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Abstract. Attention plays a fundamental role in both natural and artificial intelligence
systems. In deep learning, attention-based neural architectures, such as transformer archi-
tectures, are widely used to tackle problems in natural language processing and beyond. Here
we investigate the most fundamental building blocks of attention and their computational
properties within the standard model of deep learning. We first derive a systematic taxon-
omy of all possible attention mechanisms within, or as extensions of the standard model into
18 classes depending on the origin of the attention signal, the target of the attention signal,
and whether the interaction is additive or multiplicative. Second, using this taxonomy, we
identify three key attention mechanisms: additive activation attention (multiplexing), mul-
tiplicative output attention (output gating), and multiplicative synaptic attention (synaptic
gating). Output gating and synaptic gating are proper extensions of the standard model
and all current attention-based architectures, including transformers, use either output gat-
ing or synaptic gating, or a combination of both. Third, we develop a theory of attention
capacity and derive mathematical results about the capacity of basic attention networks
comprising linear or polynomial threshold gates. For example, the output gating of a linear
threshold gate of n variables by another linear threshold gate of the same n variables has
capacity 2n2(1 + o(1)), achieving the maximal doubling of the capacity for a doubling of the
number of parameters. Perhaps surprisingly, multiplexing attention is used in the proofs
of these results. Synaptic and output gating provide computationally efficient extensions of
the standard model enabling sparse quadratic activation functions. They can also be viewed
as primitives for collapsing several layers of processing in the standard model into shallow
compact representations.

Keywords: neural networks; deep learning; attention; gating; synaptic modulation; trans-
formers; capacity; circuit complexity.

“Everyone knows what attention is... It is the taking possession by the mind in clear and vivid
form, of one out of what seem several simultaneously possible objects or trains of thought...”
William James, Principles of Psychology (1890).

1. Introduction

Everyone can focus their attention on an image, a sound, or a thought. But what is atten-
tion and how does it really work? Besides James’s definition, other standard definitions of
attention include: “the ability to focus selectively on a selected stimulus, sustaining that focus
and shifting it at will”; or, linking attention to awareness: “the concentration of awareness
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on some phenomenon to the exclusion of other stimuli”. All such definitions are very coarse,
imprecise, and based on introspective and phenomenological considerations. The all define
attention in terms of other functionally obscure terms, such as “focus” or “awareness”. Here,
in order to better understand attention at the computational level, we study it within the
simplified framework of artificial neural networks and deep learning by first identifying its
most fundamental building blocks or quarks, using a physics-inspired terminology, and then
rigorously analyzing some of their computational properties.

The motivation for working with artificial neural networks is two-fold. The first motivation
is to avoid getting bogged down by the complexity of biological systems. There is of course
a substantial literature on the neurobiology and psychophysics of attention (e.g., [15, 2, 21])
pointing to a variety of different phenomena and attention systems, leading some to con-
clude: “The word“attention” is an inadequate, singular term for a multitude of inter-related
processes. We use a host of adjectives to describe attention-for example, we say that attention
can be divided, oriented, sustained, or focused, and many of these descriptions likely reflect
underlying, dissociable neural processes. Complicating matters, attentional resources can be
allocated to either external stimuli, or to internal stimuli such as thoughts and memories.
Furthermore, we often confuse the regulation of attention (a covert behavior) with the regu-
lation of movement (an overt behavior) when discussing an “attentional disorder”” [2]. In
spite of this complexity and diversity of processes, we believe that at the most fundamental
level attention mechanisms are built out of a small number of fundamental operations, which
occur on time scales that are fast compared to the time scales of learning and long-term
synaptic modifications. For instance, in order to exclude other stimuli, neuronal machinery
must exist that is capable of dynamically suppressing the activity of subsets of neurons, or
subsets of connections, or both, associated with the non-attended information. These fun-
damental operations may be easier to identify and study using artificial neural networks. In
particular, one of our goals here is to produce a systematic nomenclature of all such possible
operations, within the standard deep learning model. While this is not the place to discuss
the relationship between artificial and biological neural networks, there is a body of evidence
showing that, atleast at some level, the former can provide useful information about the latter
(e.g., [28, 20, 27, 6]).

The second motivation, equally or even more important, is that attention plays an increas-
ingly important role in deep learning, where various attention mechanisms such as content-
based attention [14], speech recognition attention [10], or dot product attention [19], have
been proposed and deployed in applications. Many of these mechanisms were initially devel-
oped for speech and natural language applications (NLP) (e.g., [4, 11, 22]), but they are now
being adapted to other problems (e.g., [17, 13, 24]). The intuitive idea in NLP applications
is that when, for instance, translating a sentence from one language to another, the under-
lying neural algorithm should be able to dynamically shift its focus on the relevant words
and context, while filtering out the less relevant ones. For instance when translating “the
red roof” into the French “le toit rouge” the machinery that produces the third word of the
output (“rouge”) should dynamically give more importance to the second word (“red”) of the
input, relative to the other neighboring words. The current pinnacle of attention-based archi-
tectures is the transformer architecture [26] which has led to state-of-the-art performance in
NLP and large language models (LLMs). While these advances have even led some experts to
speculate that attention mechanisms may be the key for achieving machine consciousness (!),
with rare exceptions [12], there is little theory to help us better understand the nature,scope,
and computational capabilities of attention.
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Main Results and Roadmap. To address this gap and provide a systematic treatment
of attention mechanisms in deep learning, we first note that in the standard neural network
model comprised of McCulloch and Pitt neurons, there are three kinds of variables: synaptic
weights (w), neuronal activations (S), and neuronal outputs (O). Thus, for any attention
mechanism implemented in this model, there are three possibilities for the source of the
attending signal, and three possibilities for the target of the attention signal. Considering
two basic interactions–addition and multiplication–between the attending signal and the at-
tended target yields a total of 18 possibilities. Next, the most reasonable assumption is that
the source of the attending signal is of type O. This leaves six possibilities, among which
we further identify three key attention mechanisms: additive activation attention (multiplex-
ing), multiplicative output attention (output gating), and multiplicative synaptic attention
(synaptic gating). Output gating and synaptic gating are proper extensions of the standard
model and all current attention-based architectures use either output gating or synaptic gat-
ing, or a combination of both. We show how each attention module within a transformer
architecture is built using both output gating in order to compute dot products, and synaptic
gating in order to compute outputs. Finally, we use the notion of neural capacity to develop
a theory of attention capacity. The capacity of a feed-forward neural architecture is the
number of bits required to specify a given input-output function that can be implemented
by the architecture. We derive mathematical results about the capacity of basic attention
networks comprising linear or polynomial threshold gates. For instance, we show that the
output gating of a linear threshold gate of n variables by another linear threshold gate of the
same n variables has capacity 2n2(1 + o(1)). This proves that output gating is an efficient
mechanism, since doubling the number of parameters leads to doubling the overall capac-
ity, which is the maximum achievable. Perhaps surprisingly, multiplexing attention is used
extensively in the proofs of these results.

Thus, as a roadmap, in Section 2 we first seek to identify and classify the most fundamental
building block of all attention mechanisms within the standard deep learning model. In
particular, we identify three key attentional mechanisms. In Section 3, we show how output
gating and synaptic gating are used in all the current attention-based architectures, including
transformers. In Section 4, we explore the functional capacity of output gating and synaptic
gating. In Section 5, we provide a brief overview of the notion of capacity and the technique
of multiplexing, which is a form of activation attention, for proving capacity lower bounds.
In Sections 6 and 7, we prove several theorems about the capacity of activation, output, and
synaptic gating, using multiplexing, first for single units (Section 6) and then for single layers
(Section 7) of linear and polynomial threshold functions.

2. Sytematic Identification of Attention Quarks: Within and Beyond the
Standard Model

We first introduce the formal neural network framework that we use in order to systemat-
ically organize and study the attention quarks, i.e., the most fundamental building blocks of
attention. To borrow another term from physics, we call this framework the Standard Model.

2.1. The Standard Model (SM). The Standard Model is the class of all neural networks
made of what are generally called McCulloch and Pitt neurons. Neural networks in the
SM consist of directed weighted graphs of interconnected processing units, or neurons. The
synaptic strength of the connection from neuron j to neuron i is represented by a single real-
valued number wij . Any non-input neuron i produces an output Oi by first computing an
activation Si =

∑
j wijOj , i.e the activation corresponds to the dot product of the incoming
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signal with the synaptic weights. In turn, the output of the neuron is produced in the form
Oi = fi(Si) where fi is the transfer or activation function of neuron i. Typical activation
functions include the identity function in the case of linear neurons, sigmoidal activation
functions such as the logistic and tanh activation functions, and piece-wise linear functions
([25]), such as the Heaviside, sign, or ReLU functions. An encompassing, and more than
sufficient, class of transfer functions for a formal definition of the SM is the class of functions
that are monotonous and continuously differentiable everywhere except for a finite (and
small) set of points [another alternative is the class of piece-wise linear functions with a
finite (and small) number of pieces]. A fundamental, and easy to prove [6], property of
the SM is that it has universal approximation properties: (1) Any Boolean function can be
implemented exactly by a feed-forward network in the SM. This can easily be achieved using
a feed-forward network, with a single hidden layer, of linear threshold gate neurons (which
encompass the AND, OR, and NOT Boolean operations); and (2) For any small ε > 0, any
continuous function from Rn to Rm defined on a compact set C can be approximated within
ε everywhere over C by a feedforward network in the SM. This approximation also can be
achieved using a single hidden layer of linear threshold functions, and a linear output layer.

Several attention mechanisms described below can be viewed as extensions of the standard
model, where new operations are added to the SM to obtain a richer model. Extending the
SM is not a new procedure. For instance, using softmax layers is already an extension of the
SM since the softmax is not a proper, single-neuron, activation function. Another example
is the use of polynomial activation functions (e.g., [9]). Due to the universal approximation
properties of the SM, these extensions are not meant to increase the approximating power of
the SM. Rather, their value must be established along other dimensions, such as circuit size or
learning efficiency. In the digital simulations of neural networks, these extensions correspond
to new software primitives. In physical neural networks, these extensions must come with
actual wires and physical mechanisms. For instance, a softmax operation is a new software
primitive in a neural network software library but it requires a new physical mechanism for
its physical implementation. It can be replaced by a network of depth 3 within the SM
(Section 4) with fixed weights set to ±1 (Figure 10), provided the logarithm and exponential
activation functions are available.

2.2. Systematic Taxonomy. In the SM, there are only three kinds of variable types: S
(activations), O (outputs), and w (synaptic weights). At the most fundamental level, we
can organize attention mechanisms (and more broadly new SM interactions) depending on:
the type of variable associated with the source of an attention signal (3 possibilities), the
type of variable associated with the target of an attention signal (3 possibilities), and the
mechanism of the interaction, i.e., on the algebraic operation used to combine the attending
signal and the attended target. While many algebraic operations can be considered, the two
most basic ones are addition and multiplication (2 possibilities). Note that both addition
and multiplication are differentiable operations, and thus can easily be incorporated into the
backpropagation learning framework. In total, this results into 18 = 3 × 3 × 2 possibilities.
We now discuss these possibilities, reducing them down to the 6 most important ones.

(1) Source: It is reasonable to assume that the source of the attending signal is a variable
of type O corresponding to the output of one attending neuron, or a group (layer)
of attending neurons. While the other possibilities can be explored systematically,
e.g., a synapse directly attending another synapse or an activation attending another
activation, in a physical implementation these would require new complex mecha-
nisms. Furthermore, these do not occur in current attention-based deep learning
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models. Equally unlikely would be the case of mixed schemes where the attending
signal would emanate from, for instance, both neuronal outputs and synapses. In
short, while other options can be studied, it is reasonable to assume that the at-
tending signals emanate from neuronal outputs, allowing us to reduce the number of
possibilities by a factor of three leaving 6 basic possibilities (Table 1).

(2) Target: For the target of an attention signal, we will study all three possibilities.
Thus attention signals can target activations (S), outputs (O), or synapses (w). We
will call these three forms of attention activation attention, output attention, and
synaptic attention respectively.

(3) Mechanism: The most simple operations one can think of for combining the attend-
ing signal with its attended target are addition and multiplication. Attention requires
excluding all other stimuli and possibly enhancing the attended stimulus (here we do
not distinguish between external stimuli or internal representations). Intuitively, at
the fundamental level, these exclusions and enhancements correspond to multiplica-
tive operations where, for instance, the signals associated with non-attended stimuli
are inhibited–i.e., multiplied by zero, and the attended stimuli are enhanced, i.e.,
mutliplied by a factor greater than one. We will reserve the term “gating” for multi-
plicative interactions. Thus, for instance, multiplicative synaptic attention will also
be called synaptic gating. All multiplicative interactions, with the exceptions of terms
of the form wijOj , are not part of the SM and thus correspond to potential extensions
of the SM. While multiplicative interactions seem the most important and novel ones,
we will also consider the case of additive interactions. In particular, in the case of ac-
tivation attention, for several common activation functions such as logistic or ReLU,
inhibition (and thus suppression of stimuli) can be achieved additively by sending a
large negative signal towards the attended neuron. Unlike gating, additive activation
attention is contained in the SM. This is the kind of attention mechanism that will
be used in the proofs of the theorems in Sections 6 and 7.

In the case of each attention mechanism, it is useful to keep in mind the distinction
between digital simulations and actual implementations in a physical neural network, i.e.,
machine learning versus learning in the machine [6]. For instance, different mechanisms may
be equivalent at the level of the algebraic expressions they lead to, but very different in terms
of their physical implementations. As we shall see in Figure 2, both synaptic and output
gating can produce the same quadratic term, but through different physical implementations.
Finally, for completeness, two other important issues that could be taken into account in a
taxonomy of basic attention mechanisms are multiplicity issues, at both the source and the
target, as well as time scales issues, as briefly described below.

(1) Multiplicities: In each possible case, one must take into account multiplicity issues
both at the level of the source and at the level of the target. For instance, in synaptic
gating, can the attending output of a neuron gate more than one synapse? Can the
attending output of several neurons gate the same synapse? And so forth. In the
most simple cases, we will assume that the multiplicity is one both at the source and
at the target, but greater multiplicities will also be considered, for instance in some
of the theorems in Sections 6 and 7.

(2) Time Scales: Finally, for simplicity, and in line with current deep learning atten-
tion models, we assume that the attention mechanisms operate on the time scale
of individual inputs. Different inputs create different attention signals. Alternative
possibilities are briefly discussed in Section 2.5.
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In summary, we are left with six main cases, corresponding to two different mechanisms
(+,×) and three different target types (S,O,w). We now examine the three additive interac-
tions and the three multiplicative interactions that are left, one by one, and show that they
can be further reduced to three most important cases, which will be the focus of the following
sections.

2.3. Quark Identification: Additive Interactions. In the case of additive interactions,
the attention signal is added to three possible targets of type S, O, or w.

2.3.1. Additive Activation Attention: Multiplexing. In this case, consider an attended neuron
i. It activation S has the form S = S1 + S2 where S1 is the “normal” activation (without
attention) and S2 is the attending signal originated from one, or multiple, attending neurons.
The terms multiplexing simply refers to the combination or superposition of two signals over
the same channel. Depending on the transfer function fi of neuron i, the attending signal
can be used to control the output Oi = fi(S1 +S2). The typical case is when fi is the logistic
or Heaviside function: then a large negative signal S2 (much larger than S1) will override any
S1 and force the output of neuron i to be zero. If, on the other hand, S2 = 0 then Oi = fi(S1)
and the normal signal will be propagated. If attention must be able to both suppress and
enhance signals, this mechanism allows the suppression, but it does not provide a direct way
for the multiplicative enhancement of signals. Formally this mechanism is entirely within
the SM and does not require extending it. If the attending signal must come from a single
neuron (source multiplicity one), this can easily be achieved by connecting the output of the
attending neurons to a single linear neuron whose output is equal to S2. Although not new,
this attention mechanism is interesting because it will play a central role in the methods for
proving various technical results about the new gating mechanisms presented below.

2.3.2. Additive Output Attention. In this case, using multiplicities of 1, we consider a neuron
i connected to a neuron k in the main network, and an attending neuron j. In this case, the
output Oj is simply added to the output Oi (Figure 1, Left) producing the terms Oi + Oj
(or Oi + wijOj). This terms is nothing new in the SM and is equivalent to having an
additional linear neuron with two incoming connections originating in neurons i and j, both
with synaptic weight 1, and the same outgoing connections as neuron j in the original network.
This mechanism alone does not provide much in terms of attentional functionalities and
therefore it will not be considered here any further.

2.3.3. Additive Synaptic Attention. In this case, using multiplicities of 1, we consider a neuron
i connected to a neuron k in the main network, and an attending neuron j. In this case, the
output Oj is simply added to a synaptic weight, i.e., to wki. (Figure 1, Right), producing a
new synaptic weight wki +Oj , which in turn creates a contribution equal to (wki +Oj)Oi st
neuron k. This contribution contains a new multiplicative term of the form OiOj which is
not part of the SM. Since OiOj falls under the multiplicative category, it is subsumed by the
analyses below of multiplicative interactions; thus additive synaptic interactions will not be
considered any further in the rest of this work.

In summary, there are three kinds of additive interactions. Only multiplexing (additive
activation attention) will be used in the rest of this work, and primarily as a tool in the proofs
of some theorems.

2.4. Quark Identification: Multiplicative Interactions or Gating. In the case of mul-
tiplicative interactions, the attention signal is multiplied with three possible targets of type
S, O, or w.
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Figure 1. Additive Output (Left) or Synaptic (Right) Interactions. Left: the output
Oj of the attending neuron is added to the output Oi of the attended neuron, pro-
ducing a term of the form Oi +Oj . Right: the output Oj of the attending neuron is
added to the attended synaptic weight wki, de facto producing a new multiplicative
term of the form OiOj as one of the input components to neuron k.

2.4.1. Multiplication Activation Attention: Activation Gating. In this case, using a source
multiplicity of 1, consider an attended neuron i with activation Si =

∑
wilOl and transfer

function fi and an attending neuron j. In this case, the attending signal Oj multiplies the
activation Si so that the final output of neuron i becomes Oi = fi(SiOj). If fi is sigmoidal
or a threshold function, a large positive value of the attention signal Oj could be used to
drive the response of neuron i towards one of its extreme values (e.g., 0/1 or −/+ 1 ). Note
that Oi = fi(SiOj) = fi(

∑
l wilOlOj , so formally this mechanism is equivalent to having

Oj multiply the output Ol of all the neurons connected to neuron i, although in a physical
implementation these two things could be very different. Because of this equivalence, we
will consider that output gating subsumes this mechanism and we will not discuss it much
further. Furthermore, at least in the case of attended and attending neurons with threshold
transfer functions equal to the sign function, multiplication of activation and multiplication of
output are directly equivalent at the algebraic level because: sign(SiOj) = sign(Si) sign(Oj) =
signSiOj = OiOj .

2.4.2. Multiplicative Output Attention: Output Gating. In this case, using multiplicities of
1, we consider a neuron i connected to a neuron k in the main network, and an attending
neuron j. In this case, the output Oi is multiplied by Oj (or wijOj) producing the quadratic
terms OiOj which is new in the SM, leading to an input component into neuron k equal to
wkiOiOj (Figure 2, Left). Note that while the multiplication is commutative, the attention

1Everywhere we write -/+ to indicate -1/+1.
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mechanism is not in the sense that only the axon emanating from neuron i carries the signal
OiOj to all the targets of neuron i.

2.4.3. Multiplicative Synaptic Attention: Synpatic Gating. In this case, using multiplicities
of 1, we consider a neuron i connected to a neuron k in the main network, and an attending
neuron j. In this case, the synaptic weight wki is multiplied by Oj . This produces a new
synaptic weight wkiOj , which in turn also creates a contribution equal to wkiOiOj into neuron
k.

Figure 2. Multiplicative Interactions: Output and Synaptic Gating. Left: In output
gating, neuron j gates the output of neuron i producing a new effective output OiOj .
The signal OiOj is broadcasted to all the neurons downstream of neuron i, including
neuron k. Right: In synaptic gating, neuron j gates the synapse between neuron i
and neuron k, producing a new effective synaptic weight equal to wkiOj . In both
cases, the signal Oj can be transmitted to other neurons and other synapses (higher
multiplicity). In both cases, neuron k receives the same signal wkiOiOj . However the
effects of output versus synaptic gating on the rest of the network are different (see
text).

2.5. Synaptic Gating versus Output Gating. When the gating signal Oj is close to zero,
it will tend to suppress the gated signal Oi or the gated synaptic weight wki. The ability to
dynamically suppress a synaptic weight or the signal flowing through it embodies the idea of
“excluding other stimuli” associated with attention. Likewise, when the gating signal Oj is
far from zero, it can dynamically enhance a synaptic weight or the signal flowing through it.
Although equivalent circuits for output and synaptic gating can be found (see Figures 3 and
4), conceptually they are different.

Synaptic gating is a mechanism by which the gating neuron or network can dynamically
change the synaptic weights of the gated neuron or network, thus effectively changing the
program being executed by the attended network. This allows the same gated neuron or
network to be modulated and to compute different functions, as a function of the gating
neuron or network. Thus synaptic gating can also be viewed as a form of fast synaptic weight
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mechanism [23, 3], where synapses with different time scales coexist and fast synapses are
used to dynamically store information and modulate the function being computed by a given
network. However, even for the fast synapses there could be different time scales. While here
we assume that synapses change on the time scales of the inputs, fast synapses could also
change on a lower time scale in the sense that a gated synapse could be reused over several
inputs.

Although we have seen that both synaptic and output gating produce the same term of
the form wkiOiOj at neuron k, this is true only for neuron k. Unlike synaptic gating, output
gating affects all the neurons downstream of the gated neuron. In contrast, synaptic gating
is more precise as it affects only the neuron downstream of the gated synapse, but it is more
expensive, requiring one gating wire per gated synapse, rather than one gating wire per gated
neuron. Nevertheless, if neuron i has only one outgoing connection, then gating of its output
or its outgoing synapse are of course equivalent. For this reason, in the formal analyses, we
will focus on output gating which covers also synaptic gating under the assumption of a single
outgoing connection per gated neuron.

An observation that will become important in Sections 4– 7, is that in the case of binary
units and output gating, it does make a difference whether one uses 0/1 or −/+ represen-
tations. In particular, although 0/1 or −/+ linear (or polynomial) threshold functions are
equivalent, different forms of output gating are obtained with different combinations of such
units. This is because multiplication of x ∈ {−1, 0, 1} by 0 or by −1 leads to different re-
sults. In particular, multiplication of the outputs of two 0/1 threshold gates is equivalent
to applying a logical AND operation, whereas multiplication of two −/+ linear threshold
gate is equivalent to applying a logical NXOR (the negation of an XOR). Multiplication of a
0/1 threshold gate by a −/+ threshold gate produces a non-Boolean functions with outputs
in {−1, 0, 1}. Nevertheless in many cases equivalent circuits can be found (see Example in
Figure 7) using either multiplication between 0/1 threshold gates or multiplication between
−/+ threshold gates. This also suggests a more general question of studying all possible ways
of combining two threshold functions using Boolean operators (see Section 6).

2.6. Relations to Polynomial Neural Networks. There are at least two important re-
lationships between gating and polynomial neural networks. First, we have seen that both
synaptic and output gating mechanisms produce quadratic terms of the form wkiOiOj con-
tributing to the activation of neuron k. Thus gating can also be viewed as a special case of
neurons with quadratic activations or, more generally, polynomial activations [9]. However,
a full quadratic activation function of n inputs may need n(n− 1)/2 3-way synaptic weights
(the quadratic component of the activation of a neuron i has the form Si =

∑
jk wijkOjOk)

associated with each possible pair of inputs. Synaptic gating or output gating produce only
one new quadratic term. Thus, in short, gating creates quadratic terms but in a sparse way
that avoids the combinatorial explosion associated with all possible combinations.

The second connection is that the same gating concepts can be applied to to more complex
units, beyond the standard model, in particular to units where the activation is a polynomial
function of degree d of the inputs (the standard model corresponds to d = 1). Thus for
instance a neuron j with a quadratic activation function could gate the output of another
neuron i with quadratic activation functions, or gate a synapse wki between neuron i and
neuron k. Gating by neurons with polynomial activations, in particular gating by polynomial
threshold units, will be studied in Sections 6 and 7.

2.7. Summary. In summary, the quarks of attention can be classified based on the origin,
the target, and the interaction mechanism of the attention signal. Assuming that the origin
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Figure 3. Output gating equivalence. Left: Output gating of neuron i by neuron j.
All the connections emanating from neuron i carry the signal OiOj . Right: Equivalent
network obtained using synaptic gating only. The gating neuron j must synaptically
gate all the connection weights emanating from neuron i

.

Table 1. Organization of attention mechanisms. Assuming that the origin of the
attention signal is the output of one or several neurons, there are 6 classes depending
on the target of the signal and the interaction mechanism. We consider 3 kinds
of targets: activation (S), output (O), and synapses (w). We consider 2 kinds of
interaction mechanisms: addition and multiplication. Two of the classes (additive
activation attention, or multiplexing, and additive output attention) are in the SM;
the other 4 classes correspond to true extensions of the SM. The discussion in the
text shows that further analyses can focus on three classes only: multiplexing, output
gating, and synaptic gating (in bold).

S O w
Addition multiplexing (SM) additive output att.(SM) aditive synaptic att.
Multiplication activation gating output gating synaptic gating

is in the output of one neuron, or a group of neurons, and that the interactions are either
additive or multiplicative, this leads to six classes (Table 1). Within the additive group, two
classes are already in the SM (additive activation and additive output attention) and only
one class is of interest here for further studies (additive activation attention or multiplexing).
Within the multiplicative group, all three classes correspond to true extensions of the SM
and, at least formally, further analyses can be reduced to two main classes: output gating
and synaptic gating. In all cases, the attending signal modulates the function computed by
the attended network.
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Figure 4. Synaptic Gating Equivalence. Right: Synaptic gating of synaptic weight
wki by neuron j. Left: Equivalent network obtained using output gating only. Neuron
i has an identical twin neuron i′, i.e., neuron i connected to neuron i′ through the
identity function and thus both neurons produce the same output equal to Oi. Neuron
j output gates neuron i′ producing a signal OiOj which travels through the synapse
wki. All other connections emanating from neuron i carry the signal Oi and are
unaffected by the gating neuron j.

3. Transformers: All you Need is Gating

Although the descriptions of attention-based architectures in deep learning are often com-
plex and tend to obfuscate the underlying neural architectures [14, 10, 19, 4, 11, 22], it can
be checked that in all cases these architectures are built using the output and synaptic gating
operations described in the previous section. For conciseness, here we demonstrate this fact
in detail for the transformer architectures [26] (see also [18] for an MLP alternative to trans-
formers). Transformers are typically described in terms of Query, Key, and Value vectors.
For clarity, we briefly describe the inspirational meaning attached to these words originating
from the area of databases.

3.1. Query, Key, and Value. In a database, a key is a single attribute, or a group of
attributes, that can uniquely identify each record (row) in a table. A key is used to establish
relationships between tables. For instance, a database of car drivers may include the following
attributes: first name, last name, home address, driver license number, car model driven, and
license plate. The driver license number, or the name combined with the license plate are
examples of keys. In a traditional database, when a properly formatted query comes in, it is
compared with all the keys. When a perfect match is found, the content of the corresponding
row (the value) is retrieved. This basic schema can be extended in several directions, which
are used by transformers. First, the query and the key may not be properly formatted in the
same “space” and a linear (or possibly non-linear) transformation may be used to project
them in the same space, where they can be properly compared. Second different notions of
similarity (kernels) may be used to compare them, as opposed to a binary identity score.
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One of the most simple similarity comparisons can be done via a dot product, or a scaled
dot product. And third, the value to be retrieved can be constructed from a combination
of multiple values and multiple similarities. The most simple approach is to combine all the
values linearly, using the similarities of the query to the corresponding keys to weigh each
contribution. When the similarities form a probability distribution (via a softmax) as in the
case of transformers, the ouputs are convex combinations of the input values. Armed with
these notions, we can now take a close look at transformers and their attention mechanisms.

3.2. Transformers and Gating. Transformer architectures consist of stacks of similar en-
coder and decoder modules, with attention mechanisms in each module. The details of an
encoder module are shown in Figure 5. As the Figure shows, a shared and typically linear
network is first applied to each of n input vectors. At the bottom of the architecture, these
input vectors could represent for instance vectors encoding successive words from a sentence.
and can include positional information, as discussed below. At higher levels of the stack, these
vectors could be associated with the outputs of the previous encoder or decoder module and
correspond to more abstract representations, or to final outputs. For each input vector, the
shared network typically produces a triplet of vectors of the same size m: Q (Query),K (key),
and V (value), for a total of 3n triplets. The subsequent attention mechanism is drawn in
a concise way in the Figure and is based on three operations: (1) taking all n2 pairwise dot
products of the n query vectors with the n key vectors; (2) applying a softmax to each row
of dot products; and (3) using the output of the softmax operations as weights for linearly
combining the value vectors to produce the corresponding output vector at each position.
The first operation can be built using output gating, each dot product involving m gating
operations, to multiply the proper Q and K components together. As a side note, these
dot products can be viewed as similarity measures between the Q and K vectors, especially
when these are normalized, and this suggests other kinds of transformer architectures where
different similarity kernels are used. The softmax operation is a standard extension of the
SM (Figure 10). The third operation corresponds to synaptic gating of the connections be-
tween the V vectors and the outputs. The convex combination of the value vectors by the
corresponding softmax weights determines how much each value vector influences each out-
put vector, based on the corresponding similarities between Q vectors and K vectors. This
is where the influence of some of the value vectors can be enhanced, while the influence of
others can be suppressed. Thus in total there are mn2 output gating operations, and n2

synaptic gating operations (assuming n output vectors). Thus, in short, the entire encoder
module is based on a large number (O(mn2)) of gating operations, both of the output and
synaptic type. Thus, in this form, it can only be applied when n is not very large. The
basic transformer decoder module (not shown) is very similar. One important property of
the encoder module conferred by the attention mechanisms is that the output is invariant
under permutation of the inputs. This is because any permutation of the inputs, results in
a corresponding permutation of the Q,K, and V vectors due to the weight sharing. This
in turn induces a corresponding permutation in the dot products and softmax outputs, so
that in the end the weighted contribution of any V vector into any output vector remains
the same. This permutation invariance may seem surprising for an architecture that was
originally developed for NLP tasks, where the order of the words obviously matter. Indeed,
in NLP applications of transformers, positional information is added to each input vector.
However, the permutation invariance of transformers is particularly beneficial for applications
of transformers outside of NLP, in particular applications where the input consists of sets of
data vectors, where the order of the data vectors does not matter (e.g., [17, 13, 24]). For
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example, in physics applications one often has to deal with a set of measurements, rather
than a sequence of measurements; likewise, in chemistry, the order of the reactants or the
products in a chemical reaction does not matter.

Figure 5. Neural network representation of the basic encoder module of a transformer
architecture. Each input vector is converted into three vectors Q (Query), K (key),
and V (value) using weight sharing (blue weights). All n2 pairwise dot products
K(k)Q(l) are computed in the attention layer, which corresponds to a set of output
gating operations. This is followed by row-wise softmax operations on these dot
products to produce the weights that are used to linearly combine the value vectors
into each corresponding output. These linear combinations correspond to synaptic
gating.

3.3. Transformers and Recurrent Neural Networks. From a high level, transformer
architectures are not that different from the recurrent or recursive neural network (RNN)
architectures that were used previously for NLP tasks. By unfolding RNNs in time, it is
easy to see that both kinds of architectures: correspond to feed-forward architectures; are
capable of seeing the entire input sequence; use weight sharing; use attention mechanisms;
and use some form of local connectivity. The major differences seem to reside in the details
of the attention blocks with the use of Query, Key, and Value vectors in transformers and
in the way positional information is handled. In transformers, positional information is
added dynamically to the input vectors encoding each word, and information from the entire
sequence is readily available already in the first layers of the architecture. In RNNs, positional
information is not added to the inputs, but is present statically in the connectivity: sequential
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words are connected to deeper and deeper layers of the architectures and information about
the entire sequence is available only to the deeper layers.

4. Functional Aspects of Attention

Next we study though several examples how certain functionalities can be implemented
using attention mechanisms, beginning with the effect of attention on single units.

4.1. Single Unit Output Gating: Shaping the Activation Function. First, for sim-
plicity, we consider output gating of a unit by another unit with the same inputs and the
same weights, hence the same activation S. The two units may have two different activation
functions f and g. Through output gating, the final output of the gated unit will be given by:
f(S)g(S) = fg(S). Thus, in this case, output gating is equivalent to changing the activation
function of the gated unit from f to fg. Examples of this effect are shown in Figure (Figure
6) where both f and g are piecewise linear, and centered at the origin. Note that in the case
of a linear unit gated by another linear unit, the final output is a quadratic function of the
n inputs, but with only O(n) parameters as opposed to O(n2). The ReLU activation func-
tion emerges naturally, through the gating of a linear function by a (0, 1) threshold function,
or vice versa. Finally, the symmetric wedge activation function [25] emerges also naturally
through the gating of a linear function by a (−1, 1) threshold function.

Figure 6. Effect of gating on activation functions. For simplicity we consider four
main activation functions: linear, threshold (0,1) [Heaviside function], threshold (-
1,1) [sign function], and ReLU.

4.2. Single Unit Attention: XOR. Next, we look at the simple XOR function. It is easy
to show that the XOR function cannot be computed in a shallow way by a single linear
threshold gate (or sigmoidal) neuron. Its computation requires at least one hidden layer.
However, as shown in Figure 7 using 0/1 outputs, the XOR function can be computed by a
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shallow network with a single linear threshold unit output-gated by another linear threshold
unit. To see this, note that any corner of the hypercube can always be isolated by a hyperplane
from the other corners of the hypercube, i.e., there is always a linear threshold gate that has
value 1 (resp. 0) for one Boolean setting of its inputs, and 0 (resp. 1) for all the other possible
inputs (see Lemma 5.1). In particular, both the OR and NAND functions are of this kind
and thus can be implemented by a linear threshold gate. Gating the OR by the NAND (or
vice versa) produces the desired XOR function without using any hidden layers, assuming
that the ouput gating operation is an integral part of the layer where it occurs.

Figure 7. Shallow computation of XOR by a single unit with attention. The left
unit computes an OR, which can be implemented by a single linear threshold gate.
The right unit computes a NAND, which can also be implemented by a single linear
threshold gate. The gating of one unit by the other produces the XOR function. The
XOR function cannot be implemented using a shallow (no hidden layer) network of
linear threshold gates. In this particular examples, the gated and the gating 0/1 units
can easily be replaced by −/+ units, since it is always possible to linearly separate any
point on a hypercube from all the other points with a hyperplane, and the component
wise product of (−1, 1, 1, 1) × (1, 1, 1,−1) gives (−1, 1, 1,−1), which corresponds to
the −/+ version of XOR.

4.3. Attention Layers: Universal Approximation Properties. Next, we look at how
universal approximation proofs are affected if output gating is allowed, both in the Boolean
and continuous cases.

4.3.1. The Boolean Case. Every Boolean function of n variables can be computed by a feed-
forward network of linear threshold gates, since AND, OR, and NOT can be implemented
by linear threshold gates. By expressing the function in disjunctive or conjunctive normal
form, the implementation can be achieved with a single hidden layer of exponential size. If
we allow output gating, and its iterations, we have the following theorem.

Proposition 4.1. Every Boolean function of n variables can be expressed as the product of
at most 2n−2 linear threshold gates, both in the 0/1 and −/+ representations.

Proof. Let f be a Boolean function of n variables, using 0/1 to denote false and true re-
spectively. If f is 0 everywhere, it can immediately be expressed as a linear threshold gate.
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Likewise, if f is 0 everywhere but one point of the n dimensional cube, then it can be im-
mediately expressed as a single linear threshold gate. Thus we can assume that f is 0 on
at most 2n−2 points. Let x1, . . . , xL(L ≤ 2n−2) denote the inputs where f is zero. For each
index i, let gi denote the linear threshold gate which has value 0 on xi and 1 everywhere
else. Then it is easy to check that f(x) can be written as the product f(x) = f1(x) . . . fL(x)
(alternatively, on can express f in conjunctive normal form). The proof is the same in the
−/+ case, letting gi(x) be the linear threshold gate with value −1 for xi, and +1 everywhere
else. Obviously the same result holds for polynomial threshold gates of degree d. �

In the −/+ case, the set Bn of all Boolean functions with the multiplication operation
forms a commutative group, and each Boolean function is its own inverse. The subset of all
linear threshold gates contains the identity, and each linear threshold function gate is its own
inverse. However it does not form a subgroup because it is not closed. By the theorem above,
the multiplicative closure of the set of all linear threshold gates is the set Bn of all Boolean
functions.

Since every Boolean functions can be written as a product of an exponential number of
linear (or polynomial) threshold gates, it is natural to ask whether a smaller number of factors
may be used. Can every Boolean function be written as the product of a linear or polynomial
number of linear threshold gates? We will answer this question negatively in Section 6.1.1.

4.3.2. The Continuous Case. Next we look at the continuous case, using output gating to
modify the basic universal approximation proof [6].

Theorem 4.2. Let f be a continuous function from [0, 1] to R, and ε > 0. Then there
exists an integer n = n(ε) such that f can be approximated within ε everywhere over [0, 1] by
a network of n linear units, attended by n corresponding linear threshold gates with output
gating. The final approximation corresponds to the dot product between the vector of linear
unit outputs and the vector of attending unit outputs.

Proof. Since f is continuous over the closed interval, it is uniformly continuous so that there
exists δ > 0 such that for any x1 and x2 in [0, 1]:

|x2 − x1| < δ ⇒ |f(x2)− f(x1)| < ε (4.1)

Let us choose an integer n large enough so that δ > 1/n. Next we slice the interval [0, 1] into
n slices of width 1/n. Next we construct a network with n linear units and n linear threshold
gate attention units with outputs in {0, 1} (the proof can be adjusted to accommodate outputs
in {−1, 1}). All the attention units are connected to the single input x by a weight equal to 1.
Their threshold (bias) however are 0, 1/n, 2/n, . . . , (n− 1)/n so that when x ∈ [0, 1/n) only
the first attention unit is on, when x ∈ [1/n, 2/n) only the first two attention units are on, and
so forth. In other words, the slice containing x is encoded in the number of linear threshold
gates that are on. For the linear units, they compute values y1(x), . . . , yn(x) as follows. The
first linear unit approximates the function f in the first slice by producing the line that goes
through f(0) and f(1/n), i.e., by implementing the function y1(x) = f(0)+n[f(1/n)−f(0)]x.
The second linear unit approximates the function f in the second slice by producing the line
that goes through f(1/n) and f(2/n), but with the subtraction of the value produced by
the previous unit. Thus in short: y2(x) = n[f(1/n) − f(0)]x − y1(x). More generally, the
output of the k-th linear unit approximates the function f in the k-th slice producing the
line that goes through f(k − 1/n) and f(k/n), but with the subtraction of yk−1. [Note:
as an alternative construction, the linear units could also be taken to be constant, with
yk(x) = f(k − 1/n)− yk−1(x), and y1(x) = f(0).]
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The same construction can be applied over any closed interval, as well over any finite union
of closed intervals. Furthermore, if the range is Rp, the same construction can be applied to
each component. And finally, the same construction can be generalized if the input domain
is of the form [0, 1]m. Thus in short:

Theorem 4.3. Every continuous function f from a compact set C ⊂ Rm to Rp can be
approximated to any degree of precision ε by a shallow attention network comprising linear
units gated by corresponding linear threshold gate units, with a final dot product output.

4.4. Attention Layers: Dot Products. As we have seen in the section on transformers
and the universal approximation proof above, one place where attention mechanisms are
particularly important is for computing the dot product between two activity vectors u =
(u1, . . . , un) and v = (v1, . . . , vn), associated with two corresponding layers of n neurons each.
This can be achieved through output gating to first compute all the pairwise products uivi
and then combine these products through a single linear output unit, with all its incoming
weights set to 1, to compute the dot product uv =

∑
i uivi. However, this dot product can

equally be computed by synaptic gating, i.e., by using the vector v to gate the incoming
weights of the linear unit above and compute the dot product in the form uv =

∑
i(1.vi)ui.

This can be scaled up to tensors where there are multiple output vectors u(k) = (uki ) and
multiple attention vectors v(l) = (vli) of the same length, and all pairwise dot products
u(k)v(l) are computed, for any (k, l) pair, as in the transformer architectures. Of course the
dot product can also be computed in the standard model (Figure 8) however this requires
a deeper network with four layers of standard units with fixed connections all equal to 1,
and both logarithm and exponential transfer functions. Thus output or weight attention
create a new primitive, or compact circuit, for computing dot products. The same is true
of other operators that are often introduced in neural network without being part of the
standard model, such as for the already-mentioned softmax (Figure 10) or the normalization
of a vector (Figure 9).

4.5. Attention Layers: Attention Weights. Synaptic gating of a connection can suppress
or enhance the corresponding incoming signal. Synaptic gating all the incoming edges of a
unit allows to assign different importance to its different inputs. In addition, it is often
desirable that these degree of importance form a probability vector, as in the transformer
architecture, and this can be achieved through a softmax operation. It is possible to apply a
normalizing softmax either to the vector of pairwise products uivi, or to the rows or columns
of the tensor of dot products u(k)v(l), as in the transformer architectures. The output of these
softmax operations can then be used to gate other synaptic weights. These gated weights are
often equal and set to one in order to compute convex combinations, as in the transformer
architecture Thus, in short, in transformer and other architectures, attention mechanisms
allow dot products, softmax, and synaptic gating operations to be combined into one macro
operation, which would require a network of depth ∼ 10 for its implementation inside the
SM.

5. Cardinal Capacity Review

We have seen that attention mechanisms enable important functionalities with minimal
depth compared to the equivalent SM circuits, at the cost of adding attention neurons and
mechanisms. Here we want to better understand the trade offs between the computations
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Figure 8. Standard model neural network for computing the dot product of two vec-
tors (u1, u2, u3) and (v1, v2, v3) .The sub-circuit computing uivi corresponds to the
implementation of output gating of ui by vi in the SM.

that are enabled and the corresponding costs. The key concept for doing so is the concept of
cardinal capacity [8] which we briefly review below.

5.1. Definition of Capacity: Given a class of functions A, we define its cardinal capacity
C(A), or just capacity, to be: C(A) = log2 |A|, where |A| is the cardinality of A in the finite
case. In the continuous case, |A| can be defined as a volume, but here we will focus primarily
on finite cases. The class Bn of all Boolean functions of n variables has capacity C(Bn) = 2n.
Here we will consider subclasses of Bn, in particular those implemented by feed-forward
networks of linear or polynomial threshold gates, with attention mechanisms, and compute
the corresponding capacity. Using linear or polynomial threshold functions is not particularly
restrictive since these are reasonably good approximations of linear- or polynomial-activation
neurons with steep sigmoidal transfer functions. Furthermore, the universal approximation
properties of the SM can be established while using only linear (or polynomial) threshold
functions in the hidden layers.

5.2. Linear and Polynomial Threshold Functions. A polynomial threshold functions of
degree d has the form sgn p(x), where p(x) is a polynomial of degree d using a −/+ output
representation. Alternatively, for a 0/1 output representation, we can use the form H(p(x)
where H is the Heaviside function equal to 0 for x ≤ 0 and to 1 otherwise. Units with values
in 0/1 are similar to logistic sigmoidal units, and units with values in −1/+ 1 are similar to
tanh sigmoidal units.

We let T (n; d) denote the class of polynomial threshold functions of degree d. Thus T (n; 1)
denotes the class of linear threshold functions. When the inputs to a threshold function are
binary, we use the term threshold gate. In the case of polynomial threshold gates, it does
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Figure 9. Standard model neural network for normalizing a vector (u1, u2, u3) (for
clarity, only the first normalized component is fully shown).

Figure 10. Standard model neural network for computing the softmax function for a
vector (u1, u2, u3)(for clarity, only the first component is fully shown).

not matter whether their input is encoded using 0/1 or −/+ (or for that many any two
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distinct real numbers). This is because there is an affine transformation between any two
such encodings and the affine transformation can be absorbed in the synaptic weights, i.e.,
the coefficients of p. The same is generally true for the encoding of the output, however when
attention gating is considered the 0/1 and −/+ encodings behave differently. For instance,
in the case of output gating, the product of two 0/1 threshold gates behaves like an AND,
whereas the output of two −/+ gates behaves like an NXOR.

Thus to derive more general results, we will consider the case where the gating mechanism
is implemented by a Boolean function B, which could be an AND, an NXOR, or something
else. In the most general setting, we let B(z1, . . . , zk) : {−1, 1}k → {−1, 1} be a Boolean
formula in k variables. We are interested in the class of functions of the form B(f1, ..., fk) :
{0, 1}n → {−1, 1} where fj ∈ T (n; dj). We denote this class by TB(n; d1, . . . , dk).

5.3. Why Capacity is Important. The capacity C(A) is a measure of what the class of
functions A can do. As a single number, it is of course a very crude representation of the
true functional capacity. However in the case of neural networks the capacity has a stronger
significance. To see this, note first that the cardinal capacity is also the number of bits
required to specify an element of A. Thus in the case of neural networks, to a first order of
approximation, the capacity is the number of bits that must be transferred from the training
data to the synaptic weights during learning for the network to learn to implement a specific
function in the class A.

5.4. Capacity of Single Units: Review. Before we estimate the capacity of single units
with attention mechanisms, we must review the known capacity results on single units without
attention mechanisms. For a single linear threshold gate of n variables, we have [29, 30]:(

1− 10

log n

)
n2 ≤ C(T (n; 1)) ≤ n2 (5.1)

This result was refined to the form [16]:

C(T (n; 1)) = n2 − n log2 n±O(n) (5.2)

Similar results have been obtained for polynomial threshold gates of degree d [5, 9]. In
particular, for any n and d satisfying 1 ≤ d ≤ nα (where α is fixed and < α < 1) there exists
a constant D = D(α) such that:

(1− D

log n
)dn

(
n

≤ d

)
≤ C(T (n; d)) ≈ n

(
n

≤ d

)
(5.3)

where:

(
n

≤ d

)
=

d∑
k=0

(
n

k

)
(5.4)

For degree d = o(log n), including fixed degree d, Equation 5.3 yields:

C(T (n; d)) =
nd+1

d!
(1− o(1)) (5.5)
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5.5. Activation Attention and Muliplexing. We now describe one of the main techniques
that will be used in the attention capacity proofs for both synaptic and output gating.
Perhaps surprisingly, this technique can be viewed as a form of attention, specifically a form
of activation attention or multiplexing. It was developed and used in [7, 8]. First, we need
the following lemma, stated for the 0/1 n-dimensional hypercube, but equally valid on the
-/+ hypercube, or any other hypercube [a, b]n. The lemma basically states that any vertex
of the hypercube can be separated from the rest of the cube by a hyperplane with arbitrarily
large margins.

Lemma 5.1. Let H be the n-dimensional hypercube, and M > 0 and K ≥ 0. Fix any
vertex c = (c1, . . . , cn) of the hypercube, and let D = H −{c}. Then there exists affine linear
functions of the form f(x) = a0 +

∑n
1 aixi such that: f(c) = K and f(d) ≤ −M for any

d ∈ D.

Proof. First note that there are 1:1 affine maps between the different hypercubes, thus it is
enough to prove the result for the 0/1 hypercube. Second, all the corners play a symmetric
role so it is enough to prove it for the corner c = (1, 1, . . . , 1). It is easy to check that:
f(x) =

∑n
1 (M +K)xi − (M +K)n+K satisfies the conditions of the Lemma. Note that by

using −f(x) the sign of the regions and corresponding margins can be exchanged (f(c) = −K
and f(d) > M for all d ∈ D). See Figure 11. �

Figure 11. Any corner c of the n-dimensional hypercube can be separated from all
other corners d of the hypercube by an affine hyperplanee with large margins defined
by the parameters K ≥ 0 and M > 0.

Now consider a neural network consisting of n inputs fully connected to a hidden layer of m
linear or polynomial threshold functions (Figure 12) f0(x), . . . , fm−1(x). In the multiplexing
approach, we add m, or even just dlog2me new binary inputs to the input layer. m different
binary patterns over these inputs can be associated in one to one fashion with one of the m
threshold functions in the hidden layer. Let i be any integer 0 ≤ i ≤ m and let p(i) denote
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the corresponding pattern of bits. For simplicity we can just use the binary representation
of i, but any other representation works equally well.

This pattern p(i) can be viewed as a corner of the corresponding hypercube of dimension
dlog2me and thus we can apply Lemma 5.1 above to choose the weights connecting the
attention units and the bias to hidden unit i accordingly. In particular, the weights can be
chosen such that: (1) the attending signal originated from the attending bit patterns p(i)
is equal to 0; and (2) for all other settings of the attending bits, the attending signal is
arbitrarily large and negative (alternatively arbitrarily large and positive). Ans similarly for
all the other units and attention input patterns. As a result, whenever p(i) appears in the
attention bits, the i-th output of the hidden layer is equal to fi(x), and for all the other
settings of the attention bits, the i− th output is constantly equal to 1, or constantly equal
to 0 (or -1 in the case of −/+ threshold hidden units). The pattern of constant bits is called
the mask and different masks can be used for different proofs. Thus, in short, the attending
signal emanating from the attention units is multiplexed with the regular signal and used
to focus the attention of the hidden layer on the hidden unit encoded by the bits appearing
in the attention units. The output of the hidden layer is equal to the mask except for the
attended position, where it is equal to the corresponding function fi(x).

This form of activation attention is the key tool for proving capacity lower bounds. To
see this, consider for instance the case where an OR operator is applied to the outputs of
the hidden layer. With a mask consisting of 0s, when the attention bits are set to p(i), the
output of the OR applied to the hidden units is equal to fi(x). Thus the truth table of the
overall input-output function of the original inputs plus the attention bits is uniquely equal
to fi(x) when the attention bits are set to p(i). Thus the capacity of the network with the
expanded input of size n+ dlogme is lower bounded by the sum of the capacities associated
with the functions fi over the original input of size n.

6. Capacity of Single Unit Attention

We can now begin to estimate the capacity of various attention circuits. As in physics,
where from quarks one proceeds to protons, neutrons, the hydrogen atom, and so forth, we
begin with the simplest case, where the attention signal originates in a single gating unit, as
shown in Figure 13. Attention blocks of increasing complexity are considered in the following
sections.

6.1. Capacity of Single Attention Units: Output Gating. We want to compute the
capacity of the class of all functions that can be computed by one neuron gated by another
neuron, corresponding to the left hand side of Figure 13. In the purely linear case,we have
seen that this is the set of all quadratic functions of the form O = (

∑
iwixi)(

∑
j vjxl). To

partially address this question in the non-linear case, we can consider first the case of a linear
threshold gate gated by another linear threshold gate, and then similarly for polynomial
threshold gates of degree d. Using −/+ linear threshold gates for the gated and the gating
units, this is the class of Boolean functions of the form:

fg(x) = f(x)g(x) = sign(
∑
i

wixi) sign(
∑
i

vixi) = sign

(
∑
i

wixi)(
∑
j

vjxj)

 (6.1)

This class contains the identity and all the linear threshold gates. Thus, by Zuev’s result
(Equation 5.1) its capacity is at least n2(1 + o(1)). However, intuitively, it must contain
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Figure 12. Left: A fully connected feedforward neural network with n inputs and
m = 4 threshold gates computing the functions f0(x), f1(x), f2(x) and f3(x). The
bias unit is constantly set to 1. Right: The same network with 2 = dlog2me additional
attention units in the input payer. The weights from the input units to the threshold
gates are the same as in the left image. The attention units can be in 4 different
states (00), (01), (10), and (11); these states can be associated in 1:1 fashion with the
m = 4 threshold units. Assume for instance that the state (1, 0) is associated with
the hidden unit computing f1(x) (hidden unit 1). Then by Lemma 5.1 applied to the
hypercube of dimension 2, it is possible to choose a set of weights from the attention
units and the bias to hidden unit 1 providing: (1) an attention activation of 0 when
the attention units are in the (0,1) state; and (2) an arbitrarily large negative (or an
arbitrarily large positive) attention activation for all the other 3 states. As a result,
when the attention units are in the (0,1) state the output of the attended hidden unit
1 is equal to f1(x). When the attention units are in any of the other three states, unit
1 is not attended and its output is constant and equal to 0 (or constant and equal
to 1). And similarly, mutatis mutandis, for the other three hidden units. In other
words, we can first choose a fixed pattern of 0s and 1s in the hidden layer, called
a mask, and then connect the attention units to the hidden layer with such weights
that the output of the hidden layer is equal to the mask, except for one position
associated with the attended unit. If the attended unit is unit i in the hidden layer,
the corresponding output is equal to fi(x) (and the attention units must be set to
the corresponding values).

many other functions as shown in Figure 14 suggesting that in general the product of two
linearly separable functions is not linearly separable. On the other hand, the upperbound on
the capacity is at most 2n2(1 + o(1), because the capacity is always bounded by the sum of
the capacity of each individual component. Similarly considerations can be made for the 0/1
which leads to the more general problem of estimating the capacity of the class of functions
of the from B(f, g) where B is any Boolean operator, and f and g are linear or polynomial
threshold gates. And even more generality can be obtained by considering classes of Boolean
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Figure 13. Left: Output gating with a single attention unit. Both the gated function
f and the gating function g are linear (or polynomial) threshold gates of the same
input vector x = (x1, . . . , xn). The overall network computes the function fg(x) =
f(x)g(x). Right: Synaptic gating with a single attention unit g(x) gating all the
incoming weights of the gated function f(x). So the overall network computes the
function fg(x). For instance, if f is a linear threshold gate f(x) = sign(

∑
i wixi),

then fg(x) = sign(
∑

i g(x)wixi).

Table 2. All possible Boolean combinations. There are 16 possible Boolean func-
tions B(p, q) of two variables p and q. Each row corresponds to a function B(p, q)
and its negation ¬B(p, q). Ten Boolean functions are irreducible i.e., they cannot be
expressed as a function of a smaller number of variables. Eight Boolean functions
are symmetric (B(p, q) = B(q, p)). Fourteen Boolean functions can be implemented
by a linear threshold gate (LTG). The functions are organized into four groups sep-
arated by horizontal lines. Within a group, all the functions in the same column are
equivalent when their arguments are implemented by linear threshold gates. The last
column correspond to the cardinal capacity C(B(f, g)) when f and g vary among all
possible linear threshold functions of the same n variables.

B(p, q) ¬B(p, q) Irred. (k = 2) Sym LTG C{B(f,g)})
T F no yes yes 1
p ¬p no no yes n2(1 + o(1))
q ¬q no no yes
pOR q ¬pAND¬q yes yes yes 2n2(1 + o(1))
pOR¬q ¬pAND q yes no yes
¬pOR q pAND¬q yes no yes
¬pOR¬q pAND q yes yes yes
pXOR q ¬(pXORq) yes yes no 2n2(1 + o(1))

functions of the form B(f1, . . . , fk) where B is a k-ary Boolean operator and f1, . . . , fk are
polynomial threshold gates of respective degrees d1, . . . , dk. We first address the case of k = 2
and then the general case.
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Figure 14. Two randomly selected -/+ linear threshold functions and their product.
We can randomly pick such functions by randomly picking normal vectors of weights
w = (wi) on the unit sphere Sn−1 (or using i.i.d coordinates that are Normal or
Uniform). When n is large, the normal vectors w and v are approximately orthogonal
and the corresponding hyperplanes partition the space into four regions, each one
containing approximately 2n−2 points of the hypercube. In general, the resulting
function is not linearly separable.

6.1.1. Pairwise Composition (k = 2). For completeness, consider Table 2 summarizing all 16
Boolean function B(p, q) of two variables. We can substitute p and q with arbitrary linear (or
polynomial) threshold functions f and g and compute the corresponding cardinal capacity.
The first group in the table correspond to always true (T) and always false (F) functions,
thus to a negligible total capacity of 1. The second group corresponds to a single linear
threshold function, and thus its capacity is equal to: n2(1 + o(1)) All the elements in the
second group in the table are also found in the third group corresponding to the AND and OR
operators, because f AND f = f OR f = f . Within the third group, all the OR expression
are equivalent to each other, and all the AND expressions are equivalent to each other, when
p and q are substituted with linear (or polynomial) threshold gates. This is because whenever
f is a polynomial threshold gate of degree d, then ¬f is also a polynomial threshold gate
of degree d. The first three groups cover 14 Boolean functions B(p, q) in total. These 14
Boolean functions can be implemented by a single linear threshold gate of p and q, and no
other linear threshold gate of p and q exist. Thus the total aggregated capacity corresponding
to all these cases, is given by the cardinal capacity C(n, 2, 1) of a network of linear threshold
gates with n inputs, 2 hidden units, and 1 output unit. This capacity is given by [7, 8]:

C(n, 2, 1) = 2n2(1 + o(1)) (6.2)

There is a one-to-one correspondence between the set {f AND g} and the set {f ORg}
through the negation operator. Therefore:

C({f AND g}) = C({f OR g}) (6.3)
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[Note that any Boolean function that isolates once corner of the hypercube is irreducible. For
such a function, knowing the values of the sequence (B(f, g), B(f,¬g), B(¬f, g), B(¬f,¬g))
uniquely determines the values of f and g]. The relevant result in [7, 8] is obtained using the
attention multiplexing technique, applied in fact with the OR Boolean function and a mask
of 0s, as described in Section 5.5. Thus, in short:

C({f AND g}) = C({f OR g}) = 2n2(1 + o(1)) (6.4)

For the last row of the table, the output gating (multiplication) of two −/+ linear threshold
functions correspond to applying the negation of the XOR Boolean operator. Note that:
f XOR¬g ≡ ¬f XORg ≡ ¬(f XORg) and f XORg ≡ ¬f XOR¬g. As a result we have:

|{f XORg}| = |{¬(f XORg)}| (6.5)

when f and g vary over all possible linear threshold gates. Even more strongly, the corre-
sponding sets of Boolean functions are identical:

{f XORg} = {¬(f XORg)} (6.6)

Now it is easy to see that

n2(1 + o(1)) ≤ C({f XORg}) = C({¬(f XORg)}) ≤ 2n2(1 + o(1)) (6.7)

The lower bound is obtained by noticing that for any Boolean function f , f XORF = f .
The upperbound is obtained by noticing that f XORg can be implemented by a network
A(n, 2, 2, 1) of linear threshold gates (using the disjunctive normal form), and the capacity
of such a network is always at most equal to the sum of the capacities of its individual gates.
Finally, the attention multiplexing technique described in Section 5.5 applied with a mask of
1s (since f NXORT = f) shows that:

C({fXORg}) = C({¬(fXORg)}) = 2n2(1 + o(1)) (6.8)

Thus the product of 0/1 or −/+ linear threshold gates have the same capacity, and a similar
argument holds for polynomial threshold gates. These results can be summarized in the
following theorem, which is true for both 0/1 and −/+ threshold gates:

Theorem 6.1. The capacity of a linear threshold gate output-gated by another linear threshold
gate is given by:

2n2
(
1 + o(1)

)
(6.9)

Likewise, the capacity of a polynomial threshold gate of degree d output-gated by another
polynomial threshold gate of the same degree is given by:

2
nd+1

d!

(
1 + o(1)

)
(6.10)

Remark 6.2. Furthermore, we have seen that every Boolean function can be written as a
product of linear threshold gates with an exponential number of terms (Proposition 4.1).
Theorem 6.1 shows that it is not possible to do so using only a polynomial number of terms,
since this would result in an overall capacity that is only polynomial, whereas the capacity
of Bn is 2n.

Remark 6.3. The estimate in Equation 6.9 can be slightly refined using Equation 5.2 instead
of 5.1.
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Remark 6.4. These results can be extended to other interesting cases. For instance, if we
assume that the weights of the gated and gating linear threshold neurons are binary with
−/+ values, then the output gating capacity is equal to 2n

(
1 + o(1)

)
. See Figure 15 for a

partial depiction of the underlying hierarchy of Boolean functions.

Figure 15. Hierarchy of classes of Boolean functions of n variables according to their
asymptotic capacity C and number of parameters W . Linear threshold functions
require n parameters and achieve capacity n2. Linear threshold functions gated by
linear threshold functions require 2n parameters and achieve larger capacity (e.g., they
contain XOR) equal to 2n2. Quadratic threshold functions require n2/2 parameters
and achieve capacity n3/2 [9]. The set of all Boolean functions correspond to an
exponential capacity exactly equal to 2n. Note that in all these cases C = nW .

6.1.2. General Composition (k ≥ 2). The results in the previous section can be generalized to
the class of functions of the form B(f1, . . . , fk), where B is a Boolean function of k variables
and, for each j, fj ∈ T (n; dj). We denote this class by: TB(n; d1, . . . , dk).

Theorem 6.5 (Composition). Let B be an irreducible Boolean operator in k variables.2

Then:
k∏
j=1

∣∣T (n− k + 1; dj)
∣∣ ≤ ∣∣TB(n; d1, . . . , dk)

∣∣ ≤ k∏
j=1

∣∣T (n; dj)
∣∣ (6.11)

Furthermore, if B is the set of all irreducible Boolean functions of two variables (there are
10 of them), we have: ∣∣∣⋂

B

TB(n; d0, d1)
∣∣∣ ≥ ∣∣T (n− 1; d0)

∣∣ ∣∣T (n− 1; d1)
∣∣ (6.12)

where the intersection is over the ten irreducible binary Boolean operators.

2Irreducibility means that B can not be expressed as a Boolean operator in fewer than k variables.
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The complete proof of this theorem is given in the Appendix. The upper bound is easy and
the lower bound relies on the attention multiplexing approach (Section 5.5). To check the
special case, when k = 2, for two polynomial threshold gates of degree d1 and d2, Theorem
6.5 yields: ∣∣T (n− 1; d1)T (n− 1; d2)

∣∣ ≤ ∣∣TB(n; d1, d2)
∣∣ ≤ ∣∣T (n; d1)T (n; d2)

∣∣ (6.13)

and when d1 = d2 = d: ∣∣T (n− 1; d)
∣∣2 ≤ ∣∣TB(n; d, d)

∣∣ ≤ ∣∣T (n; d)
∣∣2 (6.14)

Thus, in the case of output gating of two linear threshold gates, we have:∣∣T (n− 1; 1)
∣∣2 ≤ ∣∣TB(n; 1, 1)

∣∣ ≤ ∣∣T (n; 1)
∣∣2 (6.15)

Substituting the estimates in Equations 5.1–5.5 in these inequalities gives immediately The-
orem 6.1. Note that the intersection across all 10 irreducible Boolean functions is large.

6.2. Capacity of Single Attention Units: Synaptic Gating. We are now ready to
compute the capacity for the case corresponding to the right hand side of Figure 13, where
one threhsold unit synaptically gates the weights of another threshold unit. To begin with,
we look at the case where all the weights of the gated unit are gated simultaneously. The
main result is as follows:

Theorem 6.6. Let f(x) and g(x) be two linear or polynomial threshold gates (not necessarily
of the same degree), both with the same −/+ or 0/1 output encoding and n binary input
variables. Then full synaptic gating of f by g, where all the coefficients of f are multiplied
by g, is equivalent to output gating of f by g. In particular, if both gates are linear threshold
gates, then the corresponding capacity is given by:

2n2
(
1 + o(1)

)
(6.16)

and if both gates are polynomial threshold gates of degree d, then the corresponding capacity
is given by:

2
nd+1

d!

(
1 + o(1)

)
(6.17)

Proof. We sketch the proof when f and g are linear threshold gates, but the argument extends
immediately to polynomial threshold gates. Let us assume that f(x) = sign(

∑
iwixi) and

g(x) = sign(
∑
vixi). Then, with full synaptic gating, the gated function satisfies: fg(x) =

sign(
∑

i g(x)wixi) = sign(g(x)
∑

i(wixi) = sign g(x) sign(
∑

iwixi) = g(x)f(x). In the case of
0/1 units, if H is the Heaviside function, then: fg(x) = H(

∑
i g(x)wixi) = H(g(x)

∑
iwixi).

If g(x) = 1, this is the same as f(x)g(x). Likewise if g(x) = 0, as long as we define H(0) = 0,
then fg(x) is also equal to: f(x)g(x). [Note that the gating is applied to the bias too]. �

Remark 6.7. In this particular case, to some extent, we can also consider the mixed case.
If f(x) is a −/+ gate and g(x) is a 0/1 gate, if we define sign 0 = 0 then we also have
fg(x) = f(x)g(x) everywhere. If f(x) is a 0/1 gate and g(x) is a −/+ gate, then when
g(x) = 1 we also have fg = fg. However, when g(x) = −1, then fg(x) = ¬f(x) = 1− f(x).

Remark 6.8. In both Theorems 6.1 and 6.6 there is approximately a doubling of the capacity
at the cost of doubling the number of parameters.
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Figure 16. Synaptic gating with a single attention unit. Both the gated function f and
the gating function g are linear (or polynomial) threshold gates of the same input
vector x = (x1, . . . , xn). Through the synaptic gating operation, a single synaptic
weight of the function f (w1 in the figure) is multiplied by g.

Finally, we consider the synaptic gating case where the gating unit gates only one of the
weights of the gated unit (Figure 16). The following Proposition provides bounds on the
corresponding capacity.

Proposition 6.9. Consider the case of a linear threshold gate f with n binary inputs, where
one of the weights is synaptically gated by the output of a second linear threshold gate g of
the same n inputs. Then the capacity C satisfies:

n2
(
1 + o(1)

)
≤ C ≤ 2n2

(
1 + o(1)

)
(6.18)

If the linear threshold gates are replaced by polynomial threshold gates of degree d, the capacity
C satisfies:

nd+1

d!

(
1 + o(1)

)
≤ C ≤ 2

nd+1

d!

(
1 + o(1)

)
(6.19)

The same bounds hold for the case of additive activation attention between two linear poly-
nomial threshold gates, or two linear polynomial threshold gates, of the same n inputs.

Proof. The result is true for both 0/1 and −/+ encodings of the outputs. We provide the
proof in the linear case but the technique is the same for polynomial threshold gates of degree
d > 1. The lower bound results immediately from the fact that the gating unit could have an
output constant and equal to 1 g(x) = 1). In this case the gated function is equal to f(x) and
the lower bound is the corresponding capacity estimate. The upperbound is simply the sum
of the capacities. A similar argument applies for the case of additive activation attention. �
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7. Capacity of Attention Layers

The previous attention results are obtained using only two neurons, a gating neuron and
a gated neuron, with either output gating or synaptic gating. We now extend the capacity
analysis to cases where there is a layer of gating neurons, as shown in Figure 17 for both
output and synaptic gating.

Figure 17. Left: output gating by a gating layer. For the same n dimensional input
vector x, there are m hidden units computing functions h1(x), . . . , hm(x), and m cor-
responding gating units computing functions g1(x), . . . , gm(x). With the gating, the
effective output of the hidden units is given by h1(x)g1(x), . . . , hm(x)gm(x). The final
output unit produces an output of the form f(h1(x)g1(x), . . . , hm(x)gm(x)). In the
capacity analysis, we assume that the functions h, g, and f are linear threshold gates.
Right: synaptic gating by a gating layer. In this case, there is a unit computing a func-
tion f(x) with n weights wi, . . . , wn. There are n gating functions g1(x), . . . , gn(x),
each one multiplicatively gating one of the weights w. If f = sign(

∑
i wixi) then

fg(x) = sign(
∑

i gi(x)wixi).

7.1. Capacity of Attention Layers: Output Gating. We now examine the capacity of
a network with one attention layer with output gating, as depicted on the left hand side
of Figure 17. Thus we consider an architecture with n inputs, m hidden linear threshold
units gated by m corresponding linear threshold units, and one final linear threshold output
gate. All the linear threshold gates have −/+ outputs, although the following theorem is
unchanged, and the method of proof is similar, if the gates have 0/1 outputs. We denote
by T (n,m, 1;×) the corresponding set of Boolean functions. Note that this is the same
architecture for computing the dot product of the gated and the gating hidden layer outputs,
except that the final unit is non-linear with variable weights, instead of being linear with
fixed weights equal to one. We will also let T (n, 1;×) denote the set of Boolean functions
corresponding to one linear threshold gate of n variables output-gated by another linear
threshold gate of the same variables.
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Theorem 7.1. The capacity C(T (n,m, 1;×)) of the set of Boolean functions corresponding
to n inputs, m hidden linear threshold gates output-gated by m hidden linear threshold gates
of the same inputs, followed by one linear threshold gate output satisfies:

mn2 ≤ C(T (n,m, 1;×)) ≤ 2mn2
(
1 + o(1)

)
(7.1)

for n→∞, and for any choice of m ∈ [1, 2o(n)]. Furthermore:

C(T (n,m, 1;×)) = mC(T (n, 1;×))
(
1 + o(1)

)
(7.2)

Thus:
C(T (n,m, 1;×)) = 2mn2

(
1 + o(1)

)
(7.3)

Proof. Let us denote by f the map between the input layer and the hidden layer with gating,
and by φ the map from the hidden layer to the output layer. For the upper bound, we first

note that the total number of possible maps f is bounded by 2mC(T (n,1;×)) ≤ 22mn
2(1+o(1)),

since f consists of m threshold gates gated by m threshold gates, and thus each gated unit

corresponds to at most 2C(T (n,1;×)) ≤ 22n
2(1+o(1)) possibilities by the Theorems in Section

6. Any fixed map f , produces at most 2n distinct vectors in the hidden layer. It is known
[1] that the number of threshold functions φ of m variables defined on at most 2n points is
bounded by:

2

(
2n − 1

≤ m

)
= 2nm(1+o(1)) (7.4)

using the assumption m ≤ 2o(n). Thus, under our assumptions, the total number of functions
of the form φ ◦ f is bounded by the product of the bounds above which yields immediately:

C(T (n,m, 1;×)) ≤ mC(T (n, 1;×))
(
1 + o(1)

)
≤ 2mn2

(
1 + o(1)

)
(7.5)

For the lower bound, we can force the gating units to be the identity (i.e., with a constant out-
put equal to 1). In this particular case, the gating units can be ignored and we need to count
the number of Boolean functions that can be implemented in the remaining architecture. A
theorem in [8] shows that this number is equal to mn2(1 + o(1)).

To prove the rest of the theorem, we use attention multiplexing. As a reminder, the basic
idea is to have a small set of the input units act as attention units that can be used to select
a particular function in the hidden layer. The same setting of the attention units will be used
to select the corresponding functions in both the gating and gated layers. More formally,
we decompose n as: n = n− + n+ where n− = dlog2me corresponds to the attention units.
Likewise, we decompose each input vector x = (x1, . . . , xn) ∈ {−1,+1}n as: x = (x−, x+),
where:

x− = (x1, . . . , xn−) ∈ {−1,+1}n−
and x+ = (xn−+11, . . . , xn) ∈ {−1,+1}n+

(7.6)

For any gated Boolean linear threshold map f+ from {−1,+1}n+
to {−1,+1}m, we can

uniquely derive a map f = (f1, . . . , fm) from {−1,+1}n to {−1,+1}m defined by:

fi(x
−, x+) = [x− = i] AND [f+i (x+)] (7.7)

Here x− = i signifies that the binary vector x− represents the digit i. In other words x− = i
is used to select the i-th unit in the gated layer as well as in the gating layer, and filter f+

by retaining only the value of f+i . By Lemma 5.1), this selection procedure can be expressed
using a single linear threshold function of the input x− for the gated layer, and similarly
for the gating layer. We say that f is obtained from f+ by multiplexing and f is a gated
threshold map. It is easy to see that the filtering of two distinct maps f+ and g+ results
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into two distinct maps f and g. Now let us use φ = OR in the top layer–note that OR can
be expressed as a linear threshold function. Then it is also easy to see that φ ◦ f 6= φ ◦ g.
Thus the total number of Boolean functions that can be implemented in this architecture is
lower-bounded by the number of all gated Boolean maps f+. This yields:

C(T (n,m, 1;×)) ≥ mC(T (n+, 1;×))
(
1 + o(1)

)
= 2mn2

(
1 + o(1)

)
(7.8)

using the fact that n+ = n−dlog2me, and dlog2me = o(n) by assumption. Thus: C(T (n,m, 1;×)) =
mC(T (n, 1;×))

(
1 + o(1)

)
= 2mn2

(
1 + o(1)

)
. �

Remark 7.2. In Theorem 7.1, we see again that both the capacity and the number of param-
eters approximately double at the same time.

7.2. Capacity of Attention Layers: Synaptic Gating. We now examine the capacity of
a network with one attention layer with synaptic gating, as depicted on the right hand side
of Figure 17, with each gating neuron gating a different weight of a gated neuron.

Proposition 7.3. Consider the case of a linear threshold gate with n inputs and n weights,
where each weight is synaptically gated by an independent linear threshold gate of the same
n inputs. Then the capacity C satisfies:

n2
(
1 + o(1)

)
≤ C ≤ n3

(
1 + o(1)

)
(7.9)

If the linear threshold gates are replaced by polynomial threshold gates of degree d, the capacity
C satisfies:

nd+1

d!

(
1 + o(1)

)
≤ C ≤ nd+2

d!

(
1 + o(1)

)
(7.10)

Proof. The proof is similar to the proof of Proposition 6.9. The lower bound is obtained by
constraining all the gating units to have a constant output equal to 1. The upperbound is
simply the sum of all the capacities. �

Likewise, we can consider an architecture with n inputs, one layer of m gating units, and
one parallel layer of m gated units. Each gating unit is uniquely paired with one gated unit
(one to one) and synaptically gates one of the weights of the gated unit.

Proposition 7.4. Consider the case of an architecture with n inputs, one layer of m gating
units, and one parallel layer of m gated units. Each gating unit is uniquely paired with one
gated unit (one to one) and synaptically gates one of the weights of the gated unit. Then the
capacity C satisfies:

mn2
(
1 + o(1)

)
≤ C ≤ 2mn2

(
1 + o(1)

)
(7.11)

If the linear threshold gates are replaced by polynomial threshold gates of degree d, the capacity
C satisfies:

m
nd+1

d!

(
1 + o(1)

)
≤ C ≤ 2m

nd+1

d!

(
1 + o(1)

)
(7.12)

Proof. The proof is similar to the proof of Proposition 6.9. The lower bound is obtained by
constraining all the gating units to have a constant output equal to 1. The upperbound is
simply the sum of all the capacities. �

Remark 7.5. Attention Capacity of Transformer Blocks: Consider the problem of
estimating the capacity of an encoder block (Figure 5) in a transformer architecture. The
only adjustable parameters are in the shared maps used to produce the K, Q,and V vectors
at each one of the n input positions. Most often, these maps are linear and thus to quantify
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the capacity one can, for instance, quantify the corresponding matrix entries. This can be
done by limiting the precision of the matrix entries. While this approach is reasonable, to
focus the analysis on the attention mechanism itself, we can assume that the value vectors are
fixed and count how many different outputs can be produced by the attention mechanism,
as we vary the key and query vectors. For simplicity, we can assume that the query and
key vectors are binary vectors. Assuming these vectors have length m, then there are 2mn

possible choices in total for the n key vectors (with repetition allowed), and similarly for the
query vectors. Thus the Q and K vectors of the transformer encoder block can produce at
most 22mn states for the overall attentional mechanism. Thus, in this sense, the attentional
mechanism itself has a capacity of at most 2mn.

8. Conclusion

In addition to the fundamental role attention plays in brain function, attention mechanisms
have also become important for artificial neural networks and deep learning. Here we have
taken the first steps towards building a theory of attention mechanisms by first identifying
the quarks of attention, i.e., its smallest building blocks. Using the three variable types
of the SM allows for the systematic identification and organization of possible attention
building blocks based on their origin type, target type, and whether the mechanism of action
is additive or multiplicative. Assuming that the attention signal originates from the output
of some neurons, this yields six possibilities, which can then be reduced to three main cases:
activation attention, output gating, and synaptic gating. Activation attention falls within the
SM, whereas output gating and synaptic gating correspond to multiplicative extensions of
the SM. Current attention-based architectures in deep learning, including transformers, are
built out of attention modules which are themselves built out of output gating and synaptic
gating operations. These operations and modules can be viewed as new primitives in the
language of neural architectures in digital simulations and, because they are differentiable,
the usual backpropagation learning framework can easily be extended to them. However, in a
physical neural machine, these operations require additional connections (wires) and physical
mechanisms for implementing multiplicative interactions.

Output gating can be used dynamically to directly silence unattended neurons, and to
magnify the output of attended neurons. It can also be used as the main building block of a
shallow module that can compute the dot product of two vectors of neuronal activities. The
latter is a key, massively used, component of transformer architectures.

Synaptic gating is a fast synaptic mechanism that can be used dynamically to silence or
weigh the attended synapses. It is often used in combination with a softmax operator to
enable dynamic convex combinations of vectors, as in the transformer architectures. The
concept of fast synapses that can vary their strengths on fast time scales is not new and has
been associated with different roles, in different contexts. For instance, one potential role is
the storage of transient information, such as intermediary results during mental reasoning,
or simply the memorization of the beginning of a paragraph as the reading of the paragraph
proceeds. A second potential role stems from viewing synaptic weights as computer programs,
and thus fast synapses as enabling dynamic changes in the programs that are being executed
and the implementation of parameterized functions. And a third role studied here is the
enabling of attention. These three roles are not independent and raise interesting architectural
questions for deep learning and neuroscience and the possible need for multiple synaptic time
scales interacting in hierarchical ways.
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To see this, as an example, consider the reading paradigm where information about the first
sentence of a long paragraph is stored using a set of fast weights. If, as the reading proceeds,
one must suddenly access a specific subset of this transiently stored information, attention
must be directed towards certain particular words contained in the first sentence. In a deep
learning architectures, this can be thought of in terms of a softmax synaptic gating, as is
done in transformer and other NLP architectures. Thus somehow this fast weight attention
mechanism must operate upon, and be faster than, the fast weight synaptic mechanism used
to store information about the first sentence.

Another related question that is important for both deep learning and neuroscience is the
issue of positional information and how it is encoded. The existence of topographic maps in
the visual cortex and other areas suggests that at least in the case of 2D data like images,
position is encoded in the brain topographically through the connectivity of the underlying
architectures. Transformers can be, and have been, applied to image data, but in contrast
they need positional information to be added to the value of individual pixels, or groups of
pixels. This alone suggests to us that there may exist deep architectures for NLP problems,
where position is encoded in the connectivity rather than the inputs, which perform as well
if not better than transformers.

Attention mechanisms allow the attending network to modulate the function computed
by the attended network, thereby expanding the scope of useful functions that can be ef-
ficiently implemented and trained in deep learning. Because the SM already has universal
approximation properties, its extensions should not be evaluated in terms of which functions
can be approximated, but rather in terms of other efficiencies. While attention blocks act as
new primitives in standard deep learning software libraries, having access to output gating
and synaptic gating mechanisms in a physical neural network can reduce its depth. Using
the notion of cardinal capacity, and working with the approximation provided by Boolean
neurons (linear or polynomial threshold gates), enables systematic investigations of the ca-
pacity of attentional circuits that were previously not possible. In particular, we have been
able to estimate the capacity of basic attentional circuits involving linear, or polynomial,
threshold gates. In many cases of interest, we found essentially a doubling of the capacity
with a doubling of the number of parameters, which is a sign of efficiency.

Perhaps surprisingly, a key ingredient in the capacity proofs is the third form of attention,
activation attention. Activation attention is used to prove capacity lower bounds by the
multiplexing approach which selects a unit in a layer, as a function of the attending units,
while driving the remaining units in the layer to low or high saturation. There is work left
for tightening some of the capacity estimates and for extending them to other activation
functions and other architectures. Although the capacity results stand on their own mathe-
matical proofs, further corroborating them through computer simulations poses also unique
challenges. This is already obvious for the simpler problem of using computer simulations
to estimate the capacity of a single neuron, i.e., the number c of linear threshold functions
of n variables. This is also equivalent to estimate the probability p that a Boolean function
drawn randomly and uniformly from the set of all Boolean functions of n variables is a linear
threshold function, or that a uniformly random coloring of the hypercube is linearly separa-

ble. Zuev’s theorem states that c ≈ 2n
2
. Thus a direct enumeration is faced with the fact

that the number of linear threshold function grows exponentially fast and is prohibitively
large even for relatively small values of n (e.g., n = 1000), whereas a simple Monte Carlo

sampling approach is equally bound to fail since the probability p ≈ 2n
2
/22

n
goes to zero
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exponentially fast. The results in Section 6 and 7 build on Zuev’s theorem and raise even
harder challenges for computer simulations.

Figure 18. Standard model and some of its extensions.

Overall, both output and synaptic gating are extensions of the SM which introduce qua-
dratic terms in the SM (Figure 18). Quadratic terms are powerful but expensive: a neuron
with full quadratic activation over its n inputs requires on the order of n2 synaptic parameters.
Using quadratic activations everywhere in a large deep architecture leads to implementations
that may not be efficient in terms of parameters and learning. Attention mechanisms are a
way of introducing quadratic terms in a sparse way, in order to gain some of the benefits of
quadratic activations, without paying the full price.

Finally, we can return to the quotes in the introduction linking attention to awareness
and pointing to the inadequacy of having a single term. While subjectively we feel that we
can control and direct our attention and be aware of its shifts, it should be obvious that
attention mechanisms, such as output or synaptic gating, are computational mechanisms
that do not require awareness. They can operate at all levels of a cognitive architecture,
for instance to help implement dynamically whole-part hierarchies and ultimately awareness
itself. Thus, in short, awareness is not necessary for attention, but attention may be necessary
for awareness. Having a single term is indeed inadequate and, in time, it may have to be
replaced with multiple terms to better capture the underlying complexities.

9. Appendix: Detailed Proof of Theorem 6.5

Here a polynomial threshold function is a function of the form f = sign(p) : {0, 1}n →
{−1, 1} where p is a polynomial in n real variables of degree at most d. The class of all such
functions is denoted T (n; d).
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Let B(z1, . . . , zk) : {−1, 1}k → {−1, 1} be a Boolean function in k variables. We are
interested in the class of functions of the form B(f1, ..., fk) : {0, 1}n → {−1, 1} where fj ∈
T (n; dj). Denote this class by TB(n; d1, . . . , dk). We want to prove the following theorem:

Theorem (Composition). Let B be an irreducible Boolean operator in k variables. Then:

k∏
j=1

∣∣T (n− k + 1; dj)
∣∣ ≤ ∣∣TB(n; d1, . . . , dk)

∣∣ ≤ k∏
j=1

∣∣T (n; dj)
∣∣ (9.1)

The upper bound is trivial from considering the total number of tuples (f1, ..., fk) with
fj ∈ T (n; dj). The lower bound is nontrivial except for k = 1 where both bounds become
identical. The key to the proof is the multiplexing (activation attention) procedure, where k
input components are viewed as attention units capable of producing a constant mask in the
hidden layer, except for the attended function. Here for simplicity we use a sparse encoding
in the k components, although dense encoding is also possible, as in the proof of Theorem
7.1. Dense encoding would lead to a reduction in the number of attending units from k
to dlog2 ke as in Section 5.5. As a side note, using more attention units than the minimal
number required, can be used to reduce the size of the attention weights, or to make the
attention mechanism less sensitive to each individual attention bit.

To prove the lower bound in Composition Theorem 6.5, let us restate it equivalently as:

k∏
j=0

∣∣T (n− k; dj)
∣∣ ≤ ∣∣TB(n; d0, . . . , dk)

∣∣ ≤ k∏
j=0

∣∣T (n; dj)
∣∣ . (9.2)

Irreducibility implies that if we select any input component i, the value of B cannot be
determined entirely from the value of the remaining components alone. More formally:

Lemma 9.1. Consider an irreducible Boolean operator B = B(z0, . . . , zk) and an index
i ∈ {0, . . . , k}. There exist signs θ ∈ {−1, 1} and θj ∈ {−1, 1}, j ∈ {0, . . . , k}\{i}, such that:

B(z0, . . . , zk) = θzi whenever zj = θj for all j 6= i. (9.3)

Proof. Consider B(z0, . . . , zk) as a function of zi. If this function is constant in the variable zi
no matter how we fix the other variables, then the value of B(z0, . . . , zk) is entirely determined
by the values of these other variables, which contradicts irreducibility. Therefore, there exists
some assignment zj = θj , j 6= i, so that the function B(θ0, θ1, . . . , zi, . . . θk) is not constant in
zi. But there exists only two non-constant Boolean functions f(x) in one variable: f(x) = x
or f(x) = −x, and this determines θ. �

The next lemma essentially states that we can fit an affine function of k variables to k + 1
points.

Lemma 9.2. Let e0 = 0 and e1, . . . , ek denote the canonical basis vectors in Rk. Then, for
any choice of index j ∈ {0, . . . , k} and signs θi ∈ {−1, 1}, i ∈ {0, . . . , k} \ {j} there exists an
affine function q : Rk → R such that:

q(ei) =

{
0, i = j

θi, i 6= j
(9.4)

for all i ∈ {0, . . . , k}.
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Proof. It is straightforward to check that the function:

q(z) = θ0 − θ0zj +
∑

i∈{0,...,k}\{j}

(θi − θ0)zi (9.5)

satisfies the required property. �

We can now use the previous lemma to derive a lemma for consistently extending a function
of n − k variables to a function of n variables. Here k components are used as selector of
filter variables, as in the proof of Theorem 7.1.

Lemma 9.3. Consider a function f ∈ T (n − k; d), an index j ∈ {0, . . . , k}, and signs
θ ∈ {−1, 1} and θi ∈ {−1, 1}, i ∈ {0, . . . , k} \ {j}. There exists a function F ∈ T (n; d) such
that:

F (ei ⊕ x) =

{
θf(x), i = j

θi, i 6= j
(9.6)

for all x ∈ {0, 1}n−k. Here ⊕ denotes the concatenation operator.

Proof. Express the polynomial threshold function f as:

f(x) = sign(p(x)) for x ∈ {0, 1}n−k (9.7)

where p is a polynomial in n variables and of degree at most d. Let q be a function that
satisfies the conclusion of Lemma 9.2. Fix a number M large enough so that M >

∣∣p(x)
∣∣ for

all x ∈ {0, 1}n−k, and define:

F (z ⊕ x) = sign
(
Mq(z) + θp(x)

)
(9.8)

for all z ∈ Rk and x ∈ Rn−k. By construction, F is a polynomial threshold function on
{0, 1}n of degree at most d as required.

Let us check that F satisfies the conclusion of the lemma. If z = ej , we have q(z) = 0 due to
our choice of q (per the conclusion of Lemma 9.2), and we get F (z⊕x) = sign(θp(x)) = θf(x).
If z = ei with i 6= j, then our choice of q implies F (z ⊕ x) = sign(Mθi + θp(x)). The choice
of M guarantees that the term Mθi dominates the term θp(x) in magnitude, so we have
F (s⊕ x) = sign(Mθi) = θi. �

We can now use Lemma 9.3 for the simultaneous extension and filtering of several functions
of n− k variables relative to an irreducible Boolean function B.

Lemma 9.4. For any (k + 1)-tuple of functions (f0, . . . , fk) where fj ∈ T (n − k; dj) there
exists a (k + 1)-tuple of functions (F0, . . . , Fk) where Fj ∈ T (n; dj) such that:

B(F0, . . . , Fk)(ei ⊕ x) = fi(x) (9.9)

for all i ∈ {0, . . . , k} and x ∈ {0, 1}n−k.

Proof. Lemma 9.1 yields the existence of signs θi ∈ {−1, 1} for i ∈ {0, . . . , k} and θij ∈ {−1, 1}
for distinct i, j ∈ {0, . . . , k}, such that:

B(z0, . . . , zk) = θizi whenever zj = θij for all j 6= i. (9.10)

Now consider the functions fj ∈ T (n− k; dj), j ∈ {0, . . . , k}. Lemma 9.3 yields the existence
of functions Fj ∈ T (n; dj), j ∈ {0, . . . , k}, such that:

Fj(ei ⊕ x) =

{
θifi(x), i = j

θij , i 6= j
(9.11)
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for all i, j ∈ {0, . . . , k} and x ∈ {0, 1}n−k.
For any fixed i ∈ {0, . . . , k} and x ∈ {0, 1}n−k, by construction the variables zj := Fj(ei⊕x)

satisfy the condition in (9.10). Therefore, (9.10) and (9.11) yield:

B(F0, . . . , Fk)(ei ⊕ x) = B(z0, . . . , zk) = θizi = θiFi(ei ⊕ x) = θ2i fi(x) = fi(x) (9.12)

as claimed. �

Armed with this lemma, we can now prove Theorem 6.5.

Proof of Theorem 6.5. Lemma 9.4 demonstrates that for any tuple of functions (f0, . . . , fk) ∈∏k
i=0 T (n − k; dj) there exists a function F ∈ TB(n; d0, . . . , dk) such that F (ei ⊕ x) = fi(x)

for all i ∈ {0, . . . , k} and x ∈ {0, 1}n−k. Thus, each component fi of the original k-tuple
can be uniquely recovered from F . Therefore, a map (f0, . . . , fk) 7→ F (if there are multiple
F corresponding to some f , select one arbitrarily) defines an injection from the cartesian

product
∏k
i=0 T (n− k; dj) into TB(n; d0, . . . , dk), completing the proof. �

As shown in Table 2, there are 16 binary Boolean operators B. Ten of them are irreducible,
including AND, OR and XOR and their negations. For each such operator, the Composition
Theorem 6.5 gives:

∣∣T (n− 1; d0)
∣∣ ∣∣T (n− 1; d1)

∣∣ ≤ ∣∣TB(n; d0, d1)
∣∣ ≤ ∣∣T (n; d0)

∣∣ ∣∣T (n; d1)
∣∣ (9.13)

Surprisingly, the intersection of all ten classes is still as large.

Proposition 9.5. We have:∣∣∣⋂
B

TB(n; d0, d1)
∣∣∣ ≥ ∣∣T (n− 1; d0)

∣∣ ∣∣T (n− 1; d1)
∣∣ (9.14)

where the intersection is over the ten irreducible binary Boolean operators.

In particular, there are many functions f (specifically, 22n
2(1−o(1))) that can be simulta-

neously expressed as: f = f1 AND f2 = f3 OR f4 = f5XORf6 where all the fi are linear
threshold gates.

Proof. In the proof of the Composition Theorem 6.5 above, we showed that for each irre-
ducible Boolean operator B and pair of functions (f0, f1) ∈ T (n− 1; d0)×T (n− 1; d1), there
exists F ∈ TB(n; d0, d1) such that:

F (0⊕ x) = f0(x), F (1⊕ x) = f1(x) (9.15)

for all x ∈ {0, 1}n−1. Obviously, this pair of equations defines F uniquely on {0, 1}, and F is
independent of B. Thus, F lies in the intersection of TB(n; d0, d1) over all irreducible B. �
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