
HAMILTONCITY OF SPARSE PSEUDORANDOM GRAPHS

ASAF FERBER, JIE HAN, DINGJIA MAO, AND ROMAN VERSHYNIN

Abstract. We show that every (n, d, λ)-graph contains a Hamilton cycle for sufficiently large n,
assuming that d ≥ log10 n and λ ≤ cd, where c = 1

9000
. This significantly improves a recent result

of Glock, Correia and Sudakov, who obtain a similar result for d that grows polynomially with n.
The proof is based on the absorption technique combined with a new result regarding the second
largest eigenvalue of the adjacency matrix of a subgraph induced by a random subset of vertices.
We believe that the latter result is of an independent interest and will have further applications.

1. Introduction

A Hamilton cycle in a graph is a cycle that passes through all the vertices of the graph exactly
once, and a graph containing a Hamilton cycle is called Hamiltonian. Even though a Hamilton cycle
is a relatively simple structure, determining whether a certain graph is Hamiltonian was included in
the list of 21 NP-hard problems by Karp [21]. Thus, there is a large interest in deriving conditions
that ensure Hamiltonicity in a given graph. For instance, the celebrated Dirac’s theorem [8] states
that every graph on n ≥ 3 vertices with minimum degree n/2 is Hamiltonian. For more results on
Hamiltonicity, readers can refer to the surveys [13, 28, 29].

Most classical sufficient conditions for a graph to be Hamiltonian are only available for relatively
dense graphs, such as the graphs considered in Dirac’s Theorem. Establishing sufficient conditions
for Hamiltonicity in sparse graphs is known to be much more challenging. Sparse random graphs
are natural objects to consider as starting points, and they have attracted a lot of attention in
the past few decades. In 1976, Pósa [37] proved that for some large constant C, the binomial
random graph model G(n, p) with p ≥ C log n/n is typically Hamiltonian. In the following few
years, Korshunov [24] refined Pósa’s result and in 1983, Bollobás [5], and independently Komlós
and Szemerédi [23] showed a more precise threshold for Hamiltonicity. Their results demonstrate
that if p = (log n + log log n + ω(1))/n, then the probability of the random graph G(n, p) being
Hamiltonian tends to 1 (we say such an event happens with high probability, or whp for brevity).

Following the fruitful study of random graphs, it is natural to study families of deterministic
graphs that behave in some ways like random graphs; these are sometimes called pseudorandom
graphs. A natural candidate to begin with is the following: suppose that we sample a random graph
G ∼ G(n, p), and then allow an adversary to delete some constant fraction of the edges incident
to each vertex. The resulting subgraph H ⊆ G loses all its randomness. Thus, we cannot use, for
example, a multiple exposure trick and concentration inequalities, which were heavily used in the
proof of Hamiltonicity of a typical G ∼ G(n, p). Under such a model, one of the central problem
to consider is quantifying the local resilience of the random graph G with respect to Hamiltonicity.
In [41], Sudakov and Vu initiated the study of local resilience of random graphs, and they showed
that for any ε > 0, if p is somewhat greater than log4 n/n, then G(n, p) typically has the property
that every spanning subgraph with minimum degree at least (1+ε)np/2 contains a Hamilton cycle.
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They also conjectured that this remains true as long as p = (log n+ ω(1))/n, which was solved by
Lee and Sudakov [30]. Later, an even stronger result, the so-called “hitting-time” statement, was
shown by Nenadov, Steger and Trujić [35], and Montgomery [32], independently.

It transpires that exploring the properties of pseudorandom graphs, which has been attracted
many researchers in the area, is much more challenging than in random graphs. The first quan-
titative notion of pseudorandom graphs was introduced by Thomason [42, 43]. He initiated the
study of pseudorandom graphs by introducing the so-called (p, λ)-jumbled graphs, which satisfy

|e(U) − p
(|U |

2

)
| ≤ λ|U | for every vertex subset U ⊆ V . Since then, there has been a great deal

of investigation into different types and various properties of pseudorandom graphs, for example,
[1, 7, 16, 17, 22, 34], and this is still a very active area of research in graph theory.

One special class of pseudorandom graphs, which has been studied extensively, is the class of
the so-called spectral expander graphs, also known as (n, d, λ)-graphs. Given a graph G on vertex
set V = {v1, . . . , vn}, its adjacency matrix A := A(G) is an n× n, 0/1 matrix, defined by Aij = 1
if and only if vivj ∈ E(G). Let s1(A) ≥ s2(A) ≥ . . . ≥ sn(A) be the singular values of A (see
Definition 3.3). Observe that for a d-regular graph G we always have s1(G) := s1(A(G)) = d, so
the largest singular value is not a very interesting quantity. We say that G is an (n, d, λ)-graph if
it is a d-regular graph on n vertices with s2(G) ≤ λ.

The celebrated Expander Mixing Lemma (see, e.g. Chapter 9 in [3]) provides a powerful formula
to estimate the edge distribution of an (n, d, λ)-graph, which suggests that (n, d, λ)-graphs are
indeed special cases of jumbled graphs, and that G has stronger expansion properties for smaller
values of λ. Thus, it is natural to seek for the best possible condition on the spectral gap (defined
as the ratio λ/d) which guarantees certain properties; examples of such results can be found e.g. in
[2, 4, 18, 36]. For much more on (n, d, λ)-graphs and their many applications, we refer the reader to
the surveys of Hoory, Linial and Wigderson [20], Krivelevich and Sudakov [27], the book of Brouwer
and Haemers [6], and the references therein.

Hamiltonicity of (n, d, λ)-graphs was first studied by Krivelevich and Sudakov [26], who proved
a sufficient condition on the spectral gap forcing Hamiltonicity. More precisely, they showed that
for sufficiently large n, any (n, d, λ)-graph with

λ/d ≤ (log log n)2

1000 log n(log log log n)

has a Hamilton cycle. In the same paper, Krivelevich and Sudakov made the following conjecture.

Conjecture 1.1. There exists an absolute constant c > 0 such that for any sufficiently large integer
n, any (n, d, λ)-graph with λ/d ≤ c contains a Hamilton cycle.

Although there are numerous related results on this direction, there has been no improvement on
the original bound until the recent result given by Glock, Correia and Sudakov [15]. In their paper,
they improved the above result in two different ways: (i) they demonstrated that the spectral gap

λ/d ≤ c/(log n)1/3 already guarantees Hamiltonicity; (ii) they confirmed Conjecture 1.1 in the case
where d ≥ nα for every fixed constant α > 0.

In this paper, we improve the second result in [15].

Theorem 1.2. There exists an absolute constant c > 0 such that for any sufficiently large integer
n, any (n, d, λ)-graph with λ/d ≤ c and d ≥ log10 n contains a Hamilton cycle.

Our proof works for c = 1
9000 , although we made no serious attempt to optimize this constant.

In order to find Hamilton cycles in graphs, an absorption method usually helps. It was introduced
as a general method by Rödl, Ruciński and Szemerédi [38], [39], though similar ideas had appeared
earlier, for example by Erdős, Gyárfás and Pyber [9] and by Krivelevich [25]. Our proof adopts
an approach similar to that of Montgomery [33]: we find an absorbing path formed by a path and
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a bunch of absorbers, and partition the remaining part into some long paths. Then we use some
of the absorbers to connect the endpoints of the long paths using a connecting lemma, and thus
obtain a desired Hamilton cycle. A similar technique can be also found in, for example, [11], [12],
[15].

The main new trick that we use in our proof is the “inherence” of the spectral gap of a random
induced subgraph of an (n, d, λ)-graph. Indeed, we use the results on norms of principal submatrices,
e.g. the Rudelson-Vershynin Theorem in [40] (see Section 5), and obtain that with probability

1 − n−Θ(1), for a not too small random subset, the spectral gap of the induced subgraph is still
O(λ/d). We believe that our result will have further applications.

The paper is organized as follows. In Section 2, we give an outline of our proof. In Section 3,
we prove the expander mixing lemma for matrices and we then study the special case for almost
(n, d, λ)-graphs in Section 4. Our key lemma regarding the second singular value of a random
induced subgraph of an (n, d, λ)-graph is in Section 5, and the main technical lemma, the Connecting
Lemma, is demonstrated in Section 7 based on some arguments related to matchings in Section
6. Finally in Section 8, we prove our main result Theorem 1.2 together with a general version,
Theorem 8.1, which is stated for almost (n, d, λ)-graphs. We also put some standard tools from
linear algebra and some technical proofs in the Appendix for readers’ convenience.

1.1. Notation.

Graphs. For a graph G = (V,E), let e(G) := |E(G)|. We mostly simply assume that V = [n]. For
a subset A ⊆ V of size m, we simply call it an m-set, and we denote the family of all m-sets of V
by
(
V
m

)
. For two vertex sets A,B ⊆ V (G), we define EG(A,B) to be the set of all edges xy ∈ E(G)

with x ∈ A and y ∈ B, and set eG(A,B) := |EG(A,B)|. For two disjoint subsets X,Y ⊆ V , we
write G[X,Y ] to denote the induced bipartite subgraph of G with parts X and Y . Moreover, we
define NG(v) to be the neighborhood of a vertex v, and define NG(A) :=

⋃
v∈ANG(v) \ A for a

subset A ⊆ V . We write NG(A,B) = NG(A) ∩ B and for a vertex v, let NG(v,B) = NG(v) ∩ B.
We also write degG(v) := |NG(v)| and degG(v,B) := |NG(v,B)|. Finally, let δ(G) be the minimum
degree of G and let ∆(G) be the maximum degree of G.

The adjacency matrix of G, denoted by A := A(G), is a 0/1, n × n matrix such that Ai,j = 1
if and only if ij ∈ E(G). Moreover, given any subset X ⊆ V , its characteristic vector 1X ∈ Rn is
defined by

1X(i) =

{
1 if i ∈ X

0 otherwise
.

Digraphs. The notations of digraphs are similar to those of graphs. Given a digraph D = (V,E)
and a vertex v in V , we define deg+(v) as the out-degree of v, and define deg−(v) as the in-
degree of v. We write deg±(v) for deg+(v) and deg−(v). For two disjoint subsets X,Y ⊆ V , we

define E⃗D(X,Y ) to be the set of directed edges xy ∈ E(D) with x ∈ X and y ∈ Y , and set

e⃗D(X,Y ) := |E⃗D(X,Y )|. Also, we write D[X,Y ] to denote the induced bipartite subgraph of D

with edge set E⃗D(X,Y ). The adjacency matrix of D, denoted by A := A(D), is a 0/1, n×n matrix
such that Ai,j = 1 if and only if ij ∈ E(D).

We will often omit the subscript to ease the notation, unless otherwise stated. Since all of our
calculations are asymptotic, we will often omit floor and ceiling functions whenever they are not
crucial.

2. Proof Outline

Our strategy for finding a Hamilton cycle in an (n, d, λ)-graph G = (V,E) follows ideas from
[12] and [33]. The proof consists of two main phases. First, we construct a family of not too many
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v0 = a1 b1 a2 b2

. . .

am w0 = bm
S = S0

x1 y1 x2 y2 xm ym

P1 P2 Pm

Skvk wk

S2

...

v2 w2

S1v1 w1

Figure 1. All vertices of the graph, but not all edges, are shown on this figure.
Our goal is to connect vertices {vi} to vertices {wi} by some vertex-disjoint paths
shown by the black dashed lines. The building blocks for these connecting paths
are absorbers – the cycles that look like cupcakes at the bottom of the figure. The
connecting paths will be built by concatenating some of the red paths P1, . . . , Pm –
the frosting of the pancakes. The green path S = Sk+1 can be used to bypass the

paths Pi that were not utilized.

vertex-disjoint paths that together cover all the vertices of G, where one of the paths is called the
absorbing path and contains a family of absorbers. The family of absorbers has the property that
one can remove any subfamily of it from the absorbing path and obtain another path spanning
on the remaining vertices while keeping the same end vertices. Then, we can use a subset of the
absorbers to connect all these paths into a Hamilton cycle as described below. This proof strategy
falls into the framework of the so-called absorption method as mentioned in Section 1, and so far
has had numerous applications.

We now explain our method in more details. First, we find m := n/ log3 n random vertex-
disjoint cycles C = {C1, C2, . . . , Cm}, each of which covers O(log n) vertices and has 4 designated
(consecutive) vertices xi, ai, bi, yi in some fixed order (e.g. counterclockwise). For convenience,
denote the longer path that connects xi and yi by Pi. These cycles, together with the designated
vertices, serve as our absorbers and they will play a crucial role in the proof described below.

Second, we aim to construct our absorbing path P with certain absorbing property that will be
described in details later. In order to find such a path, we first find a path S that contains all the
edges aibi, i = 1, . . . ,m, and no other vertices from the Cis. Now our absorbing path P can be
formed by the union of the path S and the cycles Cis and then omitting all the edges aibis. Next,
we cover the remaining vertices (that is, the vertices in V \

(
V (P ) ∪ V (C)

)
) by k := n/ log5 n vertex-

disjoint paths {S1, . . . , Sk}. Finally, we wish to tailor all the paths {S1, . . . , Sk, S, P1, . . . , Pm} into
a Hamilton cycle. For convenience, we write S0 := S. As in Figure 1, we let vi be the starting
vertex of Si, and let wi be the terminal vertex of Si for each 0 ≤ i ≤ k, where v0 := a1 and w0 := bm.
We also write

X0 := {v0, . . . , vk} and Y0 := {w0, . . . , wk}.
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The idea to find the Hamilton cycle using these paths is based on the absorbing property of the
absorbing path P ; that is, for any I ⊆ [m], there is a path with the same endpoints as S, covering
exactly V (S) ∪

⋃
i∈I V (Pi). To demonstrate the absorbing property, let us move along the path S

to “absorb” some paths Pis. Whenever we reach a vertex ai, we have two options as in Figure 1:

(1) proceed from ai to bi directly, or
(2) move from ai to xi, then walk along the path Pi to vertex yi, and finally arrive at bi from

yi.

With this key observation, it is feasible to remove some paths Pi for later use, and construct a
path with the same endpoints as S covering exactly S and the remaining Pis. Thus, the major
problem is to connect paths S0, . . . , Sk with the aid of some paths Pis, that is, to connect wj and
vj+1 for each 0 ≤ j ≤ k, where vk+1 := v0. If so, we are able construct the Hamilton cycle in G as
desired.

Let us now explain how we find paths Pis to connect the paths S0, . . . , Sk. First, notice that
the internal vertices of Pis are never touched during the connecting procedure. Consequently, by
contracting each Pi into a single vertex zi, whose out-degree depends only on yi and in-degree
depends only on xi, we obtain an auxiliary digraph D (see Subsection 8.5) on vertex set X0 ∪ Y0 ∪
{z1, . . . , zm}. If the digraph D is a good expander (see (P1)–(P4)), we are then allowed to apply
the Connecting Lemma (Lemma 7.1) to connect X0 and Y0 in D, such that the pairs of vertices
wj and vj+1 are connected by vertex-disjoint directed paths with internal vertices in {z1, . . . , zm}.
Thus, by returning each contracted vertex zi to the path Pi, the Hamilton cycle in G can be found.

It is thus remains to demonstrate that the digraph D is a good expander. By our construction,
the spectral properties of D depend only on the endpoints of the paths Sjs and Pis, which were
randomly selected at the very beginning. Thus, it suffices to study the spectral properties of random
induced subgraphs of G and this is the main contribution of this paper. Using results on norms of
pricipal matrices, e.g. Rudelson-Vershynin theorem in [40], we show that with probability at least

1 − n−Θ(1), the spectral gap of a random induced subgraph of (n, d, λ)-graph is still O(λ/d) (see
Theorem 5.2).

3. Expander mixing lemma for matrices

One of the most useful tools in spectral graph theory is the expander mixing lemma, which
asserts that an (n, d, λ)-graph is an expander (see, e.g., [20]).

Theorem 3.1 (Expander mixing lemma). Let G = (V,E) be an (n, d, λ)-graph. Then, for any two
subsets S, T ⊆ V , we have∣∣∣∣e(S, T )− d|S||T |

n

∣∣∣∣ ≤ λ

√
|S|
(
1− |S|

n

)
|T |
(
1− |T |

n

)
.

We will need a more general version of the expander mixing lemma, which can be applied to
non-regular graphs, digraphs, and even to general m×n matrices A. To state such a general result,
it is convenient to normalize A in the following way:

Definition 3.2 (Normalized matrix). Let A be an m × n matrix. Let L = L(A) be the m × m
diagonal matrix with Li,i =

∑
j Ai,j for all i (that is, the sum of entries in the ith row), and

R = R(A) be the n× n diagonal matrix with Rj,j =
∑

iAi,j (that is, the sum of entries in the jth
column). The normalized matrix of the matrix A is defined as

Ā := L−1/2AR−1/2.

In particular, if A is a symmetric n×n matrix, then the diagonal matrix L(A) = R(A) =: D(A) is
called the degree matrix of A.
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Since the notion of eigenvalues is undefined for non-square matrices, it would be convenient for
us to work with singular values which are defined as follows for all matrices.

Definition 3.3 (Singular values). Let A be a real m× n matrix. The singular values of A are the
nonnegative square roots of the eigenvalues of the symmetric positive semidefinite matrix ATA. We
will always assume that sk(A) is the kth singular value of A in nonincreasing order. In particular,
the singular values and the eigenvalues of a symmetric positive semidefinite matrix A coincide.

We are now ready to state a more general version of the expander mixing lemma.

Theorem 3.4 (Expander mixing lemma for matrices). Let A be an m×n matrix with nonnegative
entries, and let Ā be the normalized matrix of A. Then, for any two subsets S ⊆ [m] and T ⊆ [n],
we have∣∣∣∣A(S, T )− A(S, n)A(m,T )

A(m,n)

∣∣∣∣ ≤ s2(Ā)

√
A(S, n)

(
1− A(S, n)

A(m,n)

)
A(m,T )

(
1− A(m,T )

A(m,n)

)
,

where we adopt the notation A(S, T ) :=
∑

i∈S,j∈T Ai,j, and we abbreviate A(S, n) := A(S, [n]),

A(m,T ) := A([m], T ), and A(m,n) := A([m], [n]).

Observe that Theorem 3.4 trivially implies Theorem 3.1, since the adjacency matrix of a d-regular
graph satisfies

Ā =
1

d
A.

The proof of Theorem 3.4 is almost identical to the standard proof of Theorem 3.1 found e.g.
Proposition 4.3.2 in [6]. Since we could not find a reference for this specific statement and proof,
we include the proof of Theorem 3.4 for the convenience of the reader, and without claiming any
originality. It is based on the following crucial observation.

Observation 3.5. Let A be an m × n matrix. Let a := A(m,n) and let 1n denote the vector

in Rn whose all coordinates are equal to 1. Consider the vectors u1 := a−1/2L1/2
1m and v1 :=

a−1/2R1/2
1n. Then:

(1) both u1 and v1 are unit vectors;
(2) Āv1 = u1;
(3) s1(Ā) =

∥∥Ā∥∥ = uT
1 Āv1 = 1.

Proof. The first two parts readily follow from the definitions of a, L and R, and Ā. As for the
third part, the equation s1(Ā) =

∥∥Ā∥∥ holds for any matrix. Let us show that ∥Ā∥ ≤ 1. For every
∥x∥2 = ∥y∥2 = 1, we have

0 ≤
∑

i∈[m],j∈[n]

Ai,j

(
xi√
Li,i

− yj√
Rj,j

)2

= 2− 2
∑

i∈[m],j∈[n]

Ai,jxiyj√
Li,iRj,j

= 2− 2xTĀy.

This implies that xTĀy ≤ 1 for all unit vectors x and y, which yields ∥Ā∥ ≤ 1.
Moreover, by definition of Ā we have uT

1 Āv1 = 1. Therefore, by definition of the operator norm,
it follows that

∥∥Ā∥∥ ≥ 1. The observation is proved. □

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let r = rank(Ā), and let 1 = s1 ≥ s2 ≥ . . . ≥ sr > 0 be all the positive
singular values of Ā in nonincreasing order. Applying the singular value decomposition theorem
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(Theorem A.3) combined with Observation 3.5, we can find orthonormal bases {u1, . . . ,um} of Rm

and {v1, . . . ,vn} of Rn with vectors v1 and u1 defined in Observation 3.5, and such that

Ā =
r∑

j=1

sjujv
T
j .

In particular, Āvj = sjuj for j = 1, . . . , r and Āvj = 0 for j > r. Now, let S ⊆ [m] and T ⊆ [n] be
two arbitrary subsets. Then

A(S, T ) = 1
T
SA1T = χT

SĀχT , where χS := L1/2
1S , χT := R1/2

1T .

Expanding both vectors as

χS =
m∑
j=1

ajuj , and χT =
n∑

j=1

bjvj ,

we obtain

A(S, T ) =
r∑

j=1

sjajbj = a1b1 +

r∑
j=2

sjajbj .

Recall from Observation 3.5 that all singular values of Ā are bounded by 1, and r = rank(Ā) ≤
min(m,n). Thus, by Cauchy-Schwarz inequality, we have

∣∣A(S, T )− a1b1
∣∣ ≤ r∑

j=2

∣∣ajbj∣∣ ≤
 m∑

j=2

a2j

1/2 n∑
j=2

b2j

1/2

. (1)

Now observe that a1 = ⟨χS ,u1⟩ = a−1/2A(S, n) and b1 = ⟨χT ,v1⟩ = a−1/2A(m,T ), so

a1b1 =
A(S, n)A(m,T )

a
.

Moreover,
m∑
j=2

a2j =∥χS∥22 − a21 = A(S, n)− A(S, n)2

a
= A(S, n)

(
1− A(S, n)

a

)
,

and similarly
n∑

j=2

b2j = A(m,T )

(
1− A(m,T )

a

)
.

Substitute the last three identities into (1) to complete the proof. □

4. Almost regular expanders

Our argument relies on some spectral properties of random subgraphs of (n, d, λ)-graphs. Since
random subgraphs are not expected to be exactly regular, we extend the definition of (n, d, λ)-graphs
as follows:

Definition 4.1 (Almost (n, d, λ)-graphs). Let d, λ > 0 and γ ∈ [0, 1). We say that a graph G is an
(n, (1 ± γ)d, λ)-graph if1 G is a graph on n vertices whose all degrees are (1 ± γ)d and the second
singular value of the adjacency matrix of G satisfies s2(A) ≤ λ.

1In this definition and elsewhere in the paper, we write a = b ± c as a shorthand for the double-sided inequality
b− c ≤ a ≤ b+ c. We use other similar abbreviations, whose exact meaning should be clear from context.
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Almost (n, d, λ)-graphs behave similar to exact (n, d, λ)-graphs in many ways. If G is an (exactly)
d-regular graph with adjacency matrix A, its normalized adjacency matrix is obviously

Ā =
1

d
A

according to Definition 3.2. IfG is an almost d-regular graph, its degree matrixD = diag(d1, . . . , dn)
is close to dI, and we can expect that

Ā = D−1/2AD−1/2 ≈ 1

d
A

in some sense. Below we show that such an approximation indeed holds in the sense of the closeness
of all singular values.

Corollary 4.2 (Singular values of almost regular graphs). Let γ ∈ [0, 1) and d > 0. Let G be a
graph whose all vertices have degrees (1 ± γ)d. Then the adjacency matrix A and the normalized
adjacency matrix Ā of the graph G satisfy

sk(A)

(1 + γ)d
≤ sk(Ā) ≤

sk(A)

(1− γ)d
for all k ∈ [n].

Proof. Using the chain rule for singular values (Lemma A.5), we obtain

sk(A) = sk

(
D1/2ĀD1/2

)
≤
∥∥D1/2

∥∥2 sk(Ā).

Since
∥∥D1/2

∥∥2 = ∥D∥ = maxi di ≤ (1 + γ)d, the lower bound in Corollary 4.2 follows. The upper
bound can be proved similarly. □

4.1. Expander mixing lemma for almost regular expanders. Let us specialize Theorem 3.4
for almost (n, d, λ)-graphs.

Corollary 4.3 (Expander mixing lemma for almost (n, d, λ)-graphs). Let G be an (n, (1± γ)d, λ)-
graph. Then, for any two subsets S, T ⊆ V (G), we have

(1− γ)2d|S||T |
(1 + γ)n

− ε ≤ e(S, T ) ≤ (1 + γ)2d|S||T |
(1− γ)n

+ ε, (2)

where

ε =
1 + γ

1− γ
· λ
√

|S||T |.

Proof. Let A and Ā be the adjacency and the normalized adjacency matrices of G, respectively.
Theorem 3.4 yields ∣∣∣∣A(S, T )− A(S, n)A(n, T )

A(n, n)

∣∣∣∣ ≤ s2(Ā)
√
A(S, n)A(n, T ). (3)

By Corollary 4.2 and assumption, we have

s2(Ā) ≤ s2(A)

(1− γ)d
≤ λ

(1− γ)d
.

Moreover, since A is an adjacency matrix, we have A(S, T ) = e(S, T ), A(S, n) =
∑

v∈S deg(v) =

(1± γ)d|S|, A(n, T ) =
∑

v∈T deg(v) = (1± γ)d|T |, A(n, n) =
∑

v∈V (G) deg(v) = (1± γ)d
∣∣V (G)

∣∣ =
(1± γ)dn. Substitute all this into (3) and use triangle inequality to complete the proof. □

Sometimes all we need is at least one edge between disjoint sets of vertices S and T . Corollary 4.3
provides a convenient sufficient condition for this:
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Corollary 4.4 (At least one edge). Let G be an (n, (1 ± γ)d, λ)-graph. Let S, T ⊆ V (G) be two
disjoint subsets with √

|S||T | > (1 + γ)2

(1− γ)3
· λn
d
.

Then e(S, T ) > 0.

Proof. Under our assumptions, the lower bound in (2) is strictly positive. □

5. Random subgraphs of almost regular expanders

In this section, we show that a random induced subgraph of an almost (n, d, λ)-graph or a
bipartite spectral expander is typically a spectral expander by itself. This serves as our main tool
in the proof of our main result.

5.1. Chernoff’s bounds. We extensively use the following well-known Chernoff’s bounds for the
upper and lower tails of the hypergeometric distribution throughout the paper. The following
lemma was proved by Hoeffding [19] (also see Section 23.5 in [14]).

Lemma 5.1 (Chernoff’s inequality for hypergeometric distribution). Let X ∼ Hypergeometric(N,K, n)
and let E[X] = µ. Then

• P
[
X < (1− a)µ

]
< e−a2µ/2 for every a > 0;

• P
[
X > (1 + a)µ

]
< e−a2µ/3 for every a ∈ (0, 32).

5.2. Random induced subgraphs. The following theorem is the main result of this section. It
asserts that with probability at least 1−n−Θ(1), random (induced) subgraphs of spectral expanders
are also spectral expanders.

Theorem 5.2 (Random subgraphs of spectral expanders). Let γ ∈ (0, 1
200 ] be a constant. There

exists an absolute constant C such that the following holds for sufficiently large n. Let d, λ > 0, let
σ ∈ [ 1n , 1), and let G be an (n, (1± γ)d, λ)-graph. Let X ⊆ V (G) with |X| = σn be a subset chosen
uniformly at random, and let H := G[X] be the subgraph of G induced by X. Assume that

σd ≥ Cγ−2 log n and σλ ≥ C
√

σd log n.

Then with probability at least 1− n−1/13, H is a
(
σn, (1± 2γ)σd, 6σλ

)
-graph.

Let us comment on the two conditions appearing in Theorem 5.2. The first condition allows the
random subgraph to be quite sparse – with degrees of the order of log n – but not sparser than
that. Below that level, the degrees of the random subgraph will become unstable and it will not
be approximately regular. The second condition is, up to a logarithmic factor, the Alon-Boppana
bound, which dictates that the second singular value of an approximately σd-regular graph must
always be Ω(

√
σd). In other words, the conditions of Theorem 5.2 are almost necessary for a

subgraph H to be an almost regular expander.

The proof of Theorem 5.2 is based on bounds of the spectral norm of a random submatrix, which
is obtained from a given n × n matrix B by choosing a uniformly random subset of rows and a
uniformly random subset of columns of B.

There are two natural ways to choose a random subset of the set [n]. We can make a random
subset I by selecting every element of [n] independently at random with probability σ ∈ (0, 1). In
this case, we write

I ∼ Subset(n, σ).

Alternatively, we can choose any m-set J of [n] with the same probability 1/
(
n
m

)
. In this case, we

write
J ∼ Subset(n,m).

9



Note that if m = σn, the models Subset(n, σ) and Subset(n,m) are closely related but not
identical. It should be clear from the context which one we consider.

For a given subset I ⊂ [n], we denote by PI the orthogonal projection in Rn onto RI . In other
words, PI is the diagonal matrix with Pii = 1 if i ∈ I and Pii = 0 if i ̸∈ I.

The main tool of this section is the following bound. It is worth mentioning that several similar
results have been proved before, for example, in [40] and [46].

Theorem 5.3 (Norms of random submatrices). Let B be an n×n matrix. Let I, I ′ ∼ Subset(n, σ)
be two independent subsets, where σ ∈ (0, 1). Let p ≥ 2 and let q = max{p, 2 log n}. Then

Ep∥PIBPI′∥ ≤ σ∥B∥+ 3
√
qσ
(
∥B∥1→2 +

∥∥BT
∥∥
1→2

)
+ 8q∥B∥∞ .

Here Ep[X] = (E|X|p)1/p is the Lp norm of the random variable X; the norm ∥·∥1→2 denotes the
norm of a matrix as an ℓ1 → ℓ2 linear operator, which also equals to the maximum ℓ2 norm of a
column; and ∥·∥∞ denotes the maximum absolute entry of a matrix.

We use the following result to derive Theorem 5.3.

Lemma 5.4 (Rudelson-Vershynin [40]). Let A be an m×n matrix with rank r. Let I ∼ Subset(n, σ),
where σ ∈ (0, 1). Let p ≥ 2 and let q = max{p, 2 log r}. Then

Ep∥API∥ ≤
√
σ∥A∥+ 3

√
qEp∥API∥1→2 .

Proof of Theorem 5.3. By applying Lemma 5.4 twice (in the same manner as in [46]), we obtain

Ep∥PIBPI′∥ ≤
√
σEp∥PIB∥+ 3

√
qEp∥PIBPI′∥1→2

≤ σ∥B∥+ 3
√
qσEp

∥∥BTPI

∥∥
1→2

+ 3
√
qEp∥PIBPI′∥1→2

≤ σ∥B∥+ 3
√
qσ
∥∥BT

∥∥
1→2

+ 3
√
qEp∥PIB∥1→2 ,

where the last inequality follows since the 1 → 2 norm of a submatrix is bounded by the 1 → 2
norm of a matrix. To complete the proof, we use the following bound due to Tropp [46]:

Ep∥PIB∥1→2 ≤
√
σ∥B∥1→2 + 21.25

√
q∥PIB∥∞

≤
√
σ∥B∥1→2 + 21.25

√
q∥B∥∞ . □

Now we would like to make I = I ′ and change the model of sampling because our goal is to
study random subsets of fixed size of a given set. The following tools make this possible.

Lemma 5.5 (Decoupling [46]). Let B be a diagonal-free symmetric n × n matrix. Let I, I ′ ∼
Subset(n, σ) be two independent subsets, where σ ∈ (0, 1). Then for every p ≥ 2, we have

Ep∥PIBPI∥ ≤ 2Ep∥PIBPI′∥ .

Lemma 5.6 (Random subset models [45]). Let B be an n × n matrix. Let I ∼ Subset(n, σ) and
J ∼ Subset(n,m) be two independent subsets, where σ ∈ (0, 1) and m = σn ≥ 1. Then for every
p ≥ 2, we have

Ep∥PJBPJ∥ ≤ 21/pEp∥PIBPI∥ .

By combining the two lemmas above and Theorem 5.3, we can obtain a corollary as follows:

Corollary 5.7 (Norms of random submatrices). Let B be a symmetric real n × n matrix. Let
J ∼ Subset(n,m), where σ ∈ (0, 1) and m = σn ≥ 1. Let p ≥ 2 and let q = max{p, 2 log n}. Then

Ep∥PJBPJ∥ ≤ 4σ∥B∥+ 24
√
qσ∥B∥1→2 + 35q∥B∥∞ .
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Proof. Consider the symmetric, diagonal-free matrix B0 = B−D where D := diag(B1,1, . . . , Bn,n).
Combining Theorem 5.3 with Lemmas 5.5 and 5.6, we obtain the following:

Ep∥PJB0PJ∥ ≤ 4σ∥B0∥+ 24
√
qσ∥B0∥1→2 + 32q∥B0∥∞ .

Note that ∥B0∥ ≤ ∥B∥ +∥D∥, ∥B0∥1→2 ≤∥B∥1→2, ∥B0∥∞ ≤∥B∥∞, and ∥PJBPJ∥ ≤ ∥PJB0PJ∥ +
∥PJDPJ∥ ≤∥PJB0PJ∥+∥D∥. This implies

Ep∥PJBPJ∥ ≤ Ep∥PJB0PJ∥+∥D∥ ≤ 4σ
(
∥B∥+∥D∥

)
+ 24

√
qσ∥B∥1→2 + 32q∥B∥∞ +∥D∥ .

Notice that ∥D∥ = maxi
∣∣Bi,i

∣∣ ≤∥B∥∞ to complete the proof. □

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let C > 0 be a sufficiently large absolute constant. To see that the
random induced subgraph H := G[X] is almost regular whp, we can apply Lemma 5.1 with
n, (1±γ)d, σn, γ/(1+γ) in place of N,K, n, α. Since σd ≥ Cγ−2 log n for sufficiently large absolute
constant C > 0, it follows that, with probability at least 1− n−1, all degrees of H are (1± 2γ)σd.
Thus, it remains to bound the second singular value of AH whp, where AH is the adjacency matrix
of H.

It is convenient to first work with normalized matrices. So let us consider the normalized adja-
cency matrix

ĀG = D−1/2AGD
−1/2, where D = diag(d1, . . . , dn) (4)

is the degree matrix of G. Note that for any real m × n matrix A, we have that s2(A) =
minB ∥A−B∥, where the minimum is over all rank-one m × n matrices B (see Lemma A.4).
Thus, by applying Observation 3.5, we have

s2(ĀG) =∥B∥ , where B = ĀG − 1

a
D1/2

1n1
T
nD

1/2 and a =

n∑
i=1

di. (5)

Applying Corollary 5.7 for any p ≥ 2 and q = max{p, 2 log n}, we obtain

Ep∥PXBPX∥ ≤ 4σ∥B∥+ 24
√
qσ∥B∥1→2 + 35q∥B∥∞ . (6)

Let us bound each of the three terms on the right hand side.

Bounding ∥B∥. First, by (5), Corollary 4.2 and the assumptions, we have

∥B∥ = s2(ĀG) ≤
s2(AG)

(1− γ)d
≤ 1.1λ

d
. (7)

Bounding ∥B∥1→2. Triangle inequality yields

∥B∥1→2 ≤
∥∥ĀG

∥∥
1→2

+
1

a

∥∥D1/2
1n1

T
nD

1/2
∥∥
1→2

. (8)

Let us bound each of the terms appearing on the right hand side. First,∥∥ĀG

∥∥
1→2

=
∥∥D−1/2AGD

−1/2
∥∥
1→2

≤
∥∥D−1

∥∥∥AG∥1→2 .

We have
∥∥D−1

∥∥ = maxi(1/di) ≤ 1.1/d and ∥AG∥1→2 = maxj
√
dj ≤ 1.1

√
d. Thus,∥∥ĀG

∥∥
1→2

≤ 1.3√
d
. (9)

Next,

a =

n∑
i=1

di ≥ 0.9dn. (10)
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Moreover, ∥∥D1/2
1n1

T
nD

1/2
∥∥
1→2

≤∥D∥ ·
∥∥∥1n1Tn∥∥∥

1→2
≤ (1 + γ)d ·

√
n ≤ 1.1d

√
n. (11)

Putting (9), (10) and (11) into (8), we get

∥B∥1→2 ≤
1.3√
d
+

1

0.9dn
· 1.1d

√
n ≤ 2.6√

d
. (12)

Bounding ∥B∥∞. Triangle inequality yields

∥B∥∞ ≤
∥∥ĀG

∥∥
∞ +

1

a

∥∥D1/2
1n1

T
nD

1/2
∥∥
∞ . (13)

All entries of ĀG are 1/
√
didj ≤ 1.1/d, and all entries of D1/2

1n1
T
nD

1/2 are
√

didj ≤ 1.1d. Also,
recall that a ≥ 0.9dn by (10). Thus, plugging them into (13), we obtain

∥B∥∞ ≤ 1.1

d
+

1

0.9dn
· 1.1d ≤ 2.4

d
. (14)

Putting (7), (12) and (14) into (6), we obtain

Ep∥PXBPX∥ ≤ 4.4σλ

d
+ 63

√
qσ

d
+

84q

d
.

Multiplying on the left and right by D1/2 inside the norm, we conclude that

Ep

∥∥∥D1/2PXBPXD1/2
∥∥∥ ≤∥D∥Ep∥PXBPX∥ ≤ 5σλ+ 70

√
qσd+ 93q =: λ0,

where we used that ∥D∥ = maxi di ≤ 1.1d. Since diagonal matrices commute, we can express the
matrix above as follows:

D1/2PXBPXD1/2 = PXD1/2BD1/2PX = PXAGPX − 1

a
PXD1n1

T
nDPX ,

where in the last step we used (4) and (5). Note that 1
aPXD1n1

T
nDPX is a rank one matrix. Thus,

by Lemma A.4, we have s2(PXAGPX) ≤
∥∥∥D1/2PXBPXD1/2

∥∥∥, and thus

Eps2(PXAGPX) ≤ λ0.

Since the adjacency matrix AH of the induced subgraph H is a σn × σn submatrix of the n × n
matrix PXAGPX , by the Interlacing Theorem for singular values (Theorem A.2), it follows that

Eps2(AH) ≤ λ0.

Now choose p = 2 log n and thus q = p = 2 log n. Applying Markov’s inequality, we obtain

P
[
s2(AH) ≥ 1.1λ0

]
= P

[
s2(AH)p ≥ (1.1λ0)

p
]
≤
(
Eps2(AH)

1.1λ0

)p

≤ (1.1)−p = (1.1)−2 logn ≤ n−0.08.

In other words, with probability at least 1− n−0.08, we have

s2(AH) < 1.1λ0 ≤ 5.5σλ+ 109
√

σd log n+ 205 log n.

To complete the proof, we show that the first term dominates the right hand side. Indeed,
since the absolute constant C is sufficiently large, the first condition in Theorem 5.2 implies that
205 log n ≤

√
σd log n. Similarly, the second condition in the theorem implies that 110

√
σd log n ≤

0.5σλ. Then it follows that
s2(AH) ≤ 5.5σλ+ 0.5σλ = 6σλ.

Therefore, with probability at least (1−n−1)(1−n−0.08) ≥ 1−n−1/13, H is a
(
σn, (1± 2γ)σd, 6σλ

)
-

graph, which completes the proof of Theorem 5.2. □
12



5.3. Bipartite spectral expanders. We next consider bipartite spectral expanders with partition
V = V1 ∪ V2 which is defined as below:

Definition 5.8. We say that a bipartite graph H = (V1 ∪ V2, E) is an (n, (1 ± γ)d, λ)-bipartite
expander if H is an induced bipartite subgraph of some (n, (1 ± γ)d, λ)-expander G with V (G) =

V1 ∪ V2, and for each i = 1, 2, and for every v ∈ Vi, we have degH(v) = (1± γ)d|V3−i|
n .

By a similar approach, we can also prove that for randomly chosen X ⊆ V1 and Y ⊆ V2, the
induced bipartite subgraph G[X,Y ] is typically also a bipartite spectral expander. We describe
this property precisely as follows.

Theorem 5.9 (Random subgraphs of bipartite spectral expanders). Let γ ∈ (0, 1
200 ] be a constant.

There exists an absolute constant C such that the following holds for sufficiently large n. Let
d, λ > 0, let σ1, σ2 ∈ [ 1n , 1), and let G = (V1 ∪ V2, E) be an (n, (1 ± γ)d, λ)-bipartite expander. Let
X ⊆ V1 with |X| = σ1|V1| be a subset chosen uniformly at random, and independently let Y ⊆ V2

with |Y | = σ2|V2| be a subset chosen uniformly at random. Let H := G[X,Y ] be the bipartite
subgraph of G induced by X and Y . Assume that for each i = 1, 2,

σid ≥ Cγ−2 log n and σiλ ≥ C
√

σid log n.

Then with probability at least 1 − n−1/13, H is an (m, (1 ± 2γ)dmn , 6σλ)-bipartite expander, where
m = σ1|V1|+ σ2|V2| and σ = max{σ1, σ2}.

The proof of Theorem 5.9 is almost the same as Theorem 5.2, and is included in Appendix B.

Sometimes we will work on the bipartite subgraph G[X,Y ] induced by random disjoint subsets
X,Y ⊆ V . We also have G[X,Y ] is a bipartite spectral expander whp, which is a direct corollary
of Theorem 5.2.

Corollary 5.10. Let γ ∈ (0, 1
200 ] be a constant. There exists an absolute constant C such that

the following holds for sufficiently large n. Let d, λ > 0, let σ1, σ2 ∈ [ 1n , 1), and let G be an
(n, (1 ± γ)d, λ)-graph. Let X,Y ⊆ V (G) with |X| = σ1n and |Y | = σ2n be two disjoint subsets
chosen uniformly at random, and let H := G[X,Y ] be the bipartite subgraph of G induced by X and
Y . Let σ := σ1 + σ2. Assume that

σ1d, σ2d ≥ Cγ−2 log n and σλ ≥ C
√
σd log n.

Then with probability at least 1− n−1/14, H is a
(
σn, (1± 2γ)σd, 6σλ

)
-bipartite expander.

Proof. Let C > 0 be a sufficiently large absolute constant. Since σ1n, σ2n ≥ Cγ−2 log n, by
Chernoff’s bounds, we have that

P
[
∃v ∈ V,deg(v,X) ̸= (1± 2γ)σ1n

]
≤ n−1

and

P
[
∃v ∈ V,deg(v, Y ) ̸= (1± 2γ)σ2n

]
≤ n−1.

Next, note that X ∪ Y is a random subset of size |X| + |Y | = σ1n + σ2n = σn. Now, since
σd = σ1d+σ2d ≥ 2Cγ−2 log n and σλ ≥ C

√
σd log n, Theorem 5.2 implies that with probability at

least 1− n−1/13,

G[X ∪ Y ] is a
(
σn, (1± 2γ)σd, 6σλ

)
-graph.

Therefore, we have that with probability at least (1− 2n−1)(1− n−1/13) ≥ 1− n−1/14,

H := G[X,Y ] is a
(
σn, (1± 2γ)σd, 6σλ

)
-bipartite expander,

which completes the proof. □
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6. Matchings in bipartite spectral expanders

In this section we prove some auxiliary results related to the existence of matchings in bipartite
spectral expanders. These results will be extensively used in the proof of the Connecting Lemma
(Lemma 7.1) and also in the proof of the main theorem.

First, we prove the existence of perfect matchings in a bipartite spectral expander with a balanced
bipartition.

Lemma 6.1. Let γ ∈ [0, 1
200 ] be a constant, let d > 0 and let λ ≤ d/5. Let G = (V,E) be an

(n, (1± γ)d, λ)-bipartite expander with parts V = V1 ∪ V2 such that |V1| = |V2|. Then G contains a
perfect matching.

Proof. It is enough to verify the following condition which is equivalent to Hall’s condition (see
Theorem 3.1.11 in [47]): For all i ∈ [2] and S ⊆ Vi of size |S| ≤ |Vi|/2, we have |N(S)| ≥ |S|.

Suppose to the contrary that there exists i ∈ [2] and an S ⊆ Vi, such that the set T := N(S) is
of size less than |S|. Since G is an (n, (1± γ)d, λ)-bipartite expander and since |V1| = |V2| = n/2,
we have that

e(S, T ) ≥ (1− γ)d

2
· |S|.

On the other hand, using the assumption that γ ≤ 1/200 and the expander mixing lemma for
almost regular expanders (Corollary 4.3), we obtain that

e(S, T ) ≤ (1 + γ)2d|S||T |
(1− γ)n

+
1 + γ

1− γ
· λ
√

|S||T | < 1.1d|S|
4

+ 0.21d|S|,

where we also used |T | < |S| ≤ n/4 and λ ≤ d/5.
Combining these two estimates we obtain a contradiction. This completes the proof. □

Next, we extend the definition of a matching to a star-matching, which plays a crucial role in
the proof of the Connecting Lemma (Lemma 7.1).

Definition 6.2. Let G = (V,E) be a graph and let V = S ∪ T be a partition. Let X ⊆ S and
Y ⊆ T be subsets with |X| ≤ |Y |/k. A collection of |X| vertex-disjoint copies of K1,k, each of
which is centered at some vertex in X and with leaves in Y , is called a k-matching from X to Y .
In particular, a 1-matching from S to T is a perfect matching assuming |S| = |T |.

We state the following lemma which provides us a sufficient condition for the existence of a
star-matching. We show that for an induced subgraph of a bipartite spectral expander, if all the
vertices in one of its parts have large degrees, then this subgraph contains a star-matching from
this part to the other.

Lemma 6.3. Let γ ∈ [0, 1
200 ] be a constant, let d > 0 and let λ ≤ d/25. Let G = (V,E) be an

(n, (1 ± γ)d, λ)-bipartite expander with parts V = V1 ∪ V2 such that |V1| ≤ |V2|. Then for every

X ⊆ V1 and Y ⊆ V2 of size |Y | ≥ 6|X|, if deg(x, Y ) ≥ 2d|V2|
3n for every x ∈ X, then there exists a

3-matching from X to Y .

Proof. We need to verify Hall’s condition. That is, we need to show that for all S ⊆ X, we have
|N(S)∩Y | ≥ 3|S|. Suppose to the contrary that there exists such an S with T := N(S)∩Y of size
less than 3|S|. By the assumption on the degrees, we obtain that

e(S, T ) ≥ 2d|V2|
3n

· |S|.
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On the other hand, using the expander mixing lemma for almost regular expanders (Corollary 4.3)
and the assumptions that γ ≤ 1/200, λ ≤ d/25, and |T | < 3|S| ≤ |V2|/2, we obtain that

e(S, T ) ≤ (1 + γ)2d|S||T |
(1− γ)n

+
1 + γ

1− γ
· λ
√
|S||T |

<
1.02d|S||V2|

2n
+ 0.041d

√
3|S|2

≤ d|S||V2|(1.02 + 0.164 ·
√
3)

2n

<
2d|S||V2|

3n
,

which is a contradiction. This completes the proof. □

Lastly, we prove that even if a small proportion of vertices in V2 are prohibited to be matched,
one can still find a large subset of V1 such that the star-matching from this subset to the remaining
part of V2 exists. We will show this by proving the set of vertices with low degrees is small.

Lemma 6.4. Let γ ∈ [0, 1
200 ] be a constant, d > 0, and λ ≤ d/250. Let G = (V,E) be an

(n, (1 ± γ)d, λ)-bipartite expander with parts V = V1 ∪ V2 such that |V1| ≤ |V2| ≤ 10|V1|. Then
for every X ⊆ V1 and for every Y ⊆ V2 such that |Y | ≥ 9|V2|/10 and |Y | ≥ 6|X|, there exists a
3-matching from some subset Z ⊆ X to Y , such that |Z| ≥ |X| − |V1|/260.
Proof. By assumptions, we have that |V2 \ Y | ≤ |V2|/10 ≤ |V1| and that

1

2
≤ |V2|

n
=

1

|V1|/|V2|+ 1
≤ 10

11
.

First, we claim that the set

D :=

{
x ∈ X

∣∣∣∣ deg(x, Y ) <
2d|V2|
3n

}
is of size at most |V1|/40. Recall that by Definition 5.8, for every v ∈ V1, deg(v) ≥ (1− γ) d|V2|

n . So
we obtain that

e(D,V2 \ Y ) ≥ (1− γ)
d|V2|
n

|D| − 2d|V2|
3n

|D| ≥
(
1

6
− γ

2

)
d|D|.

On the other hand, using the assumption that γ ≤ 1/200 and the expander mixing lemma for
almost regular expanders (Corollary 4.3), we have that

e(D,V2 \ Y ) ≤ (1 + γ)2d|D||V2 \ Y |
(1− γ)n

+
1 + γ

1− γ
· λ
√
|D||V2 \ Y |

≤ 1.02d|D|
11

+ 0.0041d
√
|D||V1|,

where in the last inequality we used the assumption λ ≤ d/250.
By combining these two estimates and rearranging, and using the assumption that γ ≤ 1/200,

we obtain
1

15
d|D| ≤

(
1

6
− 1

400
− 1.02

11

)
d|D| ≤ 0.0041d

√
|D||V1|,

which in turn implies that |D| ≤ |V1|/260 as desired.
Now we are ready to prove the lemma. Let Z := X \D and we wish to show that there exists

a 3-matching from Z to Y . By the definition of D, observe that deg(z, Y ) ≥ 2d|V2|
3n for all z ∈ Z.

Moreover, we have |Y | ≥ 6|X| ≥ 6|Z|. Therefore, by applying Lemma 6.3 to Z and Y , we conclude
that there exists a 3-matching from Z to Y as desired. This completes the proof. □
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7. Connecting Lemma

In this section we state and prove the Connecting Lemma. The proof is a slight modification
of an ingenious argument by Montgomery (see [31]). Before we state the lemma, recall that for
a digraph D = (V,E) and for two disjoint subsets X,Y ⊆ V , D[X,Y ] is the induced bipartite

subgraph of D with edge set E⃗(X,Y ). It would also be convenient for us to call D[X,Y ] a directed
(n, (1±γ)d, λ)-bipartite expander if by keeping only the edges oriented from X to Y and by ignoring
their directions, we obtain an (undirected) (n, (1± γ)d, λ)-bipartite expander.

Lemma 7.1 (Connecting Lemma). Let γ ∈ [0, 1
200 ] and α ∈ (0, 1) be constants, and let d1, d2, d3 >

0. Let D = (V,E) be a digraph on n vertices for sufficiently large integer n. Let ℓ, k ∈ N be such

that log n ≤ ℓ < 1
7n

α and k ≤
(
3
2

)ℓ
. Let X0, Y0 ⊆ V be two disjoint subsets with X0 = {x1, . . . , xk}

and Y0 = {y1, . . . , yk}, and let W ⊆ V \ (X0 ∪ Y0) be a subset of size |W | ≥ 22kℓ. Suppose that
λi ≤ di/250 for all i and that the following properties hold:

(P1) For at least 1 − n−α proportion of pairs of disjoint subsets W1,W2 ⊆ W of equal size k,
the induced bipartite subgraphs D[X0,W1], D[W2, Y0] and D[W1,W2] are directed (2k, (1±
γ)d1, λ1)-bipartite expanders.

(P2) For at least 1 − n−α proportion of subsets W1 ⊆ W of size 10k, the induced bipartite
subgraphs D[X0,W1] and D[W1, Y0] are directed (11k, (1± γ)d2, λ2)-bipartite expanders.

(P3) For at least 1 − n−α proportion of pairs of disjoint subsets W1,W2 ⊆ W with |W1| = k
and |W2| = 10k, the induced bipartite subgraphs D[W1,W2] and D[W2,W1] are directed
(11k, (1± γ)d2, λ2)-bipartite expanders.

(P4) For at least 1−n−α proportion of pairs of disjoint subsets W1,W2 ⊆ W of equal size 10k, the
induced bipartite subgraph D[W1,W2] is a directed (20k, (1± γ)d3, λ3)-bipartite expander.

Then, there exist vertex-disjoint directed paths P1, . . . , Pk, such that for each i ∈ [k], the directed
path Pi is from xi to yi, and V (Pi) \ {xi, yi} ⊆ W .

The proof consists of three steps. First, we show that W can be partitioned in a convenient way.

Lemma 7.2. Under the assumptions of Lemma 7.1, there exists a partition

W =
ℓ⋃

i=1

(Xi ∪ Yi ∪RX,i ∪RY,i) ∪ U (15)

with |Xi| = |Yi| = k and |RX,i| = |RY,i| = 10k for all 1 ≤ i ≤ ℓ, such that:

(Q1) D[Xi, Xi+1] and D[Yi+1, Yi] are directed (2k, (1 ± γ)d1, λ1)-bipartite expanders for all 0 ≤
i ≤ ℓ− 1;

(Q2) D[Xi, RX,1] and D[RY,1, Yi] are directed (11k, (1± γ)d2, λ2)-bipartite expanders for all 0 ≤
i ≤ ℓ;

(Q3) D[RX,i, RX,i+1], D[RY,i+1, RY,i] and D[RX,ℓ, RY,ℓ] are directed (20k, (1± γ)d3, λ3)-bipartite
expanders for all 1 ≤ i ≤ ℓ− 1;

(Q4) e⃗(A,B) > 0 for every subsets A ⊆ RX,ℓ and B ⊆ RY,ℓ of size at least k/12.

Proof. Take a uniformly random partition as in (15) with |Xi| = |Yi| = k and |RX,i| = |RY,i| = 10k.
By assumptions (P1)–(P4) and the union bound, the probability that at least one of (Q1)–(Q3)
does not hold is at most 7ℓn−α < 1, given that ℓ < 1

7n
α and that there are at most 7ℓ events to

consider. Moreover, (Q4) follows from (Q3) by Corollary 4.4 since

k

12
>

(1 + γ)2

(1− γ)3
· 20kλ3

d3
.

Therefore, with positive probability we obtain the desired partition. □
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In the rest of this section, we will extensively use the following simple lemma, which is a slightly
stronger version of Lemma B.1 in [10]. We include its (almost) trivial proof for completeness.

Lemma 7.3. Let X and Y be disjoint sets of vertices such that for every y ∈ Y , there exists a
directed path from some x ∈ X to y. Then for every α ∈ (0, 1], there exist a non-empty subset
X ′ ⊆ X of size at most ⌈α|X|⌉and a subset Y ′ ⊆ Y of size at least ⌊α|Y |⌋, so that for every y ∈ Y ′

there is a directed path from some x ∈ X ′ to y.

Proof. Suppose to the contrary that for every subset W ⊆ X of size |W | = ⌈α|X|⌉, the subset
YW ⊆ Y , where each y ∈ YW is connected with some x ∈ W by a directed path, is of size
|YW | < ⌊α|Y |⌋.

We prove the statement by double counting. On one hand, by definition of YW , we have that∑
|W |=⌈α|X|⌉

|YW | <
(

|X|
⌈α|X|⌉

)
⌊α|Y |⌋.

On the other hand, each x ∈ X is contained in
( |X|−1
⌈α|X|⌉−1

)
subsets W ⊆ X of size |W | = ⌈α|X|⌉.

Since each y ∈ Y is connected to at least one vertex x ∈ X by a directed path, we have that∑
|W |=⌈α|X|⌉

|YW | ≥
(

|X| − 1

⌈α|X|⌉ − 1

)
|Y |

=

(
|X|

⌈α|X|⌉

)
|Y |⌈α|X|⌉

|X|

≥
(

|X|
⌈α|X|⌉

)
α|Y |,

which is a contradiction. This completes the proof. □

The second, and main, step in the proof of the Connecting Lemma is summarized in the following
lemma that enables us to connect a single pair of vertices with the same indices.

Lemma 7.4. Using the same notations as in Lemma 7.1, consider a partition of W as obtained
by Lemma 7.2. For each 1 ≤ i ≤ ℓ, let R′

X,i ⊆ RX,i and R′
Y,i ⊆ RY,i be subsets of size at least 9k.

Let A := {u1, . . . , ut} ⊆ Xh and B := {v1, . . . , vt} ⊆ Yh for some 0 ≤ h ≤ ℓ and t ≥ k/6. Then,
there exists an index j and a directed path Pj of length 2ℓ+ 1 such that:

(1) Pj is from uj to vj,

(2) V (Pj) \ {uj , vj} ⊆
⋃ℓ

i=1

(
R′

X,i ∪R′
Y,i

)
, and

(3) |Pj ∩R′
X,i|, |Pj ∩R′

Y,i| ≤ 1 for all 1 ≤ i ≤ ℓ.

Proof. We will repeatedly apply the following claim.

Claim 7.5. For every A′ ⊆ A of size at least |A|/2, there exist a vertex ui ∈ A′ and a subset
Zℓ ⊆ R′

X,ℓ of size |A′| such that there exist directed paths of length ℓ from ui to every vertex in Zℓ.

Assume for a moment that we have proved the claim above. Then after applying it t
2 + 1 times,

we obtain a sequence of indices

I =
{
i1, . . . , i t

2
+1

}
⊆ [t]

and t
2 + 1 not necessarily disjoint subsets{

Wi1 , . . . ,Wi t
2+1

}
,
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such that for all 1 ≤ j ≤ t
2 + 1, Wij ⊆ R′

X,ℓ has size |Wij | = |A|/2 and there are directed paths of
length ℓ from uij to every vertex in Wij .

Applying similar arguments to Yi and R′
Y,i (here the “directed bipartite expander” is the digraph

obtained by keeping the edges directed towards Y ), we can find a set of t
2 + 1 indices

I ′ =

{
i′1, . . . , i

′
t
2
+1

}
⊆ [t]

and t
2 + 1 not necessarily disjoint subsets{

W ′
i′1
, . . . ,W ′

i′t
2+1

}
,

such that for all 1 ≤ j ≤ t
2 + 1, W ′

i′j
⊆ R′

Y,ℓ has size |W ′
i′j
| = |A|/2 and there are directed paths of

length ℓ from every vertex in W ′
i′j

to vi′j .

Since |I|+ |I ′| > t, there must exist some i ∈ I ∩ I ′. Since |Wi| = |W ′
i | = |A|/2 ≥ k/12, by (Q4),

there exists a directed edge from some w ∈ Wi to some w′ ∈ W ′
i . Concatenating the directed path

of length ℓ from ui to w, the directed edge ww′, and the directed path of length ℓ from w′ to vi,
this yields a directed path of length 2ℓ+1 from ui to vi as desired. Thus, it remains to prove Claim
7.5.

Proof of Claim 7.5. We start by expanding A′ to R′
X,1 using a 3-matching as follows:

Since by (Q2) we have that D[Xh, RX,1] is a directed (11k, (1 ± γ)d2, λ2)-bipartite expander, it
follows by Lemma 6.4 with X = A′ and Y = R′

X,1 that there exists a 3-matching from A′ to R′
X,1

in D[A′, R′
X,1] of size at least |A′| − k/260 ≥ |A′|/2. Let A′

1 ⊆ Xh and Z ′
1 ⊆ R′

X,1 be the centers

and the leaves of such a 3-matching, respectively, and observe that |Z ′
1| = 3|A′

1| ≥ 3|A′|/2.
Note that for every z ∈ Z ′

1, there exists a directed path (in fact, a directed edge) from some
u ∈ A′

1 to z. Thus, by applying Lemma 7.3 (with α = |A′|/|Z ′
1| ≤ 2/3), we obtain Z1 ⊆ Z ′

1 of size

|Z1| = |A′| and A1 ⊆ A′
1 of size at most (|A′|/|Z ′

1|) · |A′
1| ≤

2|A′|
3 , such that for every z ∈ Z1 there

exists a directed path from some vertex u ∈ A1 to z.
Next, we expand Z1 into R′

X,2 using a 3-matching as follows (note that this step is similar to the

previous, and the only reason that we describe it again is just because here the sets R′
X,1 and R′

X,2

are of equal size so the parameters are a little different):
Since by (Q3) we have that D[RX,1, RX,2] is a directed (20k, (1 ± γ)d3, λ3)-bipartite expander,

it follows by Lemma 6.4 with X = Z1 and Y = R′
X,2 that there exists a subset A′

2 ⊆ Z1 of size at

least |Z1| − 10k/260 ≥ |Z1|/2 = |A′|/2, such that there exists a 3-matching from A′
2 to R′

X,2. Let

Z ′
2 ⊆ R′

X,2 be the set of matched vertices and observe that |Z ′
2| = 3|A′

2| ≥ 3|A′|/2. Since for every

z ∈ Z ′
2 there exists a directed path from some u ∈ A1 to z, by applying Lemma 7.3 (to a family

of directed paths of length 2), we obtain Z2 ⊆ Z ′
2 of size |Z2| = |A′| and A2 ⊆ A1 of size at most

(|A′|/|Z ′
2|) · |A1| ≤ 2|A1|

3 ≤ 4|A′|
9 , such that for every z ∈ Z2, there exists a directed path from some

u ∈ A2 to z.
Now, by iterating the above procedure, we conclude that after the ith iteration we are left with

subsets Ai ⊆ A′ of size at most
(
2
3

)i
|A′| and Zi ⊆ R′

X,i of size |Zi| = |A′|, such that for every

vertex z ∈ Zi there exists a directed path from some vertex in Ai to z. Moreover, since after the ℓth

iteration we have |Aℓ| =
(
2
3

)ℓ
|A′| ≤

(
2
3

)ℓ
k ≤ 1 and since Aℓ is nonempty, we must have |Aℓ| = 1

which means that Aℓ = {ui} for some i ∈ [t]. Furthermore, there exist directed paths of length ℓ
from ui to every vertex in Zℓ as desired.

This completes the proof the Claim 7.5. □
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The proof of Lemma 7.4 is completed. □

Finally, we are ready to prove the Connecting Lemma.

Proof of Lemma 7.1. By Lemma 7.2, there exists a partition of W as (15) such that properties
(Q1)–(Q4) hold. We begin by applying Lemma 7.4 as many times as possible to generate directed
paths from X0 to Y0 using vertices in W \ U . In each iteration, we ignore the vertices in X0 that
have directed paths to their corresponding vertices in Y0 and remove the vertices. After i iterations,
the subsets of remaining vertices R′

X,i ⊆ RX,i and R′
Y,i ⊆ RY,i have size

|R′
X,i| = |R′

Y,i| ≥ 10k − k = 9k.

By Lemma 7.4, we stop when 5k/6 pairs of vertices are linked by vertex-disjoint directed paths of
length 2ℓ+ 1.

Denote the sets of remaining vertices in X0 and Y0 by A1 and B1. Since by (Q1) we have that
D[X0, X1] is a directed (2k, (1±γ)d1, λ1)-bipartite expander, it follows by Lemma 6.4 with X = A1

and Y = X1 that there exists a 3-matching MA1 from A1 to X1, and we orient the edges directed
from A1 to X1. Similarly, there exists a 3-matching MB1 from B1 to Y1 by Lemma 6.4, and we
orient the edges directed from Y1 to B1. Let W1 = X1 ∩ V (MA1) and Z1 = Y1 ∩ V (MB1). We now
apply Lemma 7.4 to connect the corresponding vertices in W1 and Z1 by directed paths of length
2ℓ+1, yielding directed paths of length 2ℓ+3 from vertex xi ∈ A1 to yi ∈ B1 for some i ∈ [k]. Here
by corresponding vertices we mean a pair of vertices (w, z) ∈ W1 × Z1 such that for some i ∈ [k],
w is matched to xi ∈ A1 ⊆ X0 in MA1 and z is matched to yi ∈ B1 ⊆ Y0 in MB1 . We can continue
applying Lemma 7.4 to the vertices of W1 and Z1 while avoiding the vertices that have been used
in the paths found in previous steps, and stop when there are k/6 unconnected vertices in W1 and
Z1. This corresponds to k/12 unconnected vertices in the original sets X0 and Y0. Continuing in
this fashion, we use ⌈log k⌉ iterations to connect all the vertices. Note that the number of available
vertices in each RX,i or RY,i at each step is at least 10k − k = 9k, which guarantees that Lemma
7.4 can be applied at each iteration. This completes the proof. □

8. Proof of Theorem 1.2

In this section, we will prove our main theorem, Theorem 1.2. Since regular spectral expanders
can be regarded as (n, (1± γ)d, λ)-graphs, the following, slightly stronger, statement will immedi-
ately imply Theorem 1.2.

Theorem 8.1. For any constant γ ∈ (0, 1
1200 ] and sufficiently large integer n, any (n, (1± γ)d, λ)-

graph with λ ≤ d/9000 and d ≥ log10 n contains a Hamilton cycle.

In order to find a Hamilton cycle, we will first randomly partition the vertex set V (G) into
several parts, and then apply the Connecting Lemma (Lemma 7.1) to build the absorbing path.
Subsequently, we will find a family of not too many vertex-disjoint paths covering all the remaining
vertices. Finally, we will introduce an auxiliary digraph which will be used to connect the paths
into a Hamilton cycle.

We need the following results which are proved by simple averaging.

Proposition 8.2. Let α ∈ [0, 1], 0 < m ≤ h ≤ n be integers, and V be an n-element set. Let

F ⊆
(
V
m

)
with |F| ≥ (1 − α)

(
n
m

)
. Then for a uniformly random h-set Y ⊆ V , with probability at

least 1− α1/2, we have that for at least 1− α1/2 proportion of m-sets B ⊆ Y , B ∈ F .

Proof. Suppose to the contrary that there are greater than α1/2
(
n
h

)
h-sets Y ⊆ V each containing

at least α1/2
(
h
m

)
m-sets B such that B /∈ F . Since each such subset B is counted at most

(
n−m
h−m

)
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times, there are in total greater than

1(
n−m
h−m

) · α1/2

(
n

h

)
· α1/2

(
h

m

)
= α

(
n

m

)
m-sets B such that B /∈ F . This contradicts the assumption. □

Next, we show that in a graph G = (V,E), given a graph property P (e.g. “being a bipar-
tite expander” with certain parameters), if for many pairs of disjoint subsets A,B ⊆ V we have
G[A,B] ∈ P, then for random disjoint subsets A and S ⊆ V \A with size larger than B, whp many
subsets B ⊆ S satisfy G[A,B] ∈ P.

Proposition 8.3. Let α ∈ [0, 1], let 0 < m ≤ h ≤ n/2 be integers, and let P be a graph property.
Let G = (V,E) be a graph on n vertices. Suppose that there are 1−α proportion of pairs of disjoint

m-sets A,B ⊆ V such that G[A,B] ∈ P. Then for A ∈
(
V
m

)
and S ∈

(
V
h

)
chosen uniformly at

random such that A ∩ S = ∅, with probability at least 1 − α1/2 − α1/4, we have that for at least
1− α1/4 proportion of m-sets B ⊆ S, G[A,B] ∈ P.

Proof. Let F ⊆
(
V
m

)
be the family of m-sets A such that for at least 1− α1/2 proportion of m-sets

B ⊆ V \ A, G[A,B] ∈ P. We claim that |F| ≥ (1− α1/2)
(
n
m

)
. Suppose to the contrary that there

are at least α1/2
(
n
m

)
m-sets A /∈ F . Then by definition, each such A contributes at least α1/2

(
n−m
m

)
pairs (A,B) such that G[A,B] /∈ P. Then there are at least α1/2

(
n
m

)
· α1/2

(
n−m
m

)
= α

(
n
m

)(
n−m
m

)
pairs (A,B) such that G[A,B] /∈ P, contradicting the assumption.

Now, for A ∈ F , let FA ⊆
(
V \A
m

)
be the m-sets B ⊆ V \ A such that G[A,B] ∈ P. Note that

|FA| ≥ (1− α1/2)
(
n−m
m

)
. Then Proposition 8.2 applied to FA implies that for a uniformly random

h-set S ⊆ V \A, with probability at least 1−α1/4, |FA∩
(
S
m

)
| ≥ (1−α1/4)

(
h
m

)
. By union bound, for

disjoint uniformly randomly chosen A ∈
(
V
m

)
and S ∈

(
V
h

)
, with probability at least 1−α1/2−α1/4,

we have that A ∈ F and |FA ∩
(
S
m

)
| ≥ (1 − α1/4)

(
h
m

)
. That is, for at least 1 − α1/4 proportion of

m-sets B ⊆ S, G[A,B] ∈ P. This completes the proof. □

We also prove a similar proposition for a graph property P regarding induced bipartite subgraphs.
In fact, we prove that in a graph G, for two disjoint subsets X,Y ⊆ V (G), if for many pairs A ⊆ X
and B ⊆ Y we have G[A,B] ∈ P, then for a random S ⊆ X of larger size than A, whp many pairs
A ⊆ S and B ⊆ Y satisfy G[A,B] ∈ P.

Proposition 8.4. Let α ∈ [0, 1], let 0 < m ≤ h ≤ n/2 be integers, and let P be a graph property.
Let G = (V,E) be a graph on n vertices, and let X,Y ⊆ V such that X ∩ Y = ∅, |X| ≥ h and
|Y | ≥ m. Suppose that there are 1 − α proportion of pairs of disjoint m-sets A ⊆ X,B ⊆ Y such

that G[A,B] ∈ P. Then for a uniformly random h-set S ⊆ X, with probability at least 1 − α1/4,

we have that for at least (1 − α1/2)(1 − α1/4) proportion of pairs of m-sets A ⊆ S and B ⊆ Y ,
G[A,B] ∈ P.

Proof. Let F ⊆
(
X
m

)
be the family of m-sets A ⊆ X such that for at least 1−α1/2 proportion of m-

sets B ⊆ Y , G[A,B] ∈ P. Note that |F| ≥ (1−α1/2)
(|X|
m

)
. Indeed, if there are more than α1/2

(|X|
m

)
m-sets A /∈ F , then by definition of F , there are more than α1/2

(|X|
m

)
·α1/2

(|Y |
m

)
= α

(|X|
m

)(|Y |
m

)
pairs

(A,B) such that G[A,B] /∈ P. This is a contradiction.
Now, Proposition 8.2 applied to F implies that for a uniformly random h-set S ⊆ X, with

probability at least 1− α1/4, |F ∩
(
S
m

)
| ≥ (1− α1/4)

(
h
m

)
. By the definition of F , there are at least

(1− α1/2)(1− α1/4) proportion of pairs of m-sets A ⊆ S and B ⊆ Y such that G[A,B] ∈ P.
This completes the proof. □
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In the rest of this section, we will always assume that γ ≤ 1/1200, λ ≤ d/9000, and that
G = (V,E) is an (n, (1 ± γ)d, λ)-graph with sufficiently large integer n such that d ≥ log10 n.
Since an (n, (1± γ)d, λ)-graph is also an (n, (1± γ)d, λ′)-graph when λ ≤ λ′, we may assume that√
d log4 n ≤ λ ≤ d/9000. Also, let

h :=
n

log n
, m :=

n

log3 n
, k :=

n

log5 n
, σ :=

2m

n
and ρ :=

2k

n
.

8.1. Partitioning the graph. First, we find a partition of the vertex set of the (n, (1 ± γ)d, λ)-
graph G with some nice properties.

Lemma 8.5. There exists a partition V =
⋃8

i=1 Ui with |U1| = |U2| = |U3| = |U4| = m, |U5| =
|U6| = h, |U7| = n

2 , and U8 = V \
(⋃7

i=1 Ui

)
such that the following properties hold:

(R1) for each 1 ≤ i ≤ 8 we have

deg(v, Ui) = (1± 2γ)
d|Ui|
n

for every vertex v ∈ V ;

(R2) for each 1 ≤ i < j ≤ 4 we have

G[Ui, Uj ] is a
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander;

(R3) for each 1 ≤ i ≤ 4 and j = 5, 6, for at least 1− n−1/56 proportion of subsets S ⊆ Uj of size
m,

G[Ui, S] is a
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander;

also, for at least 1− n−1/56 proportion of subsets S ⊆ Uj of size 10m,

G[Ui, S] is an

(
11m, (1± 2γ)

11σd

2
, 33σλ

)
-bipartite expander;

(R4) for each 1 ≤ i ≤ 4, for at least 1−n−1/53 proportion of subsets S ⊆ Ui and T ⊆ U7 of equal
size k,

G[S, T ] is a
(
2k, (1± 2γ)ρd, 6ρλ

)
-bipartite expander;

also, for at least 1 − n−1/53 proportion of subsets S ⊆ Ui and T ⊆ U7 with |S| = 10k and
|T | = k,

G[S, T ] is an

(
11k, (1± 2γ)

11ρd

2
, 60ρλ

)
-bipartite expander;

(R5) G[U5] and G[U6] are
(
h, (1± 2γ)dhn , 6λhn

)
-graphs, and G[U7] is an

(
n
2 , (1± 2γ)d2 , λ

)
-graph.

Proof of Lemma 8.5. Let V =
⋃8

i=1 Ui be a uniformly random partition with |U1| = |U2| = |U3| =
|U4| = m, |U5| = |U6| = h, and |U7| = n

2 . We wish to prove that each property among (R1)– (R5)
holds whp.

Property (R1). First, note that since d|Ui|
n = ω(log n) for each 1 ≤ i ≤ 8, it follows by Chernoff’s

bounds and a union bound that

P
[
∃v ∈ V,deg(v, Ui) ̸= (1± 2γ)

d|Ui|
n

for some 1 ≤ i ≤ 8

]
≤ ne−Θ(d|Ui|/n) = o(1).

Thus, property (R1) holds with probability 1 − o(1). In the rest of the proof, it is enough to
condition on property (R1).
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Property (R2). For each 1 ≤ i < j ≤ 4, note that Ui and Uj are uniformly random disjoint
subsets of equal size m. Since σd = ω(γ−2 log n) and σλ = ω

(√
σd log n

)
, Corollary 5.10 implies

that with probability at least 1− n−1/14,

G[Ui, Uj ] is a
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander.

Thus, by a union bound, (R2) holds with probability at least 1− 6n−1/14 = 1− o(1).

Property (R3). With another application of Corollary 5.10, one can obtain that for at least

1− n−1/14 proportion of disjoint subsets U0, U
′
0 ⊆ V of equal size m,

G[U0, U
′
0] is a

(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander.

Note that for each 1 ≤ i ≤ 4 and j = 5, 6, Ui is a uniformly random m-set and Uj ⊆ V \ Ui

is a uniformly random h-set. Thus, by Proposition 8.3 applied with Ui, Uj ,m, h, n−1/14 in place of

A,S,m, h, α, we have that with probability at least 1 − n−1/28 − n−1/56 ≥ 1 − n−1/57, for at least
1− n−1/56 proportion of m-sets S ⊆ Uj ,

G[Ui, S] is a
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander.

Therefore, by a union bound, the first part of (R3) holds with probability at least 1− 8n−1/57 =
1 − o(1). The same argument also implies that the second part of (R3) holds with probability at

least 1− 8n−1/57 = 1− o(1).

Property (R4). Since G[U7 ∪ U c
7 ] = G is an (n, (1± γ)d, λ)-graph by assumption, it follows that

G[U7, U
c
7 ] is an (n, (1 ± γ)d, λ)-bipartite expander by (R1). Thus, since ρd = ω(γ−2 log n) and

ρλ = ω
(√

ρd log n
)
, Theorem 5.9 implies that for at least 1− n−1/13 proportion of pairs of subsets

S ⊆ U c
7 and T ⊆ U7 of equal size k,

G[S, T ] is a
(
2k, (1± 2γ)ρd, 6ρλ

)
-bipartite expander.

Note that for each 1 ≤ i ≤ 4, Ui ⊆ U c
7 is a uniformly random m-set. Thus, by Proposition 8.4

applied with U c
7 , U7, Ui, k,m, n−1/13 in place of X,Y, S,m, h, α, we have that the following holds

with probability at least 1− n−1/52: for at least (1− n−1/26)(1− n−1/52) ≥ 1− n−1/53 proportion
of pairs of subsets S ⊆ Ui and T ⊆ U7 of equal size k, G[S, T ] is a

(
2k, (1± 2γ)ρd, 6ρλ

)
-bipartite

expander.
Therefore, by a union bound, the first part of (R4) holds with probability at least 1− 4n−1/52 =

1 − o(1). The same argument also implies that the second part of (R4) holds with probability at

least 1− 4n−1/52 = 1− o(1).

Property (R5). First, for each i = 5, 6, Theorem 5.2 implies that with probability at least

1 − n−1/13, G[Ui] is an
(
h, (1± γ)dhn , 6λhn

)
-graph. Next, by (R1), we have that for every vertex

v ∈ V , deg(v, U7) = (1 ± 2γ)d|U7|
n = (1 ± 2γ)n2 . Now, note that G[U7] is an induced subgraph

of G, so the adjacency matrix of G[U7] is a submatrix of the adjacency matrix of G. Thus, by
Interlacing Theorem for singular values (Theorem A.2), s2(G[U7]) ≤ s2(G) ≤ λ. Therefore, G[U7]

is an
(
n
2 , (1± 2γ)d2 , λ

)
-graph.

All in all, with positive probability all properties (R1)–(R5) hold, which guarantees a partition

V =
⋃8

i=1 Ui satisfying all desired properties. This completes the proof. □
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8.2. Constructing Absorbers. Next, we pick a partition V =
⋃8

i=1 Ui as in Lemma 8.5. In order
to be consistent with the proof outline, we will use the following notation:

X := U1, A := U2, B := U3, Y := U4, R1 := U5, R2 := U6, W1 := U7, W2 := U8.

By (R2), the bipartite induced subgraph G[X,A] is a
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander,

so G[X,A] has a perfect matching by Lemma 6.1 since 6σλ ≤ σd/5. Similarly, we can ensure
perfect matchings in G[A,B] and G[B, Y ], respectively. Thus, there are labels X = {x1, . . . , xm},
A = {a1, . . . , am}, B = {b1, . . . , bm}, and Y = {y1, . . . , ym} such that for each 1 ≤ i ≤ m, we have

xiai, aibi, biyi ∈ E(G).

Next, we show how to complete the construction of our absorbers (which are just cycles with
designated vertices x, a, b, y) and additionally the absorbing path using the Connecting Lemma

(Lemma 7.1). Recall that 0 < γ ≤ 1/1200, m = n
log3 n

, d ≥ log10 n and
√
d log4 n ≤ λ ≤ d/9000.

Lemma 8.6. There exist vertex-disjoint paths P := {Pi}i∈[m] and Q := {Qi}i∈[m−1], such that Pi

connects xi and yi, Qi connects bi and ai+1, V (Pi) \ {xi, yi} ⊆ R1 and V (Qi) \ {bi, ai+1} ⊆ R2.

Proof. We only prove the existence of P as the existence of Q follows a similar application of
Lemma 7.1. We shall verify (P1)–(P4) of Lemma 7.1 with parameters 4γ, 1/57, log n,m in place of
γ, α, ℓ, k, and vertex sets X,Y,R1 playing the role of X0, Y0,W , respectively. Note that Lemma 7.1
can also be applied to undirected graphs (one can simply treat each edge as being directed in both
directions).

Property (P2). By (R3), for at least 1− 2n−1/56 proportion of subsets S ⊆ R1 of size 10m,

both G[X,S] and G[S, Y ] are

(
11m, (1± 2γ)

11σd

2
, 33σλ

)
-bipartite expanders.

Since 33σλ ≤ 1
250 · 11σd

2 , this proves (P2) with a union bound.

Properties (P1), (P3) and (P4). First, by (R3), for at least 1 − 2n−1/56 proportion of subsets
S ⊆ R1 of size m,

both G[X,S] and G[S, Y ] are
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expanders.

Next, consider two disjoint subsets S, S′ ⊆ R1 of size |S| = am and |S′| = bm, where a, b ∈ [10].
Since σ = 2m

n , σd = ω
(
γ−2 log n

)
and σλ = ω

(√
σd log n

)
, it follows by Corollary 5.10 that for at

least 1− n−1/14 proportion of such subsets S and S′,

G[S, S′] is an

(
(a+ b)m, (1± 4γ)

(a+ b)σd

2
, 18(a+ b)σλ

)
-bipartite expander.

Substituting (a, b) by (1, 1), (1, 10), (10, 10) and using 36σλ ≤ σd/250, we obtain (P1), (P3) and
(P4).

Therefore, by the Connecting Lemma (Lemma 7.1), we conclude the existence of vertex-disjoint
paths P := {Pi}i∈[m], such that Pi connects xi and yi, and V (Pi) \ {xi, yi} ⊆ R1. □

Now we have our absorbing path: let P be the path obtained by concatenating the paths in P
and Q, the perfect matching between X and A, and the perfect matching between B and Y (see
Figure 1). Note that the end vertices of P are a1 and bm. Also, recall that the key property of the
absorbing path is that we can remove any subfamily of P from P and still obtain a path with ends
a1 and bm (by using the matching edges between A and B).
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8.3. Spectral properties of G[Y,X]. After building the absorbing path, we aim to define an
auxiliary digraph which will later be used to tailor a system of paths into a Hamilton cycle using
the Connecting Lemma. To this end, we need to make sure that this auxiliary digraph satisfies
some “nice” properties (see (P1)–(P4)) so that we can apply the Connecting Lemma to it. Since
a large proportion of the digraph will be obtained by contracting carefully chosen pairs of vertices
from X and Y , and orienting some edges between the contracted pairs, it will be useful to first
describe some spectral properties of G[Y,X].

Lemma 8.7. The following properties hold:

(1) For at least 1− n−1/13 proportion of pairs of disjoint subsets X ′ ⊆ X and Y ′ ⊆ Y of equal
size k, the induced bipartite subgraph

G[Y ′, X ′] is a (2k, (1± 4γ)ρd, 36ρλ)-bipartite expander.

(2) For at least 1 − n−1/13 proportion of pairs of disjoint subsets X ′ ⊆ X and Y ′ ⊆ Y with
|Y ′| = k and |X ′| = 10k, the induced bipartite subgraph

G[Y ′, X ′] is an

(
11k, (1± 4γ)

11ρd

2
, 198ρλ

)
-bipartite expander.

(3) For at least 1− n−1/13 proportion of pairs of disjoint subsets X ′ ⊆ X and Y ′ ⊆ Y of equal
size 10k, the induced bipartite subgraph

G[Y ′, X ′] is a (20k, 10(1± 4γ)ρd, 360ρλ)-bipartite expander.

Proof. First recall that by (R2) (with X := U1 and Y := U4) we have that

G[Y,X] is a
(
2m, (1± 2γ)σd, 6σλ

)
-bipartite expander.

Consider two disjoint subsets Y ′ ⊆ Y and X ′ ⊆ X of size |Y ′| = ak and |X ′| = bk, where
a, b ∈ [10]. Since ρ = 2k

n , ρd = ω
(
γ−2 log n

)
and ρλ = ω

(√
ρd log n

)
, it follows by Theorem 5.9

that for at least 1− n−1/13 proportion of such subsets Y ′ and X ′,

G[Y ′, X ′] is a

(
(a+ b)k, (1± 4γ)

(a+ b)ρd

2
, 18(a+ b)ρλ

)
-bipartite expander.

Substituting (a, b) by (1, 1), (1, 10), (10, 10), we obtain properties (1)–(3). □

8.4. Covering the vertex-set with paths. We now show how to cover all the vertices which are
not covered by the absorbing path P by a small number of paths. For reasons that will become
clear in the next subsection, we will also need to show that the set of endpoints of these paths
satisfy some expansion properties.

In order to do so, note that all the work we have done so far (constructing the absorbing path
P ) took place within a subset of size O(n/ log n). Therefore, at least intuitively, we should be able
to move the unused vertices around without ruining spectral properties of the other sets too much.
More specifically, we move all the vertices in R1 ∪R2 that were not used in our absorbing path P
to the set W2, and let

W ′
2 := W2 ∪R1 ∪R2 \ (V (P) ∪ V (Q)).

First, we claim that both G[W ′
2] and G[W1,W

′
2] are still spectral expanders.

Lemma 8.8. The following properties hold:

(1) G[W ′
2] is a

(
|W ′

2|, (1± 3γ)d2 , λ
)
-graph, and

(2) G[W1,W
′
2] is a

(
|W1|+ |W ′

2|, (1± 3γ)d, λ
)
-bipartite expander.
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Proof. We start by estimating the degrees of vertices into W ′
2 and W1 ∪ W ′

2. Recall that W ′
2 is

obtained by removing O( n
logn) vertices from W2 ∪ R1 ∪ R2, that |W2| = n

2 − O( n
logn), and that

|R1 ∪R2| = 2h = O( n
logn). Moreover, by (R1), for every v ∈ V we have

deg(v,Wi) = (1± 2γ)
d|Wi|
n

for each i = 1, 2,

and

deg(v,R1 ∪R2) = (1± 2γ)
2dh

n
= o

(
d|W2|
n

)
.

Therefore, it follows that

deg(v,W ′
2) = (1± 3γ)

d

2
and deg(v,W1 ∪W ′

2) = (1± 3γ)d.

Next, we prove (1). Note that G[W ′
2] is an induced subgraph of G, so the adjacency matrix of

G[W ′
2] is a submatrix of the adjacency matrix of G. Therefore, by the Interlacing Theorem for

singular values (Theorem A.2), we obtain that the second singular value s2(G[W ′
2]) ≤ s2(G) ≤ λ.

Thus, by combining it with the above estimate on the degrees, it follows that

G[W ′
2] is a

(
|W ′

2|, (1± 3γ)
d

2
, λ

)
-graph

as desired.

Similarly, we prove (2). Once again, by applying the Interlacing Theorem for singular values
to the adjacency matrix of G[W1 ∪ W ′

2], we obtain that s2(G[W1 ∪ W ′
2]) ≤ s2(G) ≤ λ. Thus, by

combining it with the above estimates on the degrees, it follows that

G[W1,W
′
2] is a

(
|W1|+ |W ′

2|, (1± 3γ)d, λ
)
-bipartite expander

as desired. This completes the proof. □

Next, we construct a collection of not too many vertex-disjoint paths covering all the vertices in
W1 ∪ W ′

2. The basic idea here is to partition W1 and W ′
2 at random into several (labeled) parts

of size k or k − 1, and then to find maximal matchings between each two consecutive parts. It
is important that we will later need to connect all these paths together. In order to achieve it,
we need to make sure that the subsets of endpoints of the paths, denoted by V1, Vt ⊆ W1 ∪ W ′

2,
are such that G[X,V1] and G[Vt, Y ] have some “nice” spectral properties (see (P1)–(P4)). Since
W1 is still untouched, if we insist on choosing the (disjoint) sets V1, Vt uniformly at random from
W1, the desired properties will be implied by the pseudorandomness of G[X,W1] and G[Y,W1]
(as guaranteed in (R4)) and the machinery that we introduced before. The formal details are
summarized in the following lemma. Recall that ρ = 2k

n .

Lemma 8.9. Let t = ⌈ |W1|+|W ′
2|

k ⌉ and t1 = ⌈ |W1|−k
k ⌉. Then there exist partitions

W1 = V1 ∪ Vt ∪
t1⋃
i=2

Vi and W ′
2 =

t−1⋃
i=t1+1

Vi, (16)

where each part is of size either k or k−1, and in particular |V1| = |Vt| = k, such that the following
properties hold:

(S1) for every vertex v ∈ W1 ∪W ′
2, deg(v, Vi) = (1± 4γ)ρd2 for each 1 ≤ i ≤ t;

(S2) for each 1 ≤ i ≤ t− 1,

G[Vi, Vi+1] is a
(
|Vi|+ |Vi+1|, (1± 6γ)ρd, 13ρλ

)
-bipartite expander;
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(S3) for at least 1− n−1/213 proportion of pairs of disjoint subsets X ′ ⊆ X and Y ′ ⊆ Y of equal
size k, the induced bipartite subgraphs

G[V1, X
′] and G[Y ′, Vt] are

(
2k, (1± 2γ)ρd, 6ρλ

)
-bipartite expanders;

(S4) for at least 1− n−1/213 proportion of pairs of disjoint subsets X ′ ⊆ X and Y ′ ⊆ Y of equal
size 10k, the induced bipartite subgraphs

G[V1, X
′] and G[Y ′, Vt] are

(
11k, (1± 2γ)

11ρd

2
, 60ρλ

)
-bipartite expanders.

Proof. Let W1 and W ′
2 be randomly partitioned uniformly and independently into sets of size either

k or k − 1 each, so that

W1 = V1 ∪ Vt ∪
t1⋃
i=2

Vi and W ′
2 =

t−1⋃
i=t1+1

Vi,

and |V1| = |Vt| = k. Recall that G[W1] is an
(
n
2 , (1± 2γ)d2 , λ

)
-graph by (R5) and G[W ′

2] is a(
|W ′

2|, (1± 3γ)d2 , λ
)
-graph by Lemma 8.8. Since Vi is a uniformly random subset of size k or k−1,

Chernoff’s bounds imply that with probability at least 1−n−1 = 1−o(1), deg(v, Vi) = (1±4γ)dkn =

(1± 4γ)ρd2 for every v ∈ V and 1 ≤ i ≤ t, which verifies property (S1).

We now show that property (S2) holds whp. We consider pairs of subsets (Vi, Vi+1) in each of
the graphs G[W1], G[W ′

2] and G[W1,W
′
2] separately, as each of these graphs is an expander with

slightly different parameters:

Case 1: 1 ≤ i ≤ t1 − 1.

Recall that G[W1] is an
(
n
2 , (1± 2γ)d2 , λ

)
-graph and note that Vi, Vi+1 ⊆ W1 are disjoint

subsets of size k or k − 1 chosen uniformly at random. Since ρd = ω
(
γ−2 log n

)
and

ρλ = ω
(√

ρd log n
)
, by Corollary 5.10, we have that with probability at least 1− n−1/14,

G[Vi, Vi+1] is a
(
|Vi|+ |Vi+1|, (1± 4γ)ρd, 12ρλ

)
-bipartite expander.

Case 2: t1 + 1 ≤ i ≤ t− 2.

Recall that G[W ′
2] is a

(
|W ′

2|, (1± 3γ)d2 , λ
)
-graph and note that Vi, Vi+1 ⊆ W ′

2 are disjoint

subsets of size k or k − 1 chosen uniformly at random. Since |W2| = n
2 − O( n

logn), ρd =

ω
(
γ−2 log n

)
and ρλ = ω

(√
ρd log n

)
, by Corollary 5.10, we have that with probability at

least 1− n−1/14,

G[Vi, Vi+1] is a
(
|Vi|+ |Vi+1|, (1± 6γ)ρd, 13ρλ

)
-bipartite expander.

Case 3: i = t1 or t− 1.

Recall that by Lemma 8.8, G[W1,W
′
2] is a

(
|W1|+ |W ′

2|, (1± 3γ)d, λ
)
-bipartite expander

and note that Vi and Vi+1 are uniformly random subsets of different parts of size k or k−1.
Since |W1∪W2| = n−O( n

logn), ρd = ω
(
γ−2 log n

)
and ρλ = ω

(√
ρd log n

)
, by Theorem 5.9,

we have that with probability at least 1− n−1/13,

G[Vi, Vi+1] is a
(
|Vi|+ |Vi+1|, (1± 6γ)ρd, 7ρλ

)
-bipartite expander.
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Therefore, by a union bound, we have that with probability at least 1−2n−1/13− (t−3)n−1/14 =
1− o(1), G[Vi, Vi+1] is a

(
|Vi|+ |Vi+1|, (1± 6γ)ρd, 13ρλ

)
-bipartite expander for each 1 ≤ i ≤ t− 1,

which verifies property (S2).

We now show that (S3) holds whp. Recall that by (R4), for at least 1 − n−1/53 proportion of
subsets X ′ ⊆ X and S ⊆ W1 of equal size k,

G[X ′, S] is a
(
2k, (1± 2γ)ρd, 6ρλ

)
-bipartite expander.

Since V1 ⊆ W1 is a uniformly random subset of size k, by Proposition 8.4 applied with W1, X, V1, k,
k, n−1/53 in place of X,Y, S,m, h, α, we obtain that with probability at least 1 − n−1/212, for at
least (1 − n−1/106)(1 − n−1/212) ≥ 1 − n−1/213 proportion of k-sets X ′ ⊆ X, the induced bipartite
subgraph

G[V1, X
′] is a

(
2k, (1± 2γ)ρd, 6ρλ

)
-bipartite expander.

By the same argument and union bound, we have that each (S3) and (S4) holds with probability

at least 1− 2n−1/212.
By union bound we conclude the existence of desired partitions of W1 and W ′

2. □

Now we can obtain the paths covering exactly W1 ∪W ′
2 that we need. First, we find one path

that makes the remaining parts of equal size. Indeed, by (S1), we are allowed to find one edge
from an arbitrary vertex of a part of size k to the next part of size k. Doing this from V1 to Vt in
sequence, we are able to find a path passing through exactly all parts of size k.

Next, we cover the rest vertices by vertex-disjoint paths obtained by perfect matchings. For
simplicity, let us denote the remaining subsets of Vi by V ′

i . By applying (S1), (S2) and Interlacing
Theorem for singular values (Theorem A.2), we have that

(S2’) for each 1 ≤ i ≤ t− 1,

G[V ′
i , V

′
i+1] is a

(
2(k − 1), (1± 7γ)ρd, 13ρλ

)
-bipartite expander.

Thus, Lemma 6.1 implies that G[V ′
i , V

′
i+1] has a perfect matching for each 1 ≤ i ≤ t − 1 since

13ρλ ≤ ρd/5. By concatenating all perfect matchings in each subgraph induced by two consectutive
remaining parts, together with the path above, we obtain k vertex-disjoint paths S1, . . . , Sk whose
union covers W1 ∪ W ′

2, such that for each 1 ≤ i ≤ k, one of the endpoints of Si is in V1 and the
other is in Vt.

8.5. Obtaining the Hamilton cycle. With all the ingredients in previous sections, we are now
ready to complete the construction of a Hamilton cycle.

First, we aim to use Lemma 7.1 again to connect X0 and Y0 by the set of paths {xiPiyi | i ∈ [m]}.
Recall that a1 and bm are the endpoints of the absorbing path P . Let v0 := a1, w0 := bm,
{vj} := V (Sj) ∩ V1 and {wj} := V (Sj) ∩ Vt for each 1 ≤ j ≤ k. Let X0 := {v0, . . . , vk} and
Y0 := {w0, . . . , wk}.

In order to complete the connection, we define an auxiliary digraph D as follows: let V (D) =
X0 ∪ Y0 ∪ Z, where Z := {z1, . . . , zm}, and D contains the following directed edges:

(i) zizj if yixj ∈ E(G);
(ii) vαzi if vαxi ∈ E(G);
(iii) ziwα if yiwα ∈ E(G).

Observe that a uniformly random subset of Z naturally corresponds to a uniformly random
subset of indices, which then leads to a uniformly random subset of X and a uniformly random
subset of Y , where their indices are exactly the same. Thus, since λ ≤ d/9000, properties (P1)–(P4)
can be verified by Lemma 8.7, (S3), (S4) and the definition of the auxiliary digraph D. Therefore,
by applying Lemma 7.1 to X0, Y0 and Z we obtain a family of directed paths wiTivi+1, 0 ≤ i ≤ k
in D, where vk+1 := v0 and the inner vertices of the paths are from Z. For each path wiTivi+1, if
we replace each inner vertex zj by the path xjPjyj , then by the definition of D, this gives rise to
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a path wiT
′
ivi+1 in G. Thus, by the absorbing property, we can remove a family of paths in P and

use them to construct the paths wiT
′
ivi+1, 0 ≤ i ≤ k.

Formally, let
P0 := bmT ′

0v1S1w1 . . . SkwkT
′
ka1

be a path in G. For each 1 ≤ i ≤ m, if xiPiyi is contained in P0, then let Zi be the empty path on
no vertices, and otherwise let Zi be xiPiyi. Let

P ′
0 := a1Z1b1Q1a2Z2b2 . . . amZmbm.

Therefore, P0 ∪ P ′
0 is a Hamilton cycle of G. This completes the proof of both Theorems 8.1 and

1.2.
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Appendix A. Linear algebra background

In this section we collect some standard tools from linear algebra.
The following theorem provides a convenient tool for computing/bounding eigenvalues of a real

symmetric matrix (see for example Theorem 2.4.1 in [6]).

Theorem A.1 (Courant-Fischer Minimax Theorem). Let A be a symmetric real n×n matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then,

λk = max
dim(U)=k

min
x∈U\{0}

xTAx

xTx
= min

dim(U)=n−k+1
max

x∈U\{0}

xTAx

xTx
.

Since the notion of eigenvalues is undefined for non-square matrices, it would be convenient for
us to work with singular values which are defined for all matrices (see Definition 3.3). The following
theorem proved by Thompson [44] is useful when one wants to obtain non-trivial bounds on the
singular values of submatrices.
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Theorem A.2 (Interlacing Theorem for singular values). Let A be an m× n matrix and let

α1 ≥ α2 ≥ . . . ≥ αmin{m,n}

be its singular values. Let B be any p× q submatrix of A and let

β1 ≥ β2 ≥ . . . ≥ βmin{p,q}

be its singular values. Then

αi ≥ βi, for i = 1, 2, . . . ,min{p, q},
βi ≥ αi+(m−p)+(n−q), for i ≤ min{p+ q −m, p+ q − n}.

One of the most commonly used tools in linear algebra is singular value decomposition. We need
a slightly stronger version of it, which almost immediately follows from the standard proof:

Theorem A.3 (Singular value decomposition). Let M be a real m × n matrix with rank r. Let
s1 ≥ s2 ≥ · · · ≥ sr be all the positive singular values of M . Let u1 ∈ Rm and v1 ∈ Rn be unit
vectors such that Mv1 = s1u1. Then we can find an orthonormal bases {u1, . . . ,um} of Rm and
{v1, . . . ,vn} of Rn with u1 and v1 as above, and such that

M =

r∑
j=1

sjujv
T
j .

In particular, this equality implies that Mvj = sjuj for j = 1, . . . , r and Mvj = 0 for j > r.

We will also make use of the following simple corollary of the above theorem, which proof is
included for completion.

Lemma A.4 (Best low-rank approximation). Let A be a real m× n matrix. Then

s2(A) = min
B

∥A−B∥ ,

where the minimum is over all rank-one m× n matrices B, and ∥·∥ denotes the operator norm.
Moreover, the minimum is attained by B = s1(A)u1v

T
1 , where v1 ∈ Rn and u1 ∈ Rm are any

unit vectors such that Av1 = s1(A)u1.

Proof. Let A be a real m × n matrix with rank r. Let s1 ≥ s2 ≥ . . . ≥ sr be all positive singular
values of A, and let v1 ∈ Rn and u1 ∈ Rm be unit vectors such that Av1 = s1u1. By Theorem A.3,
there exist orthonormal bases {v1, . . . ,vn} of Rn and {u1, . . . ,um} of Rm, such that

A =
r∑

j=1

sjujv
T
j .

First, note that B = s1u1v
T
1 is a rank-one matrix that satisfies

∥A−B∥ =
∥∥∥ r∑
j=2

sjujv
T
j

∥∥∥ = s2.

Therefore, to finish the proof it suffices to show s2 ≤ ∥A − B∥ for every rank-one m × n matrix
B. We can express such a matrix as B = xyT for some nonzero vectors x ∈ Rm and y ∈ Rn.
Next, we can find a nontrivial linear combination w = av1 + bv2 such that ⟨y,w⟩ = 0; this implies
Bw = x(yTw) = 0. Without loss of generality, we can scale w so that ∥w∥ = 1, or equivalently,
a2 + b2 = 1. Therefore,

∥A−B∥2 ≥
∥∥(A−B)w

∥∥2
2
=∥Aw∥22 = a2s21 + b2s22 ≥ s22.

This completes the proof. □
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Finally, we state the chain rule for singular values, which is used in the proof of Corollary 4.2.

Lemma A.5 (Chain rule for singular values). Let A,B,C be n× n matrices. Then

sk(ABC) ≤∥A∥∥B∥ sk(C) for all k ∈ [n].

Proof. First assume that C = I. By the Minimax Theorem A.1, we have

sk(AB) = min
dim(U)=n−k+1

max
x∈S(U)

∥ABx∥2 ,

where S(U) denotes the set of all unit vectors in U . Since ∥ABx∥2 ≤ ∥A∥∥Bx∥2, it follows that
sk(AB) ≤∥A∥ sk(B). This argument also yields sk(BC) ≤ sk(B)∥C∥ once we notice that sk(BC) =
sk(C

TBT). Combining these two bounds, we complete the proof. □

Appendix B. Proof of Theorem 5.9

In this section, we prove Theorem 5.9 which states that a random induced subgraph of a bipartite
expander is still a bipartite expander with high probability.

The proof of Theorem 5.9 is very similar to Theorem 5.2. For a given partition [n] = V1 ∪ V2

and subsets I ⊂ V1 and J ⊆ V2, we denote by QI,J the orthogonal projection in Rn onto RI∪J . In
other words, QI,J is the diagonal matrix with Qii = 1 if i ∈ I ∪ J and Qii = 0 if i ̸∈ I ∪ J .

Our main tool is to change the model of sampling in order to use the results in Section 5, which
is described as below. The proof follows from [45] and we include its proof for completion.

Lemma B.1 (Random subset models). Let [n] = V1∪V2 be a partition. Let B be an n×n matrix.
Let I ∼ Subset(|V1|, σ1|V1|), J ∼ Subset(|V2|, σ2|V2|) and K ∼ Subset(n, σ) be independent subsets,
where for each i ∈ [2], σi ∈ (0, 1), σi|Vi| ≥ 1 and σ := max{σ1, σ2}. Then for every p ≥ 2, we have

Ep

∥∥QI,JBQI,J

∥∥ ≤ 41/pEp∥PKBPK∥ .

Proof. Let m := |V1|, and let ki := σi|Vi| for each i ∈ [2]. Let QI,J = Q1+Q2, where Q1 and Q2 are
both 0/1 diagonal matrices, the last n−m entries of Q1 are zeros, and the first m entries of Q2 are
zeros. Moreover, let PK = P1+P2, where P1 and P2 are both 0/1 diagonal matrices, the last n−m
entries of P1 are zeros, and the first m entries of P2 are zeros. We can make the computations as
follows:

P
[
∥PKBPK∥p > t

]
≥

m∑
j=k1

n−m∑
j′=k2

P
[
∥(P1 + P2)B(P1 + P2)∥p > t

∣∣∣∥P1∥ = j, ∥P2∥ = j′
]

· P
[
∥P1∥ = j

]
· P
[
∥P2∥ = j′

]
≥ P

[
∥(P1 + P2)B(P1 + P2)∥p > t

∣∣∣∥P1∥ = k1, ∥P2∥ = k2

]
·

m∑
j=k1

P
[
∥P1∥ = j

]
·
n−m∑
j′=k2

P
[
∥P2∥ = j′

]
≥ 1

4
P
[
∥(Q1 +Q2)B(Q1 +Q2)∥p > t

]
=

1

4
P
[
∥QI,JBQI,J∥p > t

]
.

The second inequality holds because the norm of a submatrix is at most the norm of the matrix
itself, and the last inequality relies on the fact that the median of the binomial distribution Bin(σ,m)
lies between σm−1 and σm, and ki ≤ σ|Vi| for each i ∈ [2]. Integrate with respect to t to complete
the proof. □

By combining Lemma B.1 and the tools in Section 5, we can obtain a corollary as follows:
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Corollary B.2 (Norms of random submatrices). Let B be a symmetric real n × n matrix. Let
I ∼ Subset(|V1|, σ1|V1|) and J ∼ Subset(|V2|, σ2|V2|) be independent subsets where for each i ∈ [2],
σi ∈ (0, 1) and σi|Vi| ≥ 1. Let σ := max{σ1, σ2}, let p ≥ 2 and let q = max{p, 2 log n}. Then

Ep

∥∥QI,JBQI,J

∥∥ ≤ 4σ∥B∥+ 24
√
qσ∥B∥1→2 + 35q∥B∥∞ .

Proof. Consider the symmetric, diagonal-free matrix B0 = B−D where D := diag(B1,1, . . . , Bn,n).
Combining Theorem 5.3 with Lemmas 5.5 and B.1, we obtain the following:

Ep

∥∥QI,JB0QI,J

∥∥ ≤ 4σ∥B0∥+ 24
√
qσ∥B0∥1→2 + 32q∥B0∥∞ .

Note that∥B0∥ ≤∥B∥+∥D∥,∥B0∥1→2 ≤∥B∥1→2,∥B0∥∞ ≤∥B∥∞, and
∥∥QI,JBQI,J

∥∥ ≤
∥∥QI,JB0QI,J

∥∥+∥∥QI,JDQI,J

∥∥ ≤
∥∥QI,JB0QI,J

∥∥+∥D∥. This implies

Ep

∥∥QI,JBQI,J

∥∥ ≤ Ep

∥∥QI,JB0QI,J

∥∥+∥D∥ ≤ 4σ
(
∥B∥+∥D∥

)
+ 24

√
qσ∥B∥1→2 + 32q∥B∥∞ +∥D∥ .

Notice that ∥D∥ = maxi
∣∣Bi,i

∣∣ ≤∥B∥∞ to complete the proof. □

We are now ready to prove Theorem 5.9.

Proof of Theorem 5.9. We want to show that whp, H := G[X,Y ] is an (m, (1 ± 2γ)dmn , 6σλ)-
bipartite expander, where m = σ1|V1|+ σ2|V2| and σ = max{σ1, σ2}. Since G = (V1 ∪ V2, E) is an
(n, (1± γ)d, λ)-bipartite expander, there is an (n, (1± γ)d, λ)-graph F with V (F ) = V1 ∪ V2, such
that G is an induced bipartite subgraph of F , and moreover

degF (v, V2) = (1± γ)
d|V2|
n

for every v ∈ V1, (17)

and

degF (v, V1) = (1± γ)
d|V1|
n

for every v ∈ V2. (18)

So it suffices to show that whp, the induced subgraph F0 := F [X ∪ Y ] is an (m, (1± 2γ)dmn , 6σλ)-

graph, and moreover degF0
(v, Y ) = (1 ± 2γ)d|Y |

n for every v ∈ X and degF0
(v,X) = (1 ± 2γ)d|X|

n
for every v ∈ Y .

Let C > 0 be a sufficiently large absolute constant. To see that the random induced sub-
graph F0 = F [X ∪ Y ] is almost regular whp, we can apply Lemma 5.1 with parameters |Vi|, (1 ±
γ)d|Vi|/n, σi|Vi|, γ/(1 + γ) in place of N,K, n, α, where i = 1, 2. Since σid ≥ Cγ−2 log n for each
i = 1, 2 and sufficiently large absolute constant C > 0, one can obtain from (17) and (18) that with
probability at least 1− n−1,

degF0
(v, Y ) = (1± 2γ)

d|Y |
n

for every v ∈ X, (19)

and

degF0
(v,X) = (1± 2γ)

d|X|
n

for every v ∈ Y. (20)

So for every vertex v ∈ X ∪ Y , degF0
(v) = degF0

(v,X) + degF0
(v, Y ) = (1 ± 2γ)d(|X|+|Y |)

n =

(1 ± 2γ)dmn . Thus, it remains to bound the second singular value of AF0 whp, where AF0 is the
adjacency matrix of F0.

It is convenient to first work with normalized matrices. So let us consider the normalized adja-
cency matrix

ĀF = D−1/2AFD
−1/2, where D = diag(d1, . . . , dn) (21)

is the degree matrix of F . According to Lemma A.4 and Observation 3.5, we have

s2(ĀF ) =∥B∥ , where B = ĀF − 1

a
D1/2

1n1
T
nD

1/2 and a =

n∑
i=1

di. (22)
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Applying Corollary B.2 for any p ≥ 2 and q = max{p, 2 log n}, we obtain

Ep∥QX,Y BQX,Y ∥ ≤ 4σ∥B∥+ 24
√
qσ∥B∥1→2 + 35q∥B∥∞ . (23)

Recall that∥B∥ ≤ 1.1λ/d in (7), ∥B∥1→2 ≤ 2.6/
√
d in (12), and∥B∥∞ ≤ 2.4/d in (14). Plugging

them into (23), we obtain

Ep

∥∥QX,Y BQX,Y

∥∥ ≤ 4.4σλ

d
+ 63

√
qσ

d
+

84q

d
.

Multiplying on the left and right by D1/2 inside the norm, we conclude that

Ep

∥∥∥D1/2QX,Y BQX,Y D
1/2
∥∥∥ ≤∥D∥Ep

∥∥QX,Y BQX,Y

∥∥ ≤ 5σλ+ 70
√
qσd+ 93q =: λ0,

where we used that ∥D∥ = maxi di ≤ 1.1d. Since diagonal matrices commute, we can express the
matrix above as follows:

D1/2QX,Y BQX,Y D
1/2 = QX,Y D

1/2BD1/2QX,Y = QX,Y AFQX,Y − 1

a
QX,Y D1n1

T
nDQX,Y ,

where in the last step we used (21) and (22). Note that 1
aQX,Y D1n1

T
nDQX,Y is a rank one matrix.

Thus, by Lemma A.4, we have s2(QX,Y AFQX,Y ) ≤
∥∥∥D1/2QX,Y BQX,Y D

1/2
∥∥∥, and thus

Eps2(QX,Y AFQX,Y ) ≤ λ0.

Since the adjacency matrix AF0 of the induced subgraph F0 is a m × m submatrix of the n × n
matrix QX,Y AFQX,Y , by the Interlacing Theorem for singular values (Theorem A.2), it follows
that

Eps2(AF0) ≤ λ0.

Now choose p = 2 log n and thus q = p = 2 log n. Applying Markov’s inequality, we obtain

P
[
s2(AF0) ≥ 1.1λ0

]
= P

[
s2(AF0)

p ≥ (1.1λ0)
p
]
≤
(
Eps2(AF0)

1.1λ0

)p

≤ (1.1)−p = (1.1)−2 logn ≤ n−0.08.

In other words, with probability at least 1− n−0.08, we have

s2(AF0) < 1.1λ0 ≤ 5.5σλ+ 109
√

σd log n+ 205 log n.

To complete the proof, we show that the first term dominates the right hand side. Indeed,
since the absolute constant C is sufficiently large, the first condition in Theorem 5.9 implies that
205 log n ≤

√
σd log n. Similarly, the second condition in the theorem implies that 110

√
σd log n ≤

0.5σλ. Then it follows that
s2(AF0) ≤ 5.5σλ+ 0.5σλ = 6σλ.

Therefore, with probability at least (1−n−1)(1−n−0.08) ≥ 1−n−1/13, H is an (m, (1±2γ)dmn , 6σλ)-
bipartite expander, which completes the proof of Theorem 5.9.

□
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