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Abstract
We present a polynomial-time algorithm for online differentially private synthetic data generation. For a data

stream within the hypercube [0, 1]d and an infinite time horizon, we develop an online algorithm that generates a
differentially private synthetic dataset at each time t. This algorithm achieves a near-optimal accuracy bound of
O(t−1/d log(t)) for d ≥ 2 and O(t−1 log4.5(t)) for d = 1 in the 1-Wasserstein distance. This result generalizes
the previous work on the continual release model for counting queries to include Lipschitz queries. Compared
to the offline case, where the entire dataset is available at once [7, 36], our approach requires only an extra
polylog factor in the accuracy bound.

1. INTRODUCTION

Differential privacy (DP) has emerged as a leading standard for safeguarding privacy in scenarios
that involve the analysis of extensive data collections. It aims to protect the information of individual
participants within datasets from disclosure. At its core, an algorithm is differentially private if it can
produce consistently randomized outcomes for nearly identical datasets. This approach to privacy
preservation is gaining traction across various sectors, notably in the implementation of the 2020
US Census [1, 34, 33] and among technology companies [17, 22]. The scope of differential privacy
extends to a wide range of data science applications, including statistical query [48], regression [15,
54], parameter estimation [21], and stochastic gradient descent [52].

Existing research focuses on developing specialized algorithms for specific tasks constrained by
predefined queries. This necessitates a significant level of expertise and often requires the modifica-
tion of existing algorithms. Addressing these challenges, a promising approach is to create a synthetic
dataset that approximates the statistical properties of the original dataset while ensuring differential
privacy [32, 4]. This approach facilitates subsequent analytical tasks on the synthetic dataset without
additional privacy risks.

Despite extensive research in differential privacy, most advancements have focused on scenarios
involving a single collection or release of data. However, in reality, datasets frequently accumulate
over time, arriving in a continuous stream rather than being available all at once. This is common in
various domains, such as tracking COVID-19 statistics or collecting location data from vehicles [44].
In these contexts, generating online synthetic data that adheres to differential privacy standards poses
significant challenges [11, 46].

1.1. Continual release model. One popular model in online differential privacy is the Continual
Release Model, first studied in [23, 14]. In this model, data points arrive in a streaming fashion, and
an online algorithm releases the statistics of the streaming dataset in a differentially private manner.
The initial example explored in [23, 14] was for Boolean data streams. At time t, a Boolean sequence
x1, . . . , xt ∈ {0, 1} is available, and DP algorithms were developed to release the count

∑t
i=1 xi for

each t ≤ T , where T is the time horizon of the streaming data sequence. The scenario when T =∞
is termed the infinite time horizon, where the input data stream is an infinite sequence, and the DP
algorithm outputs an infinite sequence.

In the online setting, repeating offline DP-counting algorithms would require an increasing privacy
budget over time due to the composition property of differential privacy [26], thus not being feasible.
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A seminal contribution of [23, 14] is the Binary Mechanism, which achieves polylog(t) error while
maintaining ε-differential privacy for a finite time horizon T . Additionally, [24] improved the accu-
racy of the Binary Mechanism to O

(
log(T ) + log2(n)

)
when the Boolean data stream is sparse, i.e.,

the number of 1’s, denoted by n, is much smaller than T . The dependence on T in [24] is optimal
and matches the Ω(log T ) lower bound in [23] for online DP-count release.

The Binary Mechanism serves as a foundational element for many online private optimization
problems [31, 43]. Various methods to enhance the Binary Mechanism in different settings have
been studied in [14, 24, 51, 29, 37, 38]. Besides counting tasks, DP algorithms for online data have
also been discussed for mean estimation [30], moment statistics [50, 27], graph statistics [53], online
convex programming [41], decaying sums [9], user stream processing [16], and histograms [13].
Utilizing offline DP algorithms as black boxes, [18] provided a general technique to adapt them to
online DP algorithms with utility guarantees.

1.2. Differentially private synthetic data. Among all DP algorithms, DP synthetic data generation
[2, 32, 5, 42, 4, 6, 60, 28, 47] excels in flexibility because it allows for a wide range of downstream
tasks to be performed without incurring additional privacy budgets. However, the computationally ef-
ficient construction of DP synthetic data with utility guarantees remains challenging. [56] shows that
it is impossible to use poly(d) samples to generate d-dimensional DP synthetic data that approximates
all 2-way marginals in polynomial time.

Most results for private synthetic data are concerned with counting queries, range queries, or k-
dimensional marginals [32, 56, 5, 57, 25, 55, 8], and various metrics have been used to evaluate the
utility of DP synthetic data [6, 61, 3].

A recent line of work [7, 20, 36, 35, 19] provides utility guarantees with respect to the Wasserstein
distance for DP synthetic data. Using the Kantorovich-Rubinstein duality [58], the 1-Wasserstein
distance accuracy bound ensures that all Lipschitz statistics are uniformly preserved. Given that
numerous machine learning algorithms are Lipschitz [59, 45, 10, 49], one can expect similar outcomes
for the original and synthetic data.

1.3. Main results. We consider the problem of generating DP-synthetic data under the continual
release model beyond the Boolean data setting considered in [23, 14]. The data stream comes from
the hypercube [0, 1]d with the ℓ∞-norm, and our goal is to efficiently generate private synthetic data
in an online fashion while maintaining a near-optimal utility bound under the Wasserstein distance.
Our main result is given in the next theorem.

Theorem 1.1 (Online differentially private synthetic data). There exists an ε-differentially private
algorithm such that, for any data stream x1, . . . , xt, · · · ∈ [0, 1]d, at any time t, transforms the first t
points Xt = {x1, . . . , xt} into t points Yt ⊂ [0, 1]d, with the following accuracy bound:

EW1(µXt , µYt) ≲

{
ε−1 log(t) · t−

1
d , d ≥ 2,

(εt)−1 log4.5(t), d = 1,
(1.1)

where W1(µXt , µYt) is the 1-Wasserstein distance between two empirical measures µXt , µYt of Xt

and Yt, respectively.

Our algorithm is computationally efficient. To obtain synthetic datasets Yt at time t, the time
complexity is O(dt+ t log t); see Appendix C for details.

The utility guarantee in Theorem 1.1 is optimal up to a log t factor for d ≥ 2 and polylog(t)
for d = 1. Compared to offline synthetic data tasks, generating online private synthetic data is much
more challenging, especially with an infinite time horizon. For offline private synthetic data on [0, 1]d,
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d ≥ 2, [36] proposed an algorithm with utility bound O(n−1/d), which matches the minimax lower
bound proved in [7].

We prove Theorem 1.1 by analyzing two different algorithms for d ≥ 2 and d = 1, respectively. In
our main Algorithm 1 for d ≥ 2, we develop an online hierarchical partition procedure to divide the
domain [0, 1]d into disjoint sub-regions with decreasing diameters as time increases and then apply
online private counting subroutines to count the number of data points in each subregion. After the
online private counting step, we create synthetic data following the Consistency and Output steps
described in Algorithm 1.

A key ingredient in our work is the development of a special Inhomogeneous Sparse Counting
Algorithm (Algorithm 2) for the online private count of data points in each subregion, which has
different privacy budgets for different time intervals. Such dynamic assignments are motivated by the
selection of optimal privacy budgets based on the dynamic hierarchical partition. We apply the new
counting algorithm with carefully designed privacy parameters and starting times for each subregion
based on the hierarchical structure of the online partition.

The concept of counting sparse data also plays an important role. Intuitively, when inputs x1, . . . , xt
are uniformly distributed in [0, 1]d, the online count of a newly created sub-region corresponds to a
sum of a sparser Boolean data stream as the diameter of the sub-region decreases. In fact, the uni-
formly distributed data represents the worst-case configuration of the true dataset in the minimax
lower bound proof in [7], corresponding to a sparse Boolean data stream for each subregion with a
small diameter. We make use of the sparsity to obtain a near-optimal accuracy bound.

Comparison to previous results. Our work generalizes the framework of DP-counting queries for
Boolean data in the continual release model [23, 14] to online synthetic data generation in a metric
space. One of the subroutines, Inhomogeneous Sparse Counting (Algorithm 2), is a generalization
of the sparse counting mechanism from [24] with inhomogeneous noise according to the online hi-
erarchical partition structure we introduce. The Binary Mechanism in [23, 24] is designed only for
a finite time horizon, and a modified Hybrid Mechanism was developed for the infinite case in [14].
Our Algorithm 1 works for data streams with an infinite time horizon.

In terms of online DP synthetic data generation, [11] studied online DP synthetic data with prefixed
counting queries, and [46] considered online DP-synthetic data for spatial datasets. To the best of our
knowledge, our work is the first to generate online DP-synthetic data with utility guarantees for all
Lipschitz queries.

Finally, we discuss the difference between online DP algorithms and their offline counterparts. [12]
established a separation for the number of offline, online, and adaptive queries subject to differential
privacy. For the continual release model, [40] showed that for certain tasks beyond counting, the
accuracy gap between the continual release (online) model and the batch (offline) model is Ω̃(T 1/3),
which is much better than the Ω(log T ) gap shown in [23] between online and offline counting tasks.

Our Theorem 1.1 shows that for a dataset in [0, 1]d, the accuracy gap between online and offline
DP-synthetic data generation is at most a factor of O(log(t)) for d ≥ 2, and at most O(polylog(t))
for d = 1. The lower bound in [23] also implies an Ω(log(T ))/T accuracy lower bound in our setting
for online DP synthetic data in [0, 1] with time horizon T . However, for d ≥ 2, the argument in [23]
cannot be directly generalized to prove an accuracy lower bound for datasets in [0, 1]d. We conjecture
that when d ≥ 2, the upper bound in Theorem 1.1 is tight in terms of the dependence on t.

Organization of the paper. The rest of the paper is organized as follows. Section 2 introduces
several notations and definitions. Section 3 details the online DP-synthetic data generation algorithm.
In Section 4, we demonstrate that Algorithm 1 is differentially private with the accuracy bound stated
in Theorem 1.1 for d ≥ 2. Appendix A presents a modified version of the sparse counting algorithm
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from [25], along with the corresponding privacy and accuracy analysis in our setting. Proofs of
Lemmas and Theorem 1.1 for d = 1 are provided in Appendix B. The analysis of the time complexity
of Theorem 1.1 is included in Appendix C.

2. PRELIMINARIES

2.1. Differential privacy. We use the following definitions of differential privacy and neighboring
datasets from [26].

Definition 2.1 (Neighboring datasets). Two sets of data X and X ′ are neighbors if X ,X ′ differ by at
most one element.

Definition 2.2 (Differential Privacy). A randomized algorithm A is ε-differentially private if for any
two neighboring data X ,X ′ and any subset S,

P
(
A(X ) ∈ S

)
≤ exp(ε) · P

(
A(X ′) ∈ S

)
.

2.2. Online synthetic data generation. We consider DP algorithms to release synthetic data in an
online fashion when a data stream arrives. In our setting, a dataset is an infinite sequence

X = (x1, . . . , xt, . . . ),

where each xt ∈ [0, 1]d arrives at time t ∈ Z+. Two datasets X ,X ′ are neighbors if they differ in one
coordinate. Define the time-t data stream from X as

Xt = (x1, . . . , xt).

For each time t ∈ Z+, a randomized synthetic data generation algorithm At takes an input Xt and
outputs a synthetic dataset of size t given by

Yt = (y1,t, . . . , yt,t).

Note that elements in Yt do not need to be included in Yt+1.
An online synthetic data generation algorithmM with infinite time horizon takes an infinite se-

quence X and output an infinite sequence of synthetic datasets such that

M(X ) := (A1(X1), . . . ,At(Xt), . . . ) = (Y1, . . . ,Yt, . . . ).

We say M is ε-differentially private if M satisfies Definition 2.2, which guarantees that the entire
sequence of outputs is insensitive to the change of any individual’s contribution.

2.3. Wasserstein distance. Consider two probability measures µ, ν in a metric space (Ω, ρ). The
1-Wasserstein distance for more details) between them is defined as

W1(µ, ν) := inf
γ∈Γ(µ,ν)

∫
Ω×Ω

ρ(x, y)dγ(x, y),

where γ(µ, ν) is the set of all couplings of µ and ν.
To quantify the utility of an online DP-synthetic data algorithm A, we compare the statistical

properties of the synthetic data sets Y1, . . . ,Yt with the true datasets X1, . . . ,Xt for all t ∈ Z+. We
identify each data set with an empirical measure and define

µXt =
1

t

t∑
i=1

δxi , µYt =
1

t

t∑
i=1

δyi,t .

We would like to have the synthetic data stream (Y1, . . . ,Yt) to stay close to the data stream (X1, . . . ,Xt)
under 1-Wasserstein distance for all t ∈ Z+.
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For two probability measures µ and ν on Ω, the Kantorovich-Rubinstein duality (see e.g., [58] for
more details) gives:

W1(µ, ν) = sup
f∈F

(∫
Ω
fdµ−

∫
Ω
fdµ

)
, (2.1)

where F denotes the function class of all 1-Lipschitz functions.

2.4. Integer Laplacian distribution. Since our method involves private counts of data points in
different regions, we will use integer Laplacian noise to ensure they are integers. An integer (or
discrete) Laplacian distribution [39] with parameter σ is a discrete distribution on Z with probability
density function

f(z) =
1− pσ
1 + pσ

exp
(
−|z| /σ

)
, z ∈ Z,

where pσ = exp(−1/σ). A random variable Z ∼ LapZ(σ) is mean-zero and sub-exponential with
variance Var(Z) ≤ 2σ2.

3. ONLINE SYNTHETIC DATA

3.1. Binary partition. We follow the definition of binary hierarchical partition as described in [36].
A binary hierarchical partition of a set Ω of depth r is a family of subsets Ωθ, indexed by θ ∈ {0, 1}≤r,

{0, 1}≤k = {0, 1}0 ⊔ {0, 1}1 ⊔ · · · ⊔ {0, 1}k, k = 0, 1, 2 . . . ,

and such that Ωθ is partitioned into Ωθ0 and Ωθ1 for every θ ∈ {0, 1}≤r−1. By convention, the cube
{0, 1}0 consists of a single element ∅. When θ ∈ {0, 1}j , we refer to j as the level of θ. When
Ω = [0, 1]d equipped with the ℓ∞-norm, a subregion Ωθ with θ ∈ 0, 1j has a volume of 2−j and
diam(Ωθ) ≍ 2−⌊j/d⌋.

Let (Ωθ)θ ∈ 0, 1≤r represent a binary partition of Ω. Given a true data stream (x1, . . . , xt) ∈ Ωt,
the true count n(t)

θ is the number of data points in the region Ωθ at time t, i.e.,

n
(t)
θ :=

∣∣∣{i ∈ [t] : xi ∈ Ωθ

}∣∣∣ .
We can also represent a binary hierarchical partition of Ω in a binary tree of depth r, where the

root is labeled Ω and the j-th level of the tree T encodes the subsets Ωθ for θ at level j. As new data
arrives, we refine the binary partition over time and update the true count n(t)

θ in each subregion.
As we continue refining the partition of Ω, the binary tree T expands in the order of a breadth-first

search, and the online synthetic data we release will depend on a noisy count N (t)
θ of data points in

each region Ωθ at time t.

3.2. Main algorithm. We can now introduce our main algorithm for online differentially private
synthetic data release, described formally in Algorithm 1. It can be summarized in the following
steps:

(1) Refine a binary partition of Ω = [0, 1]d as time t grows. Equivalently, the tree T encoding the
binary partition grows over time in the breath-first search order. We will refine the partition
and create all sub-regions Ωθ for all |θ| = j at time tj = 2j . Note that any sub-region Ωθ

with |θ| = j in Algorithm 1 only exists from level j: before level |θ| it was not created and
after time tj+1 it will be refined.

(2) For each existing region Ωθ at time t, we output a perturbed count N (t)
θ using a new Inho-

mogeneous Sparse Counting Algorithm described in Algorithm 2. For each subregion Ωθ, an
online counting subroutine Aθ starts as soon as Ωθ is created, and it outputs a noisy count
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in every perturbation step. Privacy and accuracy guarantees for Algorithm 2 are given in
Section 3.3.

(3) The noisy counts in the Perturbation step could be negative and inconsistent. We post-process
them to ensure they are nonnegative, and the counts of subregions always add up to the
region’s count. The details of this step are given in Algorithm 3, see Section 3.4.

(4) We turn the online synthetic counts in each region into online synthetic data by choosing the
same amount of data points in each region whose location is independent of the true data.

Algorithm 1 Online synthetic data

Input: Privacy budget ε. Infinite sequence {xi}∞i=1. For each time t, data points (x1, . . . , xt) are
available.
Initialization: Set t = t0 = 1, Ω∅ = Ω, and the depth of partition tree r = 0.

while t ∈ N do
if t ≥ 2r then r ← r + 1.

(Binary Partition) Partition Ωθ into Ωθ0 and Ωθ1 for every |θ| = r − 1.
For every newly created Ωθ, apply Algorithm 2 and start a subroutine denoted by Aθ with

starting level r0 = r and privacy parameters εj,r, εj,r+1, . . . .
end if
(Perturbation) For every Ωθ, where 1 ≤ |θ| ≤ r, compute the noisy online count N (t)

θ using
subroutine Aθ with one new data 1{xt∈Ωθ} in its input Boolean data stream.

(Consistency) Transform the perturbed counts {N (t)
θ }|θ|<r into non-negative consistent counts

{N̂ (t)
θ }|θ|≤r using Algorithm 3.

(Output) Output the synthetic data Yt by choosing the locations of N̂
(t)
θ many data points

arbitrarily within each subregion Ωθ where |θ| = r.
Let t← t+ 1.

end while

3.3. Noisy online count. We now provide a detailed description of the Perturbation step in Algo-
rithm 1. Our goal is to output a noisy count of the points x1, . . . , xt in Ωθ, denoted by N

(t)
θ . Since

n
(t)
θ =

t∑
i=1

1{xi∈Ωθ},

this step is closely related to the differentially private count release under continual observation for
Boolean data studied in [23, 14, 24]. In particular, when the Boolean data stream is sparse, [24]
improved the accuracy guarantee by a sparse counting algorithm. We include a description of the
algorithm from [24] in Algorithm 4, see Appendix A.

Algorithm 2 is based on [24] and uses integer Laplacian noise with different variances in different
time intervals. We now give several definitions to describe Algorithm 2:

• Time level: Starting from level 0, we say time t is at level j if 2j ≤ t < 2j+1. In Algorithm 2,
we process the data stream level by level, where level j starts from the timestamp tj = 2j .
• Starting level: We set an additional input r0 to indicate the level from which the output starts.

More precisely, the output of Algorithm 2 start from time tr0 = 2r0 .
We use S̃ to store the private count from starting level r0, and S̃ does not include the count

of data points arriving before the starting level r0.
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Algorithm 2 Inhomogeneous Sparse Counting

Input: Output starting level r0 with default value 0. Boolean data sequence {Xt}∞t=2r0 . Noise
parameters εr0 , εr0+1, . . . .
Initialization: Set the finite private count S̃ ← 0, the current level r ← r0.

while r0 ≤ r <∞ do
Counting subroutine: For t ∈ [2r, 2r+1), apply Algorithm 4 with time horizon 2r and privacy

parameter εr/2. Record the outputs c2r , . . . , c2r+1−1.
Output. Output S̃ + ct as the private count Nt at time t for t ∈ [2r, 2r+1).
Update

S̃ ← S̃ +
2r+1−1∑
t=2r

Xt + LapZ(2/εr)

and start a new level with r ← r + 1.
end while

• Counting subroutine: The subroutine Algorithm 4 is an online counting algorithm with finite
time horizon. It takes a Boolean data series as input and outputs the private counts of the
first t data points at any time t. Here, we apply it to count the number of 1’s arriving in the
time interval [2r, 2r+1), and output Nt = S̃ + ct as the noisy count up to time t for each
t ∈ [2r, 2r+1).
• Update of S̃: During the counting subroutine, S̃ is not updated. It is only updated at the end

of the time level r by adding a noisy count
∑2r+1−1

t=2r Xt + LapZ(2/εr).
The following lemma is a privacy guarantee for Algorithm 2. We show Algorithm 2 gives differen-

tial privacy under different notions of neighboring data sets X ,X ′ depending on when their different
data points arrive in the data stream.

Lemma 3.1. Let A be Algorithm 2. For two datasets X ,X ′ which differ on one data point at time
t ∈ [2r, 2r+1), and for any measurable subset S in the range of A, the following holds:

(1) If r ≥ r0, P
{
A(X ) ∈ S

}
≤ eεr · P

{
A(X ′) ∈ S

}
.

(2) If r < r0, P
{
A(X ) ∈ S

}
= P

{
A(X ′) ∈ S

}
.

Lemma 3.2 bounds the difference between a noisy count and the true count in Algorithm 2 for
different time intervals.

Lemma 3.2. For each time t ∈ [2r, 2r+1), let Nt be the output of the noisy count at time t in
Algorithm 2. We have

E |Nt − St| ≲
2r0−1∑
i=1

Xi +

r−1∑
i=r0

1

εi
+

log t+ log2 nr

εr
,

where St :=
∑t

i=1Xi is the true count at time t and nr :=
∑2r+1

i=2r Xi.

3.4. Consistency. The consistency step is adapted from [36, Algorithm 3], as described in Algo-
rithm 3. We first convert all negative noisy counts to 0 and then transform the entire sequence of
noisy counts for the hierarchical partition into a consistent count, ensuring the counts from subre-
gions add up to the count at the next level. In terms of the partition tree T described in Section 3.1,
consistency means that the counts from any two nodes sharing the same parent will sum to the count
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Algorithm 3 Consistency

Input: Integer sequence (n′
θ)θ∈{0,1}≤r corresponding to the private count of each Ωθ.

For the case j = 0, set m← max(n′, 0).
for j = 0, . . . , r − 1 do

for θ ∈ {0, 1}j do
Set the counts n′

θ0 ← max(n′
θ0, 0), n

′
θ1 ← max(n′

θ1, 0).
Transform the vector (n′

θ0, n
′
θ1) ∈ Z2

+ into any vector (mθ0,mθ1) ∈ Z2
+ s.t.

mθ0 +mθ1 = mθ; (mθ0 − nθ0)(mθ1 − nθ1) ≥ 0

end for
end for
Output: non-negative integers (mθ)θ∈{0,1}≤r .

from the parent node. This step is crucial for Algorithm 1 to obtain a probability measure close to the
empirical measure µXt in the Wasserstein distance.

4. PROOF OF THEOREM 1.1 WHEN d ≥ 2

We now prove that when d ≥ 2, Algorithm 1 satisfies the privacy and accuracy guarantee in
Theorem 1.1. To complete our proof, in Algorithms 1 and 2, we choose privacy parameters

εj,r = C1ε2
(j−r)(1−1/d)/2, where C1 =

1− 2−(1−1/d)/2

2
(4.1)

Denote α = 2(1−1/d)/2 ∈ [21/4,
√
2) and we can check

s∑
j=1

εj,s =
s∑

j=1

C1εα
j−s =

C1ε(1− α−s)

1− α−1
≤ C1ε

1− α−1
≤ ε

2
.

4.1. Privacy.

Proposition 4.1. With the choice of privacy parameters as Equation (4.1) in Algorithm 2, we have
Algorithm 1 is ε-differentially private.

Proof. Since the privacy budget in Algorithm 1 is only spent on the Perturbation step, we only need
to show this step is ε-differentially private.

Consider two neighboring data sets X ,X ′, which are the same except for xt ∈ X , x′t ∈ X ′ arriving
at time t. Suppose the partition T at time t has depth r = ⌊log2 t⌋. Then, the true count of Ωθ

corresponding to X and X ′ are the same except for at most two subregions at each level in T , and
they form two paths of length r in the tree. For xt, let us denote these subregions

xt ∈ Ωθr ⊂ · · · ⊂ Ωθ1 ⊂ Ω.

On the other hand, once xt is given, we know exactly the corresponding subregions in T at level
r + 1, r + 2, . . . will contain xt in the future as soon as they are created. This gives us an infinite
sequence of subregions

Ωθr ⊃ Ωθr+1 ⊃ · · · .
Similarly we can also obtain an infinite sequence Ω ⊃ Ωθ′1

⊃ Ωθ′2
⊃ · · · containing x′t.

Consider the first sequence. As the difference of X ,X ′ at time t will only influence the counts in
Ωθj , j ≥ 0. We consider the subroutine Aθj in each of the regions Ωθj for all j ≥ 0. There are two
cases:
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(1) When 0 < j ≤ r, Ωθj counts the data Xt at time t. So by Lemma 3.1, we protect the privacy
of Xt with parameter εj,r.

(2) When j > r, by the Initialization step in Algorithm 2, Aθj and the private count N (t)
θj

no
longer depends on the value of Xt.

By the parallel composition rule of differential privacy [26, Theorem 3.16] and taking a supremum
over all possible t, we have Algorithm 1 is differentially private with parameter

sup
s≥0

s∑
j=1

εj,s ≤
ε

2
.

The same argument holds for the second subregion sequence containing x′t. Hence the whole algo-
rithm is ε-differentially private by applying the parallel composition rule again. □

4.2. Accuracy. Now we consider the accuracy of the output in Wasserstein distance at time t with
the corresponding level r = ⌊log2 t⌋. We prove (1.1) below for d ≥ 2.

Proof of (1.1). Let λ(t)
θ = N

(t)
θ − n

(t)
θ be the counting noise of subregion Ωθ at time t with 1 ≤ j =

|θ| ≤ r. Note that such Ωθ is created at time level j, which is also the starting level parameter in
subroutine Aθ. By Lemma 3.2,

E
∣∣∣λ(t)

θ

∣∣∣ ≲ ∣∣∣{xs | s < 2j , xs ∈ Ωθ}
∣∣∣+ r−1∑

i=j

1

εj,i
+

log t+ log2 nj

εj,r
. (4.2)

For the Consistency step in Algorithm 3, we can follow the proof of [35, Theorem 4.2] and obtain

EW1(µXt , µYt) ≤
1

t

r−1∑
j=1

∑
θ∈{0,1}j

E
[
max

(∣∣∣λ(t)
θ0

∣∣∣ ,∣∣∣λ(t)
θ1

∣∣∣)]diam(Ωθ)

+ δ, (4.3)

where δ = max|θ|=r diam(Ωθ) denotes the maximal diameter of the subregions of depth r. For
Ω = [0, 1]d, we have diam(Ωθ) ≍ 2−|θ|/d and 2|θ| many different subregions of such size.

Note that for fixed j, εj,i decreases as i increases. From (4.3) and (4.2), we have

EW1(µXt , µYt) ≤
1

t

r∑
j=1

∑
|θ|=j

E
∣∣∣λ(t)

θ

∣∣∣ · 2−j/d + 2−r/d

≲
1

t

r∑
j=1

∑
|θ|=j

∣∣∣{xs | s < 2j , xs ∈ Ωθ}
∣∣∣+ r−1∑

i=j

1

εj,i

+
log t+ log2 (n

(t)
θ + 1)

εj,r

 · 2−j/d + 2−r/d

≲
1

t

r∑
j=1

2j +
∑
|θ|=j

log t+ log2 (n
(t)
θ + 1)

εj,r

 · 2−j/d + 2−r/d. (4.4)

Since (
log2(x+ e)

)′′
=

2(1− log(x+ e))

(x+ e)2
≤ 0, if x ≥ 0,
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the function log2(x + e) is concave on [0,+∞). Therefore, for fixed j, we can apply Jensen’s
inequality when summing the log2(n

(t)
θ + 1) terms over all |θ| = j and obtain∑

|θ|=j

log2(n
(t)
θ + 1) ≤

∑
|θ|=j

log2(n
(t)
θ + e)

≤ 2j log2
(
2−j

∑
|θ|=j

n
(t)
θ + e

)

≤ 2j log2
(

t

2j
+ e

)
.

Substitute the result above into (4.4) and we have

EW1(µXt , µYt) ≲
1

t

r∑
j=1

(
1 +

1

εj,r

(
log t+ log2

( t

2j
+ e
)))

2j(1−1/d) + 2−r/d. (4.5)

As t ∈ [2r, 2r+1), we have log t ≤ r + 1 ≲ r and

log(t/2j + e) ≤ log(2r−j+1 + e) ≲ r − j + 1.

To attain ε-differentially privacy with ε, we can choose the privacy parameters to optimize the accu-
racy in Wasserstein distance. One of the nearly best choices is given in Equation (4.1). Therefore, we
deduce that

r∑
j=1

1

εj,r

(
log t+ log2

( t

2j
+1
))

2j(1−1/d) ≲
2r(1−1/d)/2

ε

r∑
j=1

(
r+ (r− j +1)2

)
2j(1−1/d)/2. (4.6)

When d ≥ 2, the entry 2j(1−1/d)/2 would grow exponentially as j increases. Consider the following
part in the sum:

S =
r∑

j=1

αj(r − j + 1)2,

where α = 2
1−1/d

2 ∈ [21/4,
√
2). With the detailed computation given in Appendix B.3, we have

S ≲ αr, (4.7)

which implies
r∑

j=1

(
r + (r − j + 1)2

)
2j(1−1/d)/2 ≲ rαr.

Hence (4.6) is bounded by O
(
r
ε · 2

r(1−1/d)
)

. Therefore, when d ≥ 2, with (4.5) and (4.6) we have

EW1(µXt , µYt) ≲
1

t
· r
ε
· 2r(1−1/d) + t−1/d ≲

1

ε
log t · t−1/d.

This finishes the proof. □
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APPENDIX A. SPARSE COUNTING ALGORITHM FROM [24]

This section includes the online counting algorithm in [24], which is ε-DP with an optimal accuracy
error O(log T ) when the data stream is sparse. The detailed algorithm is given in Algorithm 4.

Algorithm 4 Sparse counting, finite time horizon [24].

Input: Time range T < ∞, Boolean data sequence {Xi}Ti=1 with n many 1’s. Privacy parameter
ε.
Initialization: Set T0 = 9 log T/ε to be the partition threshold and j = 1 denoting the number of
segments. t = 0. Let S̃ = 0 denote the private count of the previous segments.
subroutine Start an online counting subroutineAsub with parameter ε/2 and input to be determined
later.

for segment j do
Set starting time tj = t+ 1 of the current segment.
Set the segment count Sj = 0 and the private threshold T̃j = T0 + LapZ(2/ε)

while Sj + LapZ(2/ε) ≤ T̃j and t ≤ T do
Set t = t+ 1, Sj = Sj +Xt.
Output. Output the same S̃ for all t in this segment.

end while
RunAsub with one newly coming data Sj . Add the output to S̃, the private count of the previous

segments.
Set j ← j + 1

end for
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The algorithm has various choices of the online counting subroutine Asub. One choice is the
Hybrid counting mechanism proposed in [14], which ensures differential privacy for an infinite input
data stream.

Lemma A.1 ([14]). The Hybrid counting mechanism is ε-differentially private for an infinite time
horizon. And for any time t > 0 and β > 0, with probability at least 1 − β, the counting error is
C
ε · log

1.5 t · log 1
β .

Although such error bound is in probability, we can easily transform it into a similar expectation
bound by a simple equality in probability. In fact, let errort denote the error at time t between the
true count

∑t
i=1X − i and the output at time t, we have

E errort =

∫ ∞

0
P
{
errort > u

}
du.

After doing a change of variable u = C
ε · log

1.5 t · log 1
β or β = exp

(
− εu

C log1.5 t

)
, we can compute

E errort =

∫ ∞

0
P
{
errort > u

}
du

=

∫ 1

0
P
{
errort >

C

ε
· log1.5 t · log 1

β

}
C log1.5 t

βε
dβ

=

∫ 1

0
β · C log1.5 t

βε
dβ

=
C

ε
log1.5 t

Therefore, we have the expectation error bound

E errort =
C

ε
log1.5 t (A.1)

With the guarantee of the subroutine, [23] shows that the sparse counting Algorithm 4 indeed
improves the counting error. As the value of the partition threshold T0 is related to an extra parameter,
the confidence probability β, in [23], we will prove a similar expectation bound with the new partition
threshold T0 in Algorithm 4.

Lemma A.2. Algorithm 4 attains ε-differential privacy. Let errort denote the counting error between
true count

∑t
i=1Xi and the output at time t. Then, for any fixed t, there is an accuracy bound

E errort ≲ (log T + log1.5 n)/ε

Proof. The privacy part follows from the original proof in [23]. We focus on the accuracy guarantee.
The algorithm gives a private partition of the time interval and then treats each segment in the

partition as a timestamp in the online counting subroutine. We will first prove that there are at most
n+ 1 many segments in the partition.

Note that there are 2T many independent Lap(2/ε) random variables in total. Therefore, by a
simple union bound argument, with probability 1/T , their magnitudes are uniformly bounded with
bound B = 2

ε (2 log T + log 2). Conditioning on this event, we know Sj + LapZ(2/ε) > T̃j implies
that

∣∣Sj − T0

∣∣ ≤ 2B and Sj > T0 − 2B > 0. So whenever a segment is sealed, its true count is
non-zero; hence, we have at most n+ 1 segments (in case the last one has not been sealed).

Now, we can compute the expectation of error. For the case where 2T many Lap(2/ε) random
variables share the uniform bound B, the counting error consists of two parts: 1. the error from the
online counting subroutineAsub and 2. the approximation error when ignoring the counts within time
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[tj , t] (i.e. Sj in the algorithm). The first part is bounded in (A.1), and the second error is bounded by
T0+2B (as Sj+LapZ(2/ε) ≤ T̃j). So the total error is O(1ε (log T+log1.5(n+1))). More precisely,
the discussion can be written as the following inequality, where ct and ctj denote corresponding true
counts at time t, tj : ∣∣∣ct − S̃

∣∣∣ ≤ ∣∣∣ctj − S̃
∣∣∣+∣∣∣ct − ctj

∣∣∣
=
∣∣∣ctj − S̃

∣∣∣+ Sj

≤
∣∣∣ctj − S̃

∣∣∣+ T0 +
∣∣Sj − T0

∣∣
≲

log1.5(n+ 1)

ε
+

log T

ε
.

For the other case, if the uniform upper bound fails with probability 1/T , as the content of each
segment is no longer available, we only have a trivial upper bound T for the number of segments.
So the first error term from Asub becomes O(1ε log

1.5 T ). And for the second part, we have a trivial
upper bound |Sj | ≤ n ≤ T . Therefore, we have error O(1ε log

1.5 T + n).
By the law of total expectation, we have

E errort ≲
( log1.5(n+ 1)

ε
+

log T

ε

)
+

1

T

(1
ε
log1.5 T + n

)
= O

( log1.5(n+ 1)

ε
+

log T

ε

)
.

□

APPENDIX B. ADDITIONAL PROOFS

B.1. Proof of Lemma 3.1.

Proof. For such X ,X ′ in the theorem, when r < r0, one can notice that Xt does not appear in the
algorithm. Therefore, the third assertion holds.

When r ≥ r0, to have the different data value at time t would make the following two influences:

(1) When S̃ first counts Xt privately by the εr/2-differentially private subroutine;
(2) When updating the count S̃, we add noise LapZ(2/εr), which implies another privacy budget

2/εr.
By the parallel composition property of differential privacy [26], we know for the data at time t, the
algorithm is εr differentially private. □

B.2. Proof of Lemma 3.2.

Proof. The accuracy part also follows from the composition results of the subroutine and Laplacian
mechanism. At time t ∈ [2r, 2r+1), by the result of sparse online counting Lemma A.2, we know the
error of count ct at time t has bound

E
∣∣∣∣ct − t∑

i=tr

Xi

∣∣∣∣ ≲ log t+ log2 nr

εr
.

And by the Laplacian mechanism, we know the count S̃ has initialization error O(1/ε′) as well as the
accumulating error from each level (starting from r0), namely

E
∣∣∣∣S̃ − 2r−1∑

i=2r0

Xi

∣∣∣∣ ≲ r−1∑
i=r0

1

εi
.
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Therefore, considering that S̃ ignored the the data before level r1 = ⌊r0(1− 1/d)⌋, we deduce that

E|Nt − St| = E
∣∣∣∣S̃ + ct −

t∑
i=1

Xi

∣∣∣∣
≤

2r1−1∑
i=1

Xi + E
∣∣∣∣S̃ − 2r−1∑

i=2r1

Xi

∣∣∣∣+ E
∣∣∣∣ct − t∑

i=2r

Xi

∣∣∣∣
≲

2r1−1∑
i=1

Xi +
r−1∑
i=0

1

εi
+

log t+ log2 nr

εr
.

□

B.3. Proof of (4.7). We prove the following lemma:

Lemma B.1. Suppose α > 1 is a constant and r is a positive integer, then

S′ =

r∑
j=1

αj(r − j + 1) ≍ αr,

S =
r∑

j=1

αj(r − j + 1)2 ≍ αr.

Here, the asymptotic results are with respect to r.

Proof. We can do the following trick

αS′ =
r∑

j=1

αj+1(r − j + 1) =
r+1∑
j=2

αj(r − j + 2),

(α− 1)S′ = αS − S =
r+1∑
j=2

αj + αr+1 − αr,

=⇒ S′ =
αr+1 − α2

α− 1
− αr ≍ αr.

For the sum with quadratic entries, again, there is

αS =
r∑

j=1

αj+1(r − j + 1)2 =
r+1∑
j=2

αj(r − j + 2)2,

(α− 1)S = αS − S =

r+1∑
j=2

αj(2r − 2j + 3) + αr+1 − αr2

Applying the first result of summing with linear entries, we have

S =
1

α− 1

r+1∑
j=2

αj(2r − 2j + 3) + αr+1 + αr2

 ≍ αr + αr+1 − αr2 ≍ αr

□
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B.4. Proof of Theorem 1.1 for d = 1. Note that Algorithm 1 is built on Algorithm 2, which only
works for d ≥ 2 due to the choice of the privacy parameters in (4.1).

In this section, we present a simpler algorithm for d = 1, which can also be generalized for d ≥ 2
with a weaker utility bound and prove its privacy.

To adjust to the case d = 1, the main structure of the online synthetic data algorithm remains
the same, with the only modification on the choice of the subroutine Aθ and its parameters. When
d = 1, we can use any private binary counting mechanism as a subroutine Aθ. For example, a good
choice is Hybrid Mechanism from [14, Corollary 4.8]. We included its privacy and accuracy result in
Lemma A.1.

Proposition B.2. In Algorithm 1, by changing Aθ to Hybrid Mechanism with privacy parameter

3

π2
· ε

(|θ|+ 1)2

and the same starting input Boolean data stream {1{xi∈Ωθ}}
t−1
i=1, the modified version of Algorithm 1

is ε-differentially private.

Proof. Consider two neighboring data sets X ,X ′, which are the same except for xt ∈ X , x′t ∈ X ′

arriving at time t. Similar to the proof to Proposition 4.1, there is exactly one sub-region containing
xt on each level, namely Ωθr ⊂ Ωθr−1 ⊂ · · · ⊂ Ω. Also, in the future there will also be Ωθr ⊃
Ωθr+1 ⊃ Ωθr+2 ⊃ . . . . Similarly we can also obtain an infinite sequence Ω ⊃ Ωθ′1

⊃ Ωθ′2
⊃ · · ·

containing x′t.
By parallel composition property of differential privacy [26], consider the influenced subroutine

{Aθj}∞j=0, we know the algorithm is differentially private with parameter ε due to the following
identity:

ε

2
=

∞∑
j=0

3

π2
· ε

(j + 1)2
.

□

Now, we are ready to prove the utility bound in Theorem 1.1 for d = 1.

Proof of Theorem 1.1 for d = 1. We can next show its accuracy in Wasserstein distance with the on-
line synthetic data algorithm defined in Proposition B.2. By Lemma A.1 and our discussion, at every
time t, we have expectation bound

E
∣∣∣∣N (t)

θ − n
(t)
θ

∣∣∣∣ ≲ (|θ|+ 1)2

ε
log1.5 t.

Note that n(t)
θ is the true count of Ωθ at time t, while N (t)

θ is the private count of Ωθ at time t and also
the output of Aθ at time t.
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Define λ(t)
θ = N

(t)
θ −n

(t)
θ . Again, similar to the proof of the d ≥ 2 case, we can apply the result in

[36] and get Equation (4.3). For time t ∈ [2r, 2r+1), we have

EW1(µXt , µYt) ≤
1

t

r−1∑
j=0

∑
θ∈{0,1}j

E
[
max

(∣∣∣λ(t)
θ0

∣∣∣ ,∣∣∣λ(t)
θ1

∣∣∣)]diam(Ωθ)

+ δ,

≤ 1

t

r∑
j=1

∑
|θ|=j

E
∣∣∣λ(t)

θ

∣∣∣ · 2−j/d + 2−r/d

≲
1

t

r∑
j=1

2j · (j + 1)2

ε
log1.5 t · 2−j/d + 2−r/d

=
log1.5 t

εt

r∑
j=1

(j + 1)22j(1−1/d).

For the particular case d = 1, we have
∑r

j=1(j + 1)2 ≍ r3. Hence, we have the accuracy bound

EW1(µXt , µYt) ≲
log4.5 t

εn
.

This finishes the proof. □

Remark B.3. The deduction above works for general d. Therefore, when d ≥ 2, the 2j(1−1/d) term
grows exponentially and

∑r
j=0(j+1)22j(1−1/d) ≍ r22r(1−1/d). With the simpler algorithm discussed

in this section, we will obtain a slightly weaker accuracy bound

EW1(µXt , µYt) ≲
log1.5 t

εn
· r22r(1−1/d) ≲

log3.5 t

ε
t−1/d.

APPENDIX C. TIME COMPLEXITY

Due to the online setting, let us first consider the running time for the algorithms to output after the
input data arrives at time t.

The Hybrid Counting Mechanism in [14] has time complexity O(log t) to give the output at time
t, as it sums over O(log t) many Laplacian random variables. Same time complexity holds for sparse
counting Algorithm 4, as it checks the partition threshold with O(1) time and runs Hybrid Counting
Mechanism as a subroutine.

As for Algorithm 2, Inhomogenous Sparse Counting, with starting level r0, it is connected by
O(log t) many implementations of Algorithm 4, each of time horizon tr0 = 2r0 , tr0+1 = 2r0+1, . . . .
Furthermore, for a given t, only one such subroutine is active, so the time complexity is also O(log t).

For main Algorithm 1, there is another variable d, the data dimension. For each fixed time t in
Algorithm 1, there are O(t) many sub-regions Ωθ in the binary partition tree of [0, 1]d, hence the
partition step has time complexity O(dt). Also, one new data point comes at time t for all subroutines
Aθ’s, which in total have running time O(t log t) by the result above for Algorithm 2. Finally, the
time complexity is O(t) for the consistency step and O(dt) for the outputs. Therefore, the whole
Algorithm 1 has time complexity O(dt+ t log t) to output at time t.
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When d = 1, we use the Hybrid Counting Mechanism directly, and the same time complexity
holds.
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