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Abstract. We show that the minimal number of skewed hyperplanes that cover the hypercube
{0,1}n is at least n

2 +1, and there are infinitely many n’s when the hypercube can be covered with
n− log2(n) + 1 skewed hyperplanes. The minimal covering problems are closely related to uncer-
tainty principle on the hypercube, where we also obtain an interpolation formula for multilinear
polynomials on R

n of degree less than ⌊n/m⌋ by showing that its coefficients corresponding to
the largest monomials can be represented as a linear combination of values of the polynomial
over the points {0,1}n whose hamming weights are divisible by m.
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1. Introduction

1.1. Covering the hypercube. How many affine hyperplanes are needed to cover the hyper-
cube {−1,1}n? Notice that two affine hyperplanes x1 = −1 and x1 = 1 cover the hypercube, and
clearly this is the minimal number. However, if one requires that the affine hyperplanes are
skewed, i.e., a1x1 + . . .+ anxn + b = 0 with all a1, . . . , an , 0, then the problem becomes challeng-
ing1.

It follows from Littlewood–Offord inequalities that any skewed hyperplane covers at most
n−1/2 fraction of points in {−1,1}n (up to a universal constant factor), therefore, one needs
at least Ω(n1/2) skewed hyperplanes to cover the hypercube. In [7], this lower bound was
improved to Ω(n0.51), and recently [4] to Ω(n2/3 log(n)−4/3) by the second named author of the
present paper.

The family of n + 1 hyperplanes, x1 + . . . + xn = 2k − n for all k = 0, . . .n, covers the hyper-
cube. In fact, if n is even one can cover with n skewed hyperplanes just by replacing the two
hyperplanes corresponding to k = 0 and k = n in the previous example with one hyperplane
x1 + . . . + xn/2 − xn/2−1 − . . . − xn = 0. Moreover, it follows from [1] that for even n, the upper
bound n on the minimal cover is also a lower bound if one restricts the covering to the family
of “regular” hyperplanes, i.e., the ones ε1x1 + . . .+ εnxn + b = 0 with εj = ±1 for all j = 1, . . . ,n.

Looking at the results for the case of “regular” hyperplane cover in [1], one may suspect
that in analogy to Littlewood–Offord problem the sharp lower bound on the minimal skew
hyperplane cover should be n. Surprisingly, one can cover the hypercube {−1,1}5 with the
following 4 skewed hyperplanes

x1 + x2 + x3 + x4 + 2x5 = 0,

x1 + x2 + x3 − x4 + 2x5 = 0,

x1 + x2 + x3 + x4 − 2x5 = 0,

x1 + x2 + x3 − x4 − 2x5 = 0.

Also the hypercube {−1,1}6 can be covered with 5 skewed hyperplanes (see Section 2.3). In
fact, one can cover the hypercube {−1,1}n with n− log2(n)+1 skewed hyperplanes for infinitely
many n’s.

1In what follows we will omit the word affine and we will be referring to such hyperplanes as skewed
hyperplanes.
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Proposition 1. For any integer m ≥ 1 the hypercube {−1,1}2m+m−1 can be covered with 2m skewed
hyperplanes.

This proposition shows that the skew hyperplane covering problem is genuinely different
from the original “regular” problem solved in [1].

Question 2. What is the minimal number of skewed hyperplane cover of the hypercube {−1,1}n?

We prove the following lower bound.

Theorem 3. The minimal number of skewed hyperplane cover of {−1,1}n is at least n
2 + 1.

There is a close relation between minimal hyperplane covering problem and the uncertainty
principle on the hypercube. Let p(x) be a polynomial on R

n, and let supp(p) = {x ∈ Rn : p(x) ,
0}. Under what conditions on supp(p) ∩ {−1,1}n and deg(p) does it follows that p(x) ≡ 0 on
{−1,1}n?

It turns out that the support of a nonzero low degree polynomial cannot be contained in a
skewed hyperplane:

Theorem 4 (Linial–Radhakrishnan [5]). If deg(p) < n
2 and supp(p)∩ {−1,1}n belongs to a skewed

hyperplane then p(x) ≡ 0 on {−1,1}n.

Observe that Theorem 3 follows from Theorem 4. Indeed, let H1, . . . ,Hk+1 be a minimal skew
hyperplane cover of {−1,1}n. If H ′j s are given via equations ℓj(x) = a1jx1 + . . .+anjxn +bj = 0, for

all j = 1, . . . , k + 1, then it follows that p(x)ℓk+1(x) ≡ 0 on {−1,1}n,where p(x) =
∏k

j=1 ℓj(x) is not
identically zero polynomial on {−1,1}n of degree at most k. Hence supp(p)∩{−1,1}n belongs to
Hk+1 and Theorem 4 implies that k ≥ n/2.

After the current paper was completed, independently and concurrently the paper [6] ap-
peared on arXiv where Theorem 3 was derived from Theorem 4 proved in [5] (see Lemma 2
in [5]). The proof of Theorem 4 in [5] in turn is based on either Combinatorial Nullstellensatz
or the spectral properties of the Johnson graph (the authors [5] attribute the nonsingularity
of the Johnson graph to [3]). Our proof of Theorem 4, given in Section 2.1, is simple and
self-contained.

1.2. An interpolation formula. In [1] sharp lower bound n on the minimal number of “regu-
lar” hyperplane cover of the n dimensional hypercube (for even n) was based on the following
technical observation: if a multilinear polynomial p(x) vanishes on all those points of {−1,1}n
which have even number of 1’s in its coordinates, and deg(p) < n/2 then p is identically zero
(see Lemma 2.1 in [1]). This observation suggests that perhaps the coefficients of the multilin-
ear polynomials of small degree can be reconstructed by its values at sparse points of {−1,1}n.
The goal of this section is to obtain such an interpolation formula.

Recall that any function f : {−1,1}n 7→ X, where X is a normed space, has Fourier–Walsh
representation

f (x) =
∑

S⊂{1,...,n}
f̂ (S)xS ,

for some f̂ (S) ∈ X, where x = (x1, . . . ,xn), xS =
∏

j∈S xj and x∅ = 1. We say that f has degree

deg(f ) if f̂ (S) = 0 for all S ⊂ {1, . . . ,n}with |S | > deg(f ), and there exists a subset S of cardinality
deg(f ) such that f̂ (S) , 0.

Definition 5. For any integer m > 1 the symbol W (m) denotes the subset of {−1,1}n consisting of
all points x = (x1, . . . ,xn) ∈ {−1,1}n such that #{j : xj = −1} is divisible by m.

For any integer m > 1 let k(m) be the smallest positive integer greater than one that divides
m. In this section we obtain the following interpolation formula
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Theorem 6. Let f : {−1,1}n 7→ X and let m > 1 be an integer such that

deg(f ) + 1 ≤ n
m

+
1

k(m)
. (1)

Then for any f̂ (S) with |S | = d, there exists a probability measure supported on W (m) such that

f̂ (S) =
∫
W (m)

h(x)f (x)dµ(x)

for some h : W (m) 7→ { − 1,1}. Both the measure dµ and h depend only on S,m,deg(f ),n.

The next corollary follows from the theorem

Corollary 7. If f : {−1,1}n 7→ X vanishes on a set W (m) for some integer m satisfying (1) then
f ≡ 0.

Remark 8. Notice that condition (1) always holds if 1 < m ≤ n+1
deg(f )+1 . If m is even then (1) is the

same as deg(f ) ≤ n
m −

1
2 . In particular, if m = 2 Corollary 7 recovers a result of Lemma 2.1 in [1].

Remark 9. In the proof of Theorem 6 both the measure dµ and h(x) will be constructed explicitly.

Notice that since f̂ (S) = Ef (x)xS then |f̂ (S)| ≤ maxx∈{−1,1}n |f (x)|. However, if f has low
degree then maxx∈{−1,1}n |f (x)| can be replaced by a maximum over sparse family of points of
{−1,1}n provided that |S | = deg(f ). Indeed, Theorem 6 gives the following

Corollary 10. If the degree of f : {−1,1}n 7→ X, where X is a normed space, satisfies (1), then

∥f̂ (S)∥ ≤ max
x∈W (m)

∥f (x)∥

for all S ⊂ {, . . . ,n} with |S | = deg(f ).

2. Proofs

2.1. The proof of Theorem 4. Denote [n] := {1, . . . ,n}. Every polynomial p(x) of degree d, when
restricted to {−1,1}n, can be written as f (x) =

∑
|S |≤d bSx

S for some bS ∈ R. The assumptions in
Theorem 4 imply that

(a1x1 + . . .+ anxn + b)
∑
|S |≤d

bSx
S = 0 on {−1,1}n.

After expanding this expression we see that the coefficients in front of all monomials xT must
vanish, and in particular this must happen for any degree d + 1 monomial, i.e., xS with |S | =
d + 1. This means that ∑

j∈W
ajbW \j = 0 (2)

for all W ⊂ [n] with |W | = d + 1. We can view (2) as a system of linear equations Ab = 0 in
b = (bS : S ⊂ [n], |S | = d). It suffices to prove

Lemma 11. We have Ker(A) = 0 as long as long as n ≥ 2d + 1.

Proof. We will prove the lemma by induction on d. For the base case d = 1 and n ≥ 3 let us
write the equation (2) corresponding to the sets {2,3}, {1,3} and {1,2}:

a3b2 + a2b3 = 0

a1b3 + a3b1 = 0

a1b2 + a2b1 = 0.

In matrix form, this becomes  0 a3 a2
a3 0 a1
a2 a1 0


b1
b2
b3

 = 0.
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The determinant of this 3× 3 matrix equals 2a1a2a3, which is nonzero by assumption.
Now assume that the lemma holds for d − 1, and let us prove it for d. Let n ≥ 2d + 1. Then

n− 2 ≥ 2(d − 1) + 1. Thus, by the induction hypothesis, the following system is well posed:

ai1 b̄i2,i3,...,id + ai2 b̄i1,i3,...,id + · · ·+ aid b̄i1,i2,...,id−1
= 0 ∀{i1, . . . , id} ⊂ [n− 2]. (3)

Assume that the system of equations (2) holds for some b. To complete the induction step, it
suffices to show that b = 0.

Fix j B id+1 ∈ {n−1,n}, and let us look only at those equations in (2) where {i1, . . . , id} ⊂ [n−2].
Moving the last term into the right hand side, we can rewrite those equations as

ai1bi2,i3,...,id ,j + ai2bi1,i3,...,id ,j + · · ·+ aidbi1,i2,...,id−1,j = −ajbi1,i2,...,id ∀{i1, . . . , id} ⊂ [n− 2].

Compare this system with the one in (3). The variables are called differently and the right
hand side is not zero, but the matrix is the same and thus the system is well posed. So if we
express it as

Ab̄ = −aj b̃,

the matrix A is invertible and thus

b̄ = −ajA+b̃,

where A+ denotes the pseudoinverse of A.
Next, let j ∈ {n− 1,n} vary while keeping {i1, . . . , id} fixed. Note that neither A nor b̃ depend

on j. Hence A+b̃ does not depend on j either. Thus b̄ must be proportional to aj . Thus all
coordinates of b̄ must be proportional to aj , so in particular

bi1,i2,...,id−1,j = aj · ci1,i2,...,id ∀j ∈ {n− 1,n},

where ci1,i2,...,id is determined by {i1, i2, . . . , id} and may not depend on j. Dividing the two equa-
tions by each other, we arrive at the following conclusion.

For any distinct indices i1, i2, . . . , id−1 ∈ [n− 2] and distinct indices j, j ′ ∈ {n− 1,n}, either

bi1,i2,...,id−1,j = bi1,i2,...,id−1,j ′ = 0

or
bi1,i2,...,id−1,j

bi1,i2,...,id−1,j ′
=

aj
aj ′

.

By relabeling the indices, the same conclusion holds for any distinct indices i1, i2, . . . , id−1, j, j
′ ∈

[n].
Since all ai , 0, there exists c ∈R such that

b1,...,d = ca1 · · ·ad .

Fix any {i1, . . . , id} ⊂ [n]. By changing one index at a time using the fact above (first 1→ i1, next
2→ i2, etc.) the corresponding factors in this product change (first a1→ ai1 , next a2→ ai2 , etc.)
After d swaps, we conclude that

bi1,...,id = cai1 · · ·aid ∀{i1, . . . , id} ⊂ [n].

Plugging this into (2), we get

(d + 1) · cai1 · · ·aid+1
= 0.

Since all ai , 0, it follows that c = 0, so all bi1,...,id = 0. The induction step is proved, and the
theorem is established.

□
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2.2. The proof of Theorem 6. Let d = deg(f ). Let f̂ (S) be such that S = {m,2m,....dm}. The
general case of S with |S | = d will be discussed at the end of the proof. We remind that for any
u = (u1, . . . ,un) ∈ {−1,1}n we have

f (u) =
∑
|S |≤d

f̂ (S)uS , uS =
∏
j∈S

uj .

Consider

gy(x) :=f (y1x1, y1x2, . . . , y1xm, y2xm+1, y2xm+2, . . . , y2x2m, . . . ,

ydx(d−1)m+1, ydx(d−1)m+2, . . . , ydxmd ,

xmd+1,xmd+2, . . . ,xmd+m− m
k(m)

, . . . ,xn),

where (y1, . . . , yd) ∈ {−1,1}d , and (x1, . . . ,xn) ∈ {−1,1}n. In other words, we take a long vector

x = (x1, . . . ,xd , . . . ,x2d , . . . ,xmd , . . . ,xmd+m− m
k(m)

, . . . ,xn)

and we split it into disjoint groups G1,G2, . . . ,Gd ,Gextra,Grest, where

G1 = (x1, . . . ,xm),

G2 = (xm+1, . . . ,x2m),

. . .

Gd = (x(d−1)m+1, . . . ,xmd),

Gextra = (xmd+1, . . . ,xmd+m− m
k(m)

),

Grest = (xmd+m− m
k(m) +1, . . . ,xn).

The group Grest can be empty (for example if we have equality in (1)). Each group Gj is multi-
plied by the variable yj (termwise) for each j = 1, . . . ,d. The variables in groups Gextra and Grest
are unchanged. We will see that the group Grest will not be important to us, but the group
Gextra will be helpful to us, it will play some kind of a “counter” role in the proof.

It will be helpful to think about gy(x) as follows: if we define

yjGj = (yjx(j−1)m+1, yjx(j−1)m+2, . . . , yjxjm),

then

gy(x) = f (y1G1, . . . , ydGd ,Gextra,Grest).

Next we will construct a distribution D on {−1,1}n such that

f̂ (S) = Ex∼D Ey∼unif({−1,1}d ) gy(x)y1 . . . yd ,

moreover, we will have

(y1G1, . . . , ydGd ,Gextra,Grest) ∈W (m)

for all y ∈ {−1,1}d , and any x from the support of the distribution D. This will finish the proof
of the theorem.

Let g1 be indexes of the variables in G1, i.e., g1 = {1, . . . ,d}. Similarly, gj denotes the indexes
of the variables in Gj for all j = 1, . . . ,d. It is not difficult to see that for any x we have

Ey∼unif({−1,1}d ) gy(x)y1 . . . yd =
∑

|T |=d, |T∩gj |=1, j=1,...,d

f̂ (T )xT . (4)

Indeed, let us pick a monomial in front of f̂ (T ). If |T | < d then after multiplying the monomial
by the factor y1 . . . , yd and taking the expectation in y we get zero. If |T | = d, and T does not
have the property that |T ∩ gj | = 1 for all j = 1, . . . ,d, then the corresponding monomial will
be missing at least one of the variables among y1 . . . , yd , so after multiplying by y1 . . . , yd and
taking the expectation in y we get zero.
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Next, we will describe the distribution D for the random variable x = (G1, . . . ,Gd ,Gextra,Grest).
Let ℓ = m

k(m) , and let α = 1
2(m−2

ℓ−1) . Set P(G1 = (1,1, . . . ,1)) = 1 −
(m−1

ℓ

)
α, and G1 takes values

(x1, . . . ,xm−1,1) having exactly ℓ minus ones in it with equal probabilities α. Let G2, . . . ,Gd be
independent copies of G1. Set Grest = (1,1, . . . ,1).

To define the values for Gextra let us count the number of −1’s in the list (y1G1, . . . , ydGd). If
y1 = 1 then G1 has exactly ℓ number of −1’s. If y1 = −1 then G1 has exactly m − ℓ number of
−1’s. So the list (y1G1, . . . , ydGd) has n1ℓ+n2(m−ℓ) number of −1’s for some nonnegative integers
n1,n2 ≥ 0. Our goal is to assign c number of −1’s in the group Gextra so that n1ℓ+n2(m−ℓ)+ c =
0 mod(m).

Since the size of the group Grest is m − m
k(m) we can choose any integer c satisfying 0 ≤ c ≤

m
(
k(m)−1
k(m)

)
. We have

n1ℓ +n2(m− ℓ) + c = m

(
n1 +n2(k(m)− 1)

k(m)

)
+ c.

If n1 + n2(k(m) − 1) = 0mod(k(m)) then we will set c = 0. Otherwise the choice c = m k(m)−r
k(m)

satisfies n1ℓ + n2(m − ℓ) + c = 0 mod(m), where r is the reminder of n1 + n2(k(m) − 1) after
division by k(m).

Finally, notice that for each j = 1, . . . ,m−1 we have P(xj = 1) = P(xj = −1) = 1
2 . Thus if T , S,

|T | = d and |T ∩ gj | = 1 for all j = 1, . . . ,n then ExT =
∏

j∈T Exj = 0. If S = T , then xj ≡ 1 for any
j ∈ T and hence ExT = 1. Thus taking the expectation E with respect to the distribution D in
(4) finishes the proof for the case S = {m,2m,. . . ,dm}.

In general, if |S | = d we still can split the coordinates of the vector x = (x1, . . . ,xn), into
disjoint groups G1, . . . ,Gd ,Gextra,Grest so that |g1| = . . . = |gd | = m, |gj ∩ S | = 1 for all j = 1, . . . ,d,
and |gextra| = m − m

k(m) . The rest of the proof proceeds as before. This finishes the proof in the
general case. □

2.3. The proof of Proposition 1: how to cover the hypercube efficiently. Consider 2m skewed
hyperplanes

2m−1∑
j=1

xj +
m−1∑
j=0

±2jx2m+j = 0.

Since any odd integer k, −(2m−1) ≤ k ≤ 2m−1 can be written as a sum
∑m−1

j=0 ±2j for some choice
of signs ± it follows that these hyperplanes cover the cube {−1,1}n with n = 2m +m− 1. □

There are other examples that are not produced by the construction above. In particular, for
n = 6 the union of the following 5 skewed hyperplanes

x1 − x2 + 2x3 + x4 + x5 + 2x6 = 0,

x1 − x2 + x3 + x4 + x5 − x6 = 0,

x1 − x2 − x3 + 2x4 − 2x5 + x6 = 0,

x1 + x2 + x3 + x4 + x5 − x6 = 0,

x1 − x2 − 3x3 + x4 + x5 − x6 = 0.

cover the hypercube {−1,1}6.
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