows that EX |h(X)| ≤ n− d which completes the proof.

2.11. Proof of Corollary 9. By Corollary 8, for d = (1− δ)n we have

inf
deg(g)≤d

∥f − g∥∞ ≤ 3δs(f )

which gives the first term in minimum of the right hand-side of (10). Bounding kn,p from above
will give the second term. By [ADGP13, Theorem 5.1] (using the upper bound of κn,n(p,N ) in
the reference with p = 1/2; in our case N is n, and n is p := ⌊d/2⌋+ 1), we have that

kn,p ≤
n
2
−
√
n− p+ 1

2
hp,1, (20)

where hp,1 is the largest root of the Hermite polynomial. By [S75, equation (6.32.5)] we have

hn,p = (2p+ 1)
1
2 − 6−

1
2 (2p+ 1)−

1
6 (i1 + εn),

where i1 is the lowest zero of the Airy function and it satisfies 6−
1
2 i1 = 1.85575 . . ., and εn→ 0

as n→∞. Combining this result and inequality (20), we obtain that

kn,p ≤
n
2
−
√

(n− p+ 1)(2p+ 1)
2

+ cn

√
n− p+ 1

2
(2p+ 1)−1/6,

where cn ≥ 0 and cn→ 1.85575 . . .. We have

n
2
−
√

(n− p+ 1)(2p+ 1)
2

=
n
2
−
√

(n− ⌊d/2⌋)(2⌊d/2⌋+ 3)
2

≤ n
2
−
√

(n− d
2

)
d
2

=
n
2

(1−
√

1− δ2) ≤ n
2
δ2,
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where the first inequaltiy follows from n − ⌊d/2⌋ ≥ n − d/2 and 2⌊d/2⌋+ 3 ≥ d, and the second
inequality follows from

√
x ≥ x for all x ∈ [0,1]. For the remainder term, we have that

cn

√
n− p+ 1

2
(2p+ 1)−1/6 = cn

√
n− ⌊d/2⌋

2
(2⌊d/2⌋+ 3)−1/6 ≤

cn√
2

√
n− d

2
+ 1(d + 3)−1/6 =

cn√
2

√
(
1 + δ

2
+

1
n

)n[(1− δ+
3
n

)n]−1/6 ≤ cn
(1− δ)1/6

n1/3.

Combining the two estimates above, we have that

kn,p ≤ [0.5δ2 +
cn

(1− δ)1/6
n−2/3]n.

Thus by the Theorem 7, we have that

inf
deg(g)≤d

∥f − g∥∞ ≤ 3(0.5δ2 +
cn

(1− δ)1/6
n−2/3)s(f ).

Thus we obtain

inf
deg(g)≤d

∥f − g∥∞ ≤ 3min
{
δ,0.5δ2 +

cn
(1− δ)1/6

n−2/3
}
s(f ) ≤ Cmin{δ,max{δ2,n−2/3}}

finishing the proof of the corollary.

2.12. Proof of Theorem 10. Let ⟨·, ·⟩ denote the dot product in R
2n . The vectors in R

2n will be
indexed by the set {0,1}n. For example, given f : {0,1}n→ {−1,1} we will write

⟨f ,WS⟩ =
∑

x∈{0,1}n
f (x)WS(x).

Fix any θ ∈ {0,1}n. We have

f>d(θ) =
1
2n

∑
|S |>d
⟨f ,WS⟩WS(θ) = ⟨f ,vθ⟩ where vθ(x) =

1
2n

∑
|S |>d

WS(θ)WS(x).

Here we think about f as a vector in R
2n with independent Rademacher coefficients, and vθ as

a fixed vector in R
2n . Hoeffding’s inequality gives

∥⟨f ,vθ⟩∥ψ2
≲ ∥vθ∥2 =

1
2n

∑
|S |>d
∥WS∥22


1/2

(by orthogonality of monomials WS(x))

=

√
2−n

(
n
> d

)
(since ∥WS∥22 = 2n for each S).

It follows from definition of ψ2 norm [Ver18, Definition 2.5.6] that

P

|⟨f ,vθ⟩| > C
√

2−n
(
n
> d

)
n

 ≤ 2−2n.

Taking a union bound yields

P

∃θ ∈ {0,1}n : |⟨f ,vθ⟩ > C

√
2−n

(
n
> d

)
n

 ≤ 2n · 2−2n = 2−n.

Thus, with probability at least 1− 2−n, we have

∥f>d∥∞ ≲

√
2−n

(
n
> d

)
n.
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By Hoeffding’s inequality, the quantity on the right hand side is bounded by 1/n10 whenever
d ≥ n/2 +C

√
n logn.

2.13. Proof of Theorem 11. Fix d ∈ {1, . . . ,n}. Polynomials of degree at most d form the linear
space

Ld B {g : deg(g) ≤ d} with dim(Ld) =
(
n
≤ d

)
Cm.

For each x ∈ {0,1}n, consider the central hyperplane

Hx B {g ∈ Ld : g(x) = 0}.
There are p B 2n such hyperplanes, which partition the space Ld into regions. Each region
is formed by polynomials g that have the same sign pattern sign(g). Thus, the number of all
possible sign patterns sign(g) equals the number of regions. On the other hand, in order to
have infg∈Ld ∥f − g∥∞ < 1, one must have sign(g) = f . Thus, the number of Boolean functions
that satisfy this inequality equals the number of sign patterns, which equals the number of
regions.

Schlaffli’s formula [BV19, Lemma2.2] states that for any arrangement of p central hyper-
planes in R

m, the number of regions is bounded by

r(p,m)B 2
(
p − 1
≤m− 1

)
.

If d ≤ n/2 then

m =
(
n
≤ d

)
≤ 2n/2 = p/2.

Thusm−1 < (p−1)/2, hence r(p,m) ≤ 2 ·2p−1/2 = 22n/2. We showed that the number of Boolean
functions that satisfy infg∈L ∥f − g∥∞ < 1 is at most 22n/2.
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