
1 Ancient Egypt

Summary

• Recorded civilization in Nile valley from c. 3150 BC.

• Conquered 322 BC by Alexander the Great (Greece/Macedonia).

• Became a Roman province in 30 BC under Cleopatra.

• Egyptology began with discovery of Rosetta Stone (AD 1799), containing Greek, hieroglyphic
and demotic (later, post hieratic, more cursive) Egyptian script. Allowed translation of ancient
Egyptian writing.

• Primary mathematical sources: Rhind/Ahmes (A’h-mose) papyrus c. 1650 BC and the Moscow
papyrus c. 1700 BC.1 Part of the Rhind papyrus is shown below. It contained two tables: unit
fraction representations of all 2

n for n < 100 (ish) and expressions for 3
10 , 4

10 , . . . , 9
10 in terms

of unit fractions. Also included were around 100 worked problems. Scribes would learn the
method by copying previous problems and changing the numbers.

The Moscow papyrus is shorter and more focused on geometric problems.

• Few other primary sources. Egyptians wrote on papyrus (plant-based form of paper) which
decomposes. Other Egyptian mathematics was likely absorbed uncredited by the Greeks.

• Practical/non-theoretical: worked problems on sums, linear equations, construction and land-
measurement (tax-collection). No clear distinction between exact and approximate solutions.

1Rhind was a Scottish egyptologist. Ahmes was the name of the scribe who wrote/copied the papyrus. The Moscow
papyrus is named because it was sold to the Moscow Museum of Fine Art; its author is unknown.
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Notation & Egyptian Fractions

The ancient Egyptians had two distinct systems for enumeration: hieroglyphic (dating at least to
5000 BC) and hieratic (c. 2000 BC). These changed over time, so we give only one version.

Hierogylphic enumeration Essentially decimal symbols for
numerals/powers of 10.

• Could be written in any direction: top-to-bottom, right-to-
left, etc., or just lumped together: e.g.

2349 =

• Slow to write, numbers take up a lot of space.

Numeral Hieroglyph
1
10 (heel bone)
100 (snare)
1000 (lotus flower)

10000 (finger)
100000 (fish)
1000000 (person)

Hieratic enumeration We will largely ignore this
since it is written cursively.

• Different symbols for 1–9, 10–90, 100–900
etc., mapped onto hieratic alphabet.

• System copied later by the Greeks with their
own alphabet.

• Pros: less space, easier to write with ink,
each number requires fewer symbols.

• Cons: More symbols, slower calculations.

For instance, 23 would be written (approximately!) |||∧.
The Eygptians had no numeral for zero, though the hieroglyph nfr (beautiful/perfect) was used to
denote, for instance, the base floor of a building or to indicate balanced books in accounting.

Fractions Ancient Egyptians worked almost entirely with reciprocals of integers ( 1
n where n ∈ N).

In modern times, any fraction represented as a sum of reciprocals is called an Egyptian fraction; their
theory is still actively researched. For instance

1
2
+

1
4
+

1
5

is a representation of 19
20 as an Egyptian fraction.

In hieratic notation, a dot was placed above to denote the reciprocal: e.g., ∧̇ is 1
10 .

In hieroglyphs, a reciprocal was represented by plac-
ing an oval over a numeral. We do this with a bar:
e.g. 2 = 1

2 . As with integers, combinations of frac-
tions could be written in any order/direction.
The only non-reciprocal fractions with special sym-
bols were 2

3 and 3
4 , and these only appeared late in

Egyptian civilization.2

Fraction Hieroglyph Modern
1
3

◦
3

1
41

◦
41

1
103204

◦
103204

31 + 1
2 +

1
25

◦ ◦
25 2 31

2For instance an oval over one-and-a-half sticks for 2
3 , and an oval over three short-long-short sticks for 3

4 .
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The Rhind papyrus contains a table, of which we reproduce part,
showing how to express 2

n as Egyptian fractions for all odd integers
n < 100. The first column denotes n, and the remaining columns the
Egyptian fraction representation. For instance, the first row states that

2
5
=

1
3
+

1
15

(
◦ ◦

3 15)

5 3 15
7 4 28
9 6 18
11 6 66
13 8 52 104
15 10 30

There are several approaches to finding Egyptian fraction representations, and it can be proved that
any fraction may be written in such a form. If the denominator is odd, then a simple place to start is
with

2
mn

=
1

mr
+

1
nr

where r =
m + n

2

Most lines in the Rhind table follow this formula, but not all. Note also that the formula often permits
multiple representations.

• The line for 2
5 has m = 1, n = 5 and r = 3; this is unique up to reordering.

• 2
9 may be represented

2
9
=

{
1
9 +

1
9 (m, n, r) = (3, 3, 3)

1
5 +

1
45 (m, n, r) = (1, 9, 5)

The first of these is essentially useless and the second is not the expression from the table.

• In the table, 2
13 is written as a sum of three reciprocals instead of two.

The table reduced the need to divide and sped up the computation of harder fractions: for instance,

5
13

= 2 · 2
13

+
1

13
= 2

(
1
8
+

1
52

+
1

104

)
+

1
13

=
1
4
+

1
13

+
1
26

+
1

52

Egyptian Calculations & Example Problems

Addition/Subtraction With hieroglyphs this is simple: Write out numbers one above another and
count up the symbols! Replace 10 of one by the next symbol. For subtraction, one might need to
convert a larger symbol to 10 of a smaller one. Essentially this is ‘carrying.’ A special symbol was
used to denote both addition and subtraction: its meaning changed depending on the direction the
text was read.

Multiplication This relied on a base-two algorithm. To compute ab:

1. Write 1, b

2. Repeatedly double each until the first term is about to exceed a

3. Determine powers of 2 that sum to a

4. Sum the corresponding multiples of b
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For example, to compute 13 · 15, we construct a table where the checked rows are summed.

1 15 ✓
2 30
4 60 ✓
8 120 ✓

=⇒ 13 · 15 = (1 + 4 + 8) · 15 = 15 + 60 + 120 = 195

Note how 13 = 1 + 4 + 8 = 20 + 22 + 23 is essentially the binary representation. We stopped at the
fourth row since another doubling would have resulted in the first term (16) exceeding 13. We could
instead have reversed the roles of the factors:

1 13 ✓
2 26 ✓
4 52 ✓
8 104 ✓

=⇒ 15 · 13 = (1 + 2 + 4 + 8) · 13 = 13 + 26 + 52 + 104 = 195

All you need is addition and the ability to multiply by 2!

Division This also relies on doubling/halving, though the answer is non-unique and might re-
quire some creativity. To find a

b , think about solving the problem a = bx and apply a variant of the
multiplication algorithm to find multiples of b summing to a. Here are some examples.

1. To compute 260÷ 13, we repeatedly double 13 until terms in the right column sum to 260.

1 13
2 26
4 52 ✓
8 104

16 208 ✓

Since 260 = 208 + 52 we conclude that 260÷ 13 = 16 + 4 = 20

2. To find 5÷ 13 we start by dividing by 2 with the intent of making terms in the right column
sum to 5.

1 13
2 6 2
4 3 4 ✓
8 1 2 8 ✓

Since (3 4) + (1 2 8) = 4 2 4 8 is 8 ( 1
8 ) short of what we want, we continue the table in a different

way. First divide by 13, then continue halving until we obtain the desired 8 in the right column.

13 1
26 2
52 4

104 8 ✓

We conclude that 5÷ 13 = 4 8 104 = 1
4 +

1
8 +

1
104 . We could have proceeded differently to obtain

the same result as followed from the Rhind table:

5 = (3 4) + 1 + 2 + 4 =⇒ 5÷ 13 = 4 13 26 52
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Practical application: Loaf-splitting A typical Egyptian problem might involve determining how
to split 5 loaves among 13 people. The previous calculation tells us that we could give each person
1
4 + 1

8 + 1
104 of a loaf. This might seem complicated but it has some advantages over the modern

approach where we’d first cut each loaf into 13 equal pieces:

• The large chunks of bread are created by repeatedly cutting in half: this is easy to do accurately,
whereas cutting 13th parts is difficult! The remaining 104th parts of a loaf would probably be
ignored as crumbs.

• The Egyptian approach only requires 34 cuts, as opposed to 60 in the modern style.

Linear equations Another common type of problem was how to solve linear equations. Solutions
were based on the method of false position. Essentially one guesses an approximate solution, then
modifies it until it works. Here is problem 24 of the Rhind papyrus.

A heap plus a seventh of a heap is nineteen. What is the heap?

In modern algebra, representing ‘heap’ by x, we wish to solve x + 1
7 x = 19. Here is the Egyptian

method.

1. Guess intelligently: x = 14 is easy to divide by 7 and we obtain
x + 1

7 x = 16

2. Correct our guess: We want 19, not 16, so we multiply our guess
(14) by 19

16 = 1 8 16 to obtain the correct answer

x = 2 4 8 + 4 2 4 + 9 2 = 16 2 8

1 1 8 16
2 2 4 8 ✓
4 4 2 4 ✓
8 9 2 ✓

Compare this with the ‘modern’ method:

x +
1
7

x = 19 =⇒ 8
7

x = 19 =⇒ x =
7 · 19

8
=

133
8

=
128 + 5

8
= 16

5
8

Are the any benefits to the Egyptian approach?

Geometry Problem 48 in the Rhind papyrus involves using an
octagon to approximated the area of a circle. A square of side 9
is drawn, where each side is split into thirds and the four corner
squares are cut in half. The area of the octagon is then

81− 18 = 63

Since the area of the circle is 81π
4 , this amounts to the approximation

π ≈ 28
9 = 3.11111 . . .

Problem 50 compares the same circle to a square of side 8: essen-
tially 81π

4 ≈ 64 which corresponds to π ≈ 256
81 = 3.16049 . . .

No explanation is given as to what inspired these methods, nor whether the scribes understood that
these were only approximations.
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Other problems involved computing/approximating areas and vol-
umes of triangles, quadrilaterals, boxes, cylinders, and truncated
pyramids. As with other problems, these were typically worked ex-
amples without general formulæ. They even had a notion of cotan-
gent which they called the seked, useful for describing and calculat-
ing slopes. a

h o

θ

seked = a
o = cot θ

Exercises Most of these problems are taken from the ‘official’ textbook.

1. Use Egyptian techniques to multiply 34 by 18 and to divide 93 by 5.

2. Use Egyptian techniques to multiply 28 by 1 + 2 + 4 (problem 9 of the Rhind papyrus).

3. A part of the Rhind papyrus table for division by 2 reads as follows:

2÷ 11 = 6 + 66, 2÷ 13 = 8 + 52 + 104, 2÷ 23 = 12 + 276

The calculation of 2÷ 13 is given below, where the right hand side is a modern rendering, and
the terminal ‘2’ indicates that the last entry in the right-hand column is indeed 2:

1 13
◦ ◦

2 6 2
◦ ◦

4 3 4
◦ ◦ ◦

8 1 2 8
◦ ◦

52 4
◦ ◦

104 8
◦ ◦ ◦ ◦ ◦ ◦ ◦

8 52 104 1 2 4 8 8
2

Perform similar calculations for 2÷ 11 and 2÷ 23.

(If you want the exact results from the papyrus, you’ll need to work with 2
3 : denote this by 3. Egyptian

notation is not required!)

4. Draw a picture of 5 loaves to help describe how the Egyptians might have divided them be-
tween seven people.

5. Use the method of false position to solve problem 28 of the Rhind papyrus:

A quantity and its 2/3 are added together, and from the sum 1/3 of the sum is sub-
tracted, and 10 remains. What is the quantity?

6. Calculate a quantity such that if it is taken two times along with the quantity itself, the sum
comes to 9.

(Problem 25 of the Moscow papyrus)
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2 Babylon/Mesopotamia

Babylon was an ancient city located near modern-
day Baghdad, Iraq, though the term is shorthand for
the many empires/civilizations dating back to before
3000 BC that arose in Mesopotamia3: Sumeria, Akka-
dia, Babylonia, etc.
Used cuneiform (wedge-shaped) script, typically in-
dentations on clay tablets.
Most recovered tablets date from the time of Ham-
murabi (c. 1800 BC) or the Seleucid dynasty (c. 300 BC)
which ruled after Alexander the Great’s conquests.
Mathematical tablets are of two main types: tables
of values (multiplication, reciprocals, measures) and
worked problems.

Positional Enumeration The Babylonians used two symbols, roughly ∨ for 1 and ∢ for 10, likely
made by the same stylus. Any number up to 59 was written with combinations, e.g.

53 = ∢∢∢
∢∢ ∨∨∨

with the picture showing a typical appearance as cuneiform. Arguably the greatest mathematical
advance of the Babylonians was in evidence by 2000 BC; a positional number system. To understand
what this means, consider our decimal (base-10) system where 3835 uses the same symbol 3 to rep-
resent two different concepts 3000 and 30. We might write this as

3835 = 3 · 103 + 8 · 102 + 3 · 10 + 5

Babylonian enumeration did exactly the same thing base-60; we call it a sexagesimal system. The
sexagesimal decomposition of 3835 is

3835 = 1 · 602 + 3 · 60 + 55

for which the Babylonians would write

∨ ∨∨∨ ∢∢∢
∢∢
∨∨∨∨∨ (∗)

In a positional system the meaning of a symbol depends on its position. For us, ‘3’ might mean 30,
3000 or 3

1000 , while for the Babylonians ∨ could mean 1, 60, 3600, 216000, or fractions such as 1
60 , 1

3600 ,
etc. There was no symbol for zero (as a placeholder) until very late in Babylonian history, nor any
sexagesimal point, so determining position on ancient tablets can be difficult. For instance, (∗) might
instead have represented

60 + 3 + 55
60 = 63 11

12 or 603 + 3 · 602 + 55 · 60 = 230100

3‘Between two rivers,’ namely the Tigris and Euphrates. As indicated on the map, these rivers formed the backbone of
the Fertile Crescent, in which early civilization, farming, crop and animal domestication occurred.
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To make things easier to read, we will write a sexagesimal number using commas to separate terms
and, if necessary, a semicolon to denote the sexagesimal point. Thus

23, 12, 0; 15 = 23 · 602 + 12 · 60 +
15
60

= 83520
1
4

Why base 60? There are many theories, but no-one is sure precisely why. Here are some ideas.

• 60 has many proper divisors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30). Many more numbers ‘divide ex-
actly’ than with decimal arithmetic: e.g., as a terminating sexagesimal, 1

3 = ; 20 is much simpler
than the decimal 0.33333 . . .

• A year has approximately 360 days (divisible by 60). The Babylonians were prolific astronomers
and astrologers. Our modern usage of degrees, minutes, seconds for angle, hours, minutes, seconds
for time, and the standard zodiac are all of Babylonian origin.

• The Babylonians possibly inherited two systems of counting (say base 10 and base 12) from
older cultures and eventually combined them.

This is the sort of historical question that is rarely answerable in a satisfying way, particularly when
discussing an ancient culture. Likely no-one ‘decided’ to use base 60; like most culture, it probably
happened slowly and organically, without much fanfare.

It wasn’t just counting that used 60s; units of Babylonian measure often used 60 when moving up
and down the magnitude scale similarly to how we use multiples of 1000 (e.g. joules→ kilojoules→
megajoules).

Calculations Addition and subtraction of sexagesimals would have been as natural to the Babylo-
nians as decimal calculations are to us. For instance, we might write

21,49
+ 3,37

+ 2
1
4,26

(i.e. 1309 + 217 = 1526)

Note how we carry 60s just like we are used to doing with 10s in decimal arithmetic: 49 + 37 = 1, 26.

Multiplication is significantly harder. To mimic our decimal long-multiplication process would re-
quire knowing up to the 59 times table! For small products this might have been fine, but there is
evidence that the Babylonians used two expressions to represent any product in terms of squares

xy =
1
2
[
(x + y)2 − x2 − y2] = 1

4
[
(x + y)2 − (x− y)2]

Tablets consisting of tables of squares have been found, thus greatly aiding the computation of large
products. For instance, to compute 31× 22 = 682,

31× 22 =
1
4
[
532 − 92] = 1

4
[
46, 49− 1, 21

]
=

1
4
[
45, 28

]
= 11, 7 + 15 = 11, 22

This process would be combined with long-multiplication to multiply larger numbers.
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Fractions/Division The Babylonians used sexagesimals rather than fractions. They produced tables
of reciprocals 1

n which could be used to quickly evaluate divisions via m÷ n = m× 1
n . For instance

1
18

= 0; 3, 20 =⇒ 23
18

= 23(0; 3, 20) = 1; 9 + 0; 7, 40 = 1; 16, 40

This works nicely provided the only primes dividing n are 2, 3 and 5, since any such 1
n will be an

exact terminating sexagesimal.4

For reciprocals without terminating sexagesimals, approximations were used; a scribe would simply
choose a nearby denominator with a exact sexagesimal and state that the answer was approximate

11
29
≈ 11

30
= 11(0; 2) = 0; 22

More accuracy could be obtained by choosing a larger denominator. For instance, if a scribe wanted
to divide by 11, they might observe that 11 · 13 = 143 ≈ 144 and write5

1
144

= 0; 0, 25 =⇒ 1
11
≈ 13

144
= 0; 5, 25

which is 99.3% accurate. Scribes were explicit in acknowledging that, say, “11 does not divide,”
and that the result is an approximation. Remember that a single digit in the second sexagesimal
place means only 1

3600 , so even the most demanding application doesn’t require many terms! The
denominators in some of these tables were enormous, so far greater accuracy was often possible.

Another table listed all the ways an integer < 10 could be multiplied exactly to get 10.

1 10 5 2
2 5 6 1 40
3 3 20 8 1 15
4 2 30 9 1 6 40

We omit the commas for separation and the sexagesimal point, as they did not exist. Note also that 7
is missing since 1

7 (and thus 10
7 ) is not an exact sexagesimal. It should be clear from the table that

10
6

= 1; 40 and
600
9

= 1, 6; 40

In the latter case, note that 600 = 10 · 60 would be written the same as 10, so this amounts to moving
the sexagesimal point in 10

9 = 1; 6, 40.

4This is analogous to the fact that 1
n has a terminating decimal if and only if the only primes dividing n are 2 and 5.

5In fact, being rational, 1
11 = 0.09090909 . . . = 0; 5, 27, 16, 21, 49, 5, 27, 16, 21, 49, . . . has a repeating sexagesimal expan-

sion. This can be found by iteration, though it is time-consuming:

60
11

= 5
5
11

,
5 · 60

11
= 27

3
11

,
60 · 3

11
= 16

4
11

, . . .
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Linear Systems These were solved by a mixture of the false position method (guess and modify as
done by the Egyptians) and an approach modelled on homogeneous equations. For instance, here is
a Babylonian approach to solving the following system

{
3x + 2y = 11
2x + y = 7

1. Choose an equation, say the second, and set x̂ = ŷ. Now solve, for instance using false position
to obtain x̂ = 7

3 = 2; 20.

2. All solutions to the second equation have the form x = x̂ + d and y = ŷ− 2d, since (d,−2d) is
the general solution to the homogeneous equation 2x + y = 0. Substitute into the first equation:

11 = 3
(

7
3
+ d

)
+ 2

(
7
3
− 2d

)
= 11 +

2
3
− d =⇒ d =

2
3

3. Now solve x = 7
3 +

2
3 = 3, y = 7

3 − 4
3 = 1.

Step 2 should should remind you of the ‘nullspace’ method from modern linear algebra: all solutions
to the matrix equation (2 1) ( x

y ) = 7 have the form
(

x
y

)
=

(
x0
y0

)
+ n

where
( x0

y0

)
is some particular solution (here x0 = y0 = 7

3 ) and n =
( d
−2d

)
lies in the nullspace of the

(row) matrix (2 1).

The Yale Tablet (YBC 7289) One of the most famous tablets concerns an approximation to
√

2. YBC
stands for the Yale Babylonian Collection which contains over 45,000 objects. The tablet is shown below
along with an enhanced representation of the numerals.

The tablet depicts a square of side 30 (or possibly 1
2 = 0; 30) and labels the diagonal in two ways:

• 1; 24, 51, 10 as an approximation to
√

2, an underestimate by roughly 1 part in 2.5 million!

• 42; 25, 35 as an approximation to the diagonal when the side is 30.
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The Babylonians more often used the simpler approximation 1; 25 = 1.41666 . . . which is still very
close. Given the impractical accuracy of this approximation, it is reasonable to ask how it was ob-
tained. No-one knows for certain, but two methods are theorized since both were used to solve other
problems. It should be stressed that no Babylonian proofs of these approaches are known.

1: Square root approximation
√

a2 ± b ≈ a± b
2a . This is essentially the linear approximation from

elementary calculus. The idea is to choose a rational number for a whose square is very close
to 2, then the error should be very small. For instance:

•
√

2 =
√

1 + 1 ≈ 1 + 1
2 = 1; 30

•
√

2 =
√( 4

3

)2
+ 2

9 ≈ 4
3 +

2/9
8/3 = 4

3 +
1

12 = 17
12 = 1; 25

•
√

2 =
√( 7

5

)2
+ 1

25 ≈ 7
5 +

1/25
14/5 = 99

70 = 1; 24, 51, 25, 42, 51, 25, 42, 51, . . .

2: Method of the Mean It is easily checked (Exercise 11) that any sequence defined by the recurrence
relation an+1 = an+2/an

2 converges to
√

2. Let us apply this to the sequence starting with an = 1.

a1 = 1, a2 =
3
2
= 1; 30, a3 =

17
12

= 1; 25

a4 =
577
408

= 1 +
169
408

= 1; 24, 51, 10, 35, 17, . . .

a5 =
665857
470832

= 1; 24, 51, 10, 7, 46 . . .

It seems incredible that any ancient culture would have bothered to go so far with these calcu-
lations to obtain the observed accuracy.

The same analysis can be used to approximate other roots. For example, we could start with
with a1 = 3 to approximate

√
11 via an+1 = 1

2 (an +
11
an
):

a2 =
10
3

= 3; 20, a3 =
199
60

= 3; 19, a4 =
79201
23880

= 3; 18, 59, 50, 57, 17, . . .

Quadratic Equations The above methods could be used to solve general quadratic equations. A
question might be phrased as follows:

I added twice the side to the square; the result is 2, 51, 40. What is the side?

In modern language, we want the solution to x2 + 2x = 2 · 602 + 51 · 60 + 40 = 10300.

Questions such as these were solved using templates. In the above example, the template is for
solving x(x + p) = q where p, q > 0. Other templates were required for the other types of quadratic
equation (x2 = px + q, etc.), since the Babylonians did not recognize negative numbers. Here is their
algorithm applied to a simpler equation x2 + 4x = 2:

Set y = x + p (y = x + 4) then the equation can be decoupled:
{

xy = q
y− x = p

{
xy = 2
y− x = 4
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Use this to solve for x + y:

4xy + (y− x)2 = p2 + 4q 4xy + (y− x)2 = 42 + 4 · 2
(y + x)2 = p2 + 4q (y + x)2 = 24

x + y =
√

p2 + 4q x + y =
√

24 ≈ 4; 54

where the square-root was approximated using one of the earlier algorithms, e.g.

√
24 =

√
52 − 1 ≈ 5− 1

10
= 4; 54

Since x + y and x− y are now known, false position could then be used to find

x =

√
p2 + 4q− p

2
x ≈ 0; 27

You should recognize the method of completing the square and the quadratic formula; this approach
is at least 4000 years old!
While we’ve written this abstractly, in practice Babylonian scribes/students would be copying from
a particular example of the same type. There were no abstract formulæ and everything was done
without the benefit of any of our modern notation. We moreover have no written explanation from
the Babylonians of what they were doing; typically all historians have to work with is the right-hand
column of numbers and several examples like it!
Note that the template only found the positive solution; the Babylonians had no notion of negative
numbers. Amazingly, the Babylonians were also able to address certain cubic equations similarly.

Pythagorean Triples Among the many tables of values created by the Babylonians are lists of
Pythagorean triples. The Plimpton 322 tablet (also at Yale) has a large number of these (albeit with
some mistakes).

Due to the strange way in which the triples were encoded, it took a long time for scholars realized
what they had. The table is also broken on the left so some columns are probably missing.
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As an example, line 15 of the table describes the Pythagorean triple 532 = 452 + 282 as follows.

• The first entry is ( 53
45 )

2 = 1; 23, 13, 46, 40 (exact).

• The second entry is 28.

• The third entry is 53.

• The last two entries indicate line number 15.

The first three (interesting) entries are therefore (( c
a )

2, b, c) where c2 = a2 + b2. It is possible that a
missing column of the tablet explicitly mentioned a.
It is not known how the table was completed, although the first column exhibits a descending pattern
that provides clues to its construction. One theory is that a scribe found rational solutions to the
equation v2 = 1 + u2 (equivalently (v + u)(v− u) = 1) by starting with a choice of v + u and using a
table of reciprocals to calculate v− u.
To revisit our example, if v + u = 9

5 = 1; 48, then

v− u =
1

v + u
=

5
9
= 0; 33, 20

and we have a linear system of equations for u, v whose solutions are

v = 1; 10, 40 =
53
45

, u = 0; 37, 20 =
28
45

We investigate this further in Exercise 7. The Plimpton tablet has been the source of enormous schol-
arship; look it up!

Geometry The Babylonians also discusses many geometric problems. They used both π ≈ 3 and
π ≈ 3 1

8 to approximate areas of circles. They had calculations (both correct and erroneous) for
the volume of a frustrum (truncated pyramid). They also knew that the altitude of an isosceles
triangle bisects its base and that the angle in semicircle is a right angle. None of these statements
were presented as theorems in a modern sense; we merely have computations that use these facts.
We simply don’t know how deep the Babylonian understanding of these principles was.

Summary

• Sexagesimal positional enumeration. No zero or fractions.

• More advanced than Egyptian mathematics but still practical/non-abstract. Perhaps only ap-
pears more advanced because we have much more evidence (1000s of tablets versus a handful
of papyri). Like Egypt, we have worked examples without abstraction or any statement of
general principles.

• Some distinction (‘does not divide’) between approximate and exact results.

• Limited geometry compared to algorithmic/numerical methods.
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Exercises There is no single ‘correct’ way to do Babylonian calculations. The goal is simply to play
with the ideas; use enough notation to get a feel for it without torturing yourself.

1. Convert the sexagesimal values 0; 22, 30, 0; 8, 6, 0; 4, 10 and 0; 5, 33, 20 into ordinary fractions in
lowest terms.

2. (a) Multiply 25 by 1, 4 (b) Multiply 18 by 1, 21.
(Either compute directly (long multiplication) or use the difference of squares method on page 8)

3. (a) Use reciprocals to divide 50 by 18. (b) Repeat for 1, 21 divided by 32.

4. Use the Babylonian method of false position to solve the linear system

{
3x + 5y = 19
2x + 3y = 12

5. (a) Convert the approximation
√

2 ≈ 1; 24, 51, 10 to a decimal and verify the accuracy of the
approximation on page 10.

(b) Multiply by 30 to check that the length of the diagonal is as claimed.

6. Babylonian notation is not required for this question.

(a) Use the square root approximation (pg. 11) with a = 8
3 to find an approximation to

√
7.

(b) Taking a1 = 3, apply the method of the mean to find the approximation a3 to
√

7.

7. Recall that v2 = 1 + u2 in the construction of the Plimpton tablet.

(a) If v + u = α, show that u = 1
2 (α− α−1) and v = 1

2 (α + α−1).
(b) Suppose v + u = 1; 30 = 3

2 . Find u, v and the corresponding Pythagorean triple.
(c) Repeat for v + u = 1; 52, 30 = 15

8 .
(d) Repeat for v + u = 2; 05 = 25

12 . This is line 9 of the tablet.

8. Solve the following problem from tablet YBC 4652. I found a stone, but did not weigh it; af-
ter I subtracted one-seventh, added one-eleventh (of the difference), and then subtracted one-
thirteenth (of the previous total), it weighed 1 mina (= 60 gin). What was the stone’s weight?

(Make your best guess as to the meaning of the problem, it might not be clear!)

9. Solve the following problem from tablet YBC 6967. A number exceeds its reciprocal by 7. Find
the number and the reciprocal.

(In this case, two numbers are reciprocals if their product is 60)

10. (Hard) For this question it is helpful to think about the corresponding facts for decimals.

(a) Explain the observation on page 9 regarding which reciprocals n have a terminating sexa-
gesimal. Can you prove this?

(b) Find the periodic sexagesimal representation of 1
7 and use geometric series prove that you

are correct.

11. For this question, look up the AM–GM inequality and remind yourself of some basic Analysis.

(a) Suppose (an) is a sequence satisfying the recurrence an+1 = 1
2 (an +

2
an
). Prove that an ≥

√
2

whenever n ≥ 2.
(b) Prove that an →

√
2.
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3 Ancient Greek Mathematics

3.1 Overview of Ancient Greek Civilization & Early Philosophy

Greek civilization dates from around 800 BC, centered between the Adriatic sea to the west and the
Aegean to the east. The ancient Greeks had a decentralized political culture consisting of mostly
independent city-states connected by trade. By 500 BC, much of modern Greece, the Aegean islands,
and southern Italy were part of a decentralized cultural empire. Accomplished sea-farers, the Greeks
extended their reach, building and capturing city-states/outposts round the northern and eastern
coasts of the Mediterranean, from Iberia round the Black Sea and Anatolia (western Turkey) to Egypt.

Philip of Macedon ‘unified’ the Greek peninsula just before his death in 336 BC. His son, Alexander
the Great, led a massive campaign conquering Persia, Egypt, Babylon, and western India before his
own death in Babylon in 323 BC. Alexander left provincial governors to manage captured territories;
some of these structures endured for centuries (e.g., Egypt’s Ptolemaic dynasty), while others were
overthrown after only a few years (e.g., parts of India). While Alexander’s conquests did not produce
a long-lasting centralized Greek empire, they were effective at expanding the reach of Greek cultural
practices and philosophy and brought external ideas into the Greek tradition.

The core part of Greek territory (map below) was absorbed by the Roman empire around 146 BC.
In line with typical Roman practice, local culture was left largely intact and scholarship continued
under Roman rule.6 Greek culture and learning was central to the later Byzantine (eastern Roman)
empire (centered on Byzantium/Constantinople/Istanbul). Constantinople was eventually captured
by the Islamic Ottomans in 1453. While Islamic scholarship was itself significantly influenced by the
ancient Greeks, one result of the fall of Constantinople was the exodus of several scholars to Rome,
helping to fuel the European Renaissance.

Greek Territory c. 500 BC

Greek mathematics is part of a much wider development of science and philosophy encompassing
a change of emphasis from practicality to abstraction. One reason for this was the Greek blending

6As long as a conquered people accepted Roman governors and paid taxes, they were accepted as Roman citizens. Of
course, if there was resistance. . .
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of religion/mysticism with natural philosophy: philosophers wished to describe the natural world
while preserving the idea of perfection/logic in the gods’ design.

Early Greek inquiry into natural phenomena was encouraged through the personification of nature
(e.g., sky = man, earth = woman). By 600 BC, philosophers were attempting to describe such phenom-
ena in terms of natural predictable causes and structures. For example, some viewed matter as being
comprised of the ‘four elements’ (fire, earth, water, air); combined in the correct proportions. . . While
the system was seen as divinely-designed, reliance on the whims of the gods was discouraged.

While the Greeks certainly used mathematics for practical purposes, philosophers idealized logic and
were unhappy with approximations. This led to the development of axiomatics, theorems and proof,
concepts for which there is scant pre-Greek evidence. Indeed ancient Greek is the source of three
words of critical importance:

Mathematics comes from mathematos (µαθήµατoς), meaning knowledge or learning; the term covered
essentially anything that might be taught in Greek schools.

Geometry literally means earth-measure.

Gi (γη) dates from pre-5th century BC, meaning land, earth or soil. Capitalized (Γη) it could refer
to the Earth (as a goddess).

Metron (µέτρoν) was a weight or measure, a dimension (length, width, etc.), or the metre (rhythm)
in music.

Theorem comes from theoreo (θεώρέω), meaning ‘I contemplate,’ or ‘consider.’ In a mathematical
context this become theorema (θεώρηµα), a proposition to be proved.

Ancient Greece had several schools, mostly private and open only to men. Typically arithmetic was
taught until age 14, followed by geometry and astronomy until age 18. The most famous scholars of
ancient Greece were the Athenian trio of Socrates, Plato and Aristotle7 whose writings became central
to the Western/Islamic philosophical tradition. Plato’s Academy in Athens was a model for centuries
of schooling, the centrality of geometry to the curriculum evidenced by the famous inscription above
the entryway: “Let none ignorant of geometry enter here.”

Enumeration

The ancient Greeks had two primary forms of enumeration, both dating from around 800–500 BC.

In Attic Greek (Attica = Athens) strokes were used for 1–4, while larger numerals used the first letter
of the words for 5, 10, 100, 1000 and 10000. For example,

• Πεντε (pente) is Greek for five, whence Π denoted the number 5.

• Δεκα (deca) means ten, so Δ represented 10.

• Η (hekaton), X (khilias) and M (myrion/myriad) denoted 100, 1000 and 10000 respectively.

• Combinations produced larger numbers, similar to Roman numerals, e.g., ΧΗΗΠ|| = 1207.

7Each taught his successor; the birth of Socrates to the death of Aristotle covered 470–322 BC.
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Ionic Greek (Ionia = mid Anatolian coast) numerals used the Greek al-
phabet, an approach they possibly copied from the Egyptian hieratic
method. Larger numbers used a left subscript mark (e.g., comma) to
denote thousands and/or M (with superscripts) for 10000, as in Attic
Greek. For example,

35298 = ,λ,εσϟη =
γ

M,εσϟη

The ancient Greek alphabet included three archaic symbols ϛ, ϟ, ϡ
(stigma, qoppa, sampi), with which you’re likely unfamiliar.

1 α 10 ι 100 ρ
2 β 20 κ 200 σ
3 γ 30 λ 300 τ
4 δ 40 µ 400 υ
5 ε 50 ν 500 ϕ
6 ϛ 60 ξ 600 χ
7 ζ 70 o 700 ψ
8 η 80 π 800 ω
9 θ 90 ϟ 900 ϡ

Eventually a bar was placed over numbers to distinguish them from words (e.g. ξθ = 89). Modern
practice is to place a keraia (similar to an apostrophe) at the end of a number: thus 35298 = ͵λ͵εσϟηʹ.
The Greeks also used Egyptian fractions, denoting reciprocals with an accent over the symbol: e.g.,
θ́ = 1

9 . The use of Egyptian fractions persisted in Europe well into the middle ages.

Both the Attic and Ionic systems were fine for record-keeping but terrible for calculations! Later
Greek mathematicians adapted the Babylonian sexagesimal system for calculation purposes, helping
cement its modern use of in astronomy, navigation and time-keeping.

Exercises 3.1. 1. State the number 1789 in both Attic and Ionic notation.

2. Represent 8
9 as a sum of distinct unit fractions (Egyptian style). Express the result in (Ionic)

Greek notation.

(The answer to this problem is non-unique)

3. For tax purposes, the Greeks often approximated the area of a quadrilateral field by multiplying
the averages of the two pairs of opposite sides. In one example, the two pairs of opposite sides
were given as

a =
1
4
+

1
8
+

1
16

+
1

32
opposite c =

1
8
+

1
16

, and,

b =
1
2
+

1
4
+

1
8

opposite d = 1

where the lengths are in fractions of of a schonion, a measure of approximately 150 feet. Find the
average of a and c, the average of b and d, and thus the approximate area of the field in square
schonion. The taxman then rounds the answer up to collect a little more tax!
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3.2 Pre-Euclidean Greek Mathematics

Euclid’s Elements (c. 300 BC) forms a natural break point in Greek mathematics, since much of what
came before was subsumed by it. In this section, we consider the contributions of several pre-
Euclidean mathematicians. There are very few sources for Greek mathematics & philosophy before
400 BC, so almost everything is inferred from the writings and commentaries of others.8

Thales of Miletus (c. 624–546 BC) One of the first people known to state abstract general principles,
Thales was a trader based in Miletus, a city-state in Anatolia. He travelled widely and was likely
exposed to mathematical ideas from all round the Mediterranean. Here are some statements at least
partly attributed to Thales:

• The angles at the base of an isosceles triangle are equal.

• Any circle is bisected by its diameter.

• A triangle inscribed in a semi-circle is right-angled (still known as Thales’ Theorem).
Thales’ major development is generality: his propositions concern all triangles,
circles, etc. The Babylonians/Egyptians observed such results in examples, but
we have little indication that they believed these could be discerned by pure
reason. Thales’ reasoning was almost certainly visual. As an example of typical
geometric reasoning of the period, by 425 BC Socrates could describe how to
halve/double the area of a square by joining the midpoints of edges.

Pythagoras of Samos (c. 572–497 BC) Like Thales, Pythagoras travelled widely, eventually settling
in Croton (southeast Italy) where he founded a school lasting 100 years after his death. It is believed
that Plato learned much of his mathematics from a Pythagorean named Archytas.
The Pythagoreans practiced a mini-religion with ideas out of the mainstream of Greek society.9 One
of their mottos, “All is number,” emphasised their belief in the centrality of pattern and proportion.
The following quote10 gives some flavor of the Pythagorean way of life.

After a testing period and after rigorous selection, the initiates of this order were allowed
to hear the voice of the Master [Pythagoras] behind a curtain; but only after some years,
when their souls had been further purified by music and by living in purity in accordance
with the regulations, were they allowed to see him. This purification and the initiation
into the mysteries of harmony and of numbers would enable the soul to approach [be-
come] the Divine and thus escape the circular chain of re-births.

The Pythagoreans were particularly interested in musical harmony and the relationship of such to
number. For instance, they related intervals in music to the ratios of lengths of vibrating strings:

• Identical strings whose lengths are in the ratio 2:1 vibrate an octave apart.

• A perfect fifth corresponds to the ratio 3:2.

• A perfect fourth corresponds to the ratio 4:3.
The use of these intervals to tune musical instruments is still known as Pythagorean tuning.

8For instance, most of our knowledge of Socrates comes from the voluminous writings of Plato and Aristotle. The
earliest known Greek textbook/compilation (Elements of Geometry) was written around 430 BC by Hippocrates of Chios; no
copy survives, though most of its material probably made it into Book I of Euclid.

9They were vegetarians, believed in the transmigration of souls, and accepted women as students; controversial indeed!
10Van der Waerden, Science Awakening pp 92–93
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Theorems 21–34 in Book IX of Euclid’s Elements are Pythagorean in origin. For instance:

Theorem. (IX .21) A sum of even numbers is even.

(IX .27) Odd less odd is even.

The Pythagoreans also studied perfect numbers, those which equal the sum of their proper divisors
(e.g. 6 = 1 + 2 + 3), and they seem to have observed the following.

Theorem (IX. 36). If 2n − 1 is prime then 2n−1(2n − 1) is perfect.

They moreover considered square and triangular numbers ( 1
2 m(m + 1)) and tried to express geomet-

ric shapes as numbers, in service of their belief that all matter could be formed from basic shapes.

Incommensurability and Pythagoras’ Theorem As with other ancient cultures, the only numbers
in Greek mathematics were positive integers. These were used to compare lengths/sizes of objects.

Definition. Lengths are in the ratio m : n if some sub-length divides exactly m
times into the first and n times into the second.
Lengths are commensurable if some sub-length divides exactly into both. Ratio 3 : 2

While modern mathematics has no problem with irrational ratios (e.g., the diagonal of a square to its
side is

√
2 : 1), this conflicted with the core Pythagorean belief that any two lengths were commensurable.

Identifying lengths with real numbers, this belief may be restated in modern language:

∀m, n ∈ R+, ∃ℓ ∈ R+, ∃a, b ∈N, such that m = aℓ and n = bℓ

This is complete nonsense for it insists that every ratio of real numbers m
n = a

b must be rational!
The Pythagorean commensurability supposition stems from their basic tenets: all is number (lengths
represented numerically) and that the design of the gods be perfect (numbers are integers). The
discovery of incommensurable ratios produced something of a crisis; a possibly apocryphal story
states that a disciple named Hippasus (c. 500 BC) was set adrift at sea as punishment for its revelation.

By 340 BC, however, the Greeks were happy to state that incommensurable lengths exist.

Theorem (Aristotle). If the diagonal and side of a square are commensurable, then odd numbers
equal even numbers.

Inferred proof. In Socrates’ doubled-square, suppose that side : diagonal = a : b; these are integers!
Assume at least one of a or b is odd, else the common sub-length may be doubled.
The larger square is twice the smaller, whence the square numbers have ratio

b2 : a2 = 2 : 1

It follows that b2 is even and thus divisible by 4, whence a2 is also even, and both
a, b are even. Whichever of a, b was odd is also even: contradiction!

b

a a

Note the similarity of this argument to the modern proof of the irrationality of
√

2.

19



While there is no evidence that the Pythagoreans ever provided a correct proof of their famous The-
orem, one argument possibly attributable to them used the idea of commensurability.

‘Proof’ of Pythagoras’ Theorem. Label the right triangle a, b, c where c
is the hypotenuse and drop the altitude to the hypotenuse. Let d be
the length shown. Similar triangles tell us that

a : d = c : a =⇒ a2 : ad = cd : ad =⇒ a2 = cd

Thus the square on a has the same area as the rectangle below the
d-side of the hypotenuse. Repeat the calculation on the other side
to obtain b2 = c(c− d), and sum to complete the proof.

Since the only numbers were integers, the symbols a, b, c, d are in-
teger multiples of an assumed common sub-length. This restriction
completely destroys the generality of the argument.

a b

c
d

The organization of Book I of the Elements make clear that its primary goal was to provide a rigorous
proof of Pythagoras’ Theorem which did not depend on the flawed notion of commensurability. With
our modern understanding of real numbers and continuity, there is nothing wrong with the above.

Theaetetus of Athens (417–369 BC) Theaetetus is likely the source for much of the most difficult
part (Books VII & X) of the Elements. His essential definition of (in)commensurability comes from
applying what is now known as the Euclidean algorithm to line segments.

Definition. Let a > b be lengths/segments11 (a is longer than b). Repeatedly the division algorithm:

a = q1b + r1 r1 < b (∃q1 ∈N0 and a length r1 < b)
b = q2r1 + r2 r2 < r1

r1 = q3r2 + r3 r3 < r2

We say that a and b are commensurable if the algorithm terminates: some remainder rn divides exactly
into rn−1. Otherwise a and b are incommensurable.
Ratios are equal a : b = c : d precisely when the sequences of quotients in the algorithm are equal.

If a and b are commensurable, then rn is their greatest common sub-length. If we write a = arn and
b = brn for integers a, b, and rewrite the algorithm in the modern fashion, the result is the standard
Euclidean algorithm computation of gcd(a, b) = 1.

Example 1 37 : 13 = 148 : 52 since we obtain the same sequence of quotients (2, 1, 5, 2):

37 = 2 · 13 + 11 148 = 2 · 52 + 44
13 = 1 · 11 + 2 52 = 1 · 44 + 8
11 = 5 · 2 + 1 44 = 5 · 8 + 4
2 = 2 · 1 8 = 2 · 4

11Only the quotients qk need be integers, everything underlined is a segment.
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Example 2 We sketch a proof that the side AB and diagonal AC of a regular pentagon ABCDE are
incommensurable.

1. Prove that△BAG is isosceles (∠GFK = 3
5 · 180° = 108°. . . ).

2. Take a = |AC| and b = |AB| = |AG|. The first line of the
algorithm now reads

|AC| = |AG|+ |GC| = |AB|+ |GC|

so we write a = q1b + r1 where r1 = |GC| and q1 = 1.

3. Since |GC| = |AF|, the second line of the algorithm reads

|AG| = |AF|+ |FG| = |GC|+ |FG|

so that we again have a quotient of q2 = 1.

A

B

C D

EF

G

H

J

K

4. Appealing to congruent isosceles triangles △DCG ∼= △EHF we see that |GC| = |FH| is the
diagonal of the interior regular pentagon. The third line of the algorithm is therefore the same
as the first: we are back to considering the ratio of the diagonal to the side of a regular pentagon.
The algorithm therefore continues forever with all quotients being 1.

Example 3 In modern language, the diagonal to the side of a square is the incommensurable ratio√
2 : 1. We apply Theaetetus’ algorithm:
√

2 = 1 · 1 + (
√

2− 1)

1 = 2 · (
√

2− 1) + (3− 2
√

2)

Observe that 3− 2
√

2 = (
√

2− 1)2, whence the second line reads 1 = 2x + x2. The following lines in
the algorithm may therefore be obtained by repeatedly multiplying by x:

x = 2x2 + x3, x2 = 2x3 + x4, etc.,

resulting in a never-ending sequence12 of quotients: 1, 2, 2, 2, 2, 2, . . .

Eudoxus of Knidos (c. 390–337 BC) Eudoxus was arguably the most prolific of the pre-Euclidean
mathematicians. Apart from attending and perhaps teaching at Plato’s academy, he is famous for
explaining how to calculate with ratios of lengths (segments). For example:

Definition. A : B > C : D if there exist positive integers m, n such that mA > nB and mC ≤ nD.

At first glance it appears as if Eudoxus is telling us how to compare rational numbers; if A, B, C, D are
integers, we see that

A
B

>
n
m
≥ C

D
which is trivially satisfied by taking m = D and n = C. However, if A, B, C, D were interpreted
as segments rather than integers this is much more useful. Building on the work of Theaetetus, his
mathematics told the Greeks how to approximate incommensurable ratios with rational numbers.

12If you’re interested in number theory, investigate the relationship of Theaetetus’ algorithm to continued fractions. . .

21



Examples 1. To see that 13 : 3 > 17 : 4, simply choose m = 4 and n = 17 to obtain

4 · 13 = 52 > 51 = 3 · 17

2. We show that the side : diagonal of a square is greater than 1 : 2;
equivalently, the diagonal is less than twice the side.
See the picture, where the side : diagonal = A : B. Choosing
m = D = 2 and n = C = 1, we see that

mA = 2A > B = nB (diag > side of large square)

In modern language, this is merely 1√
2
> 1

2 .

A

A
B

Zeno of Elea (c. 450 BC) While not strictly a mathematician, Zeno’s arguments have become essen-
tial parts of the discussion of the infinite and the infinitesimal. These provided fodder for philoso-
phers for thousands of years and lie at the heart of the controversy surrounding the development of
calculus. Here are two of the most famous:

Achilles and Tortoise Achilles chases a Tortoise. After time t0, Achilles reaches the Tortoise’s starting
position, but the Tortoise has moved on. After another time t1, Achilles reaches the Tortoise’s
second position; again the Tortoise has moved. In this manner Achilles spends t0 + t1 + t2 + · · ·
in the chase. Zeno’s paradoxical conclusion is that Achilles never catches the Tortoise.

The resolution is that the total duration can be finite, even though it be split into infinitely many
subintervals of time; this idea is at the heart of the modern notion of infinite series.

Arrow paradox An arrow is shot from a bow. At any given instant the arrow doesn’t move. If time is
made up of instants, then the arrow never moves.

This time Zeno debates the the idea that a finite time period can be considered as a sum of
infinitesimal instants. The modern resolution involves the integral.

Constructions and Geometry By the middle of the 5th century BC, Greek mathematicians were
solving geometric problems using ruler-and-compass (peg-and-cord) constructions. This approach
perhaps came to Greece from India, or could have arisen organically. Constructions were based on
three rules, which became the first three postulates (axioms) of Book I of Euclid’s Elements.

1. One may join two given points by with straight line segment.

2. Any segment may be extended indefinitely.

3. Given a center and radius, one may draw a circle.

Theorems were often stated as problems: e.g., to bisect a given angle. A proof provided first a construc-
tion, then an argument justifying that the construction really had solved the problem.

By the time of Euclid, the Greeks knew how to construct an equilateral triangle, a square and a regular
pentagon in a given circle: here is a construction of a pentagon.13

13Theorem IV. 11 of the Elements presents a less practical construction. Ours follows from Theorem XIII. 10: if a regular
pentagon, hexagon and decagon are inscribed in a circle, then their sides form a right-triangle.

22



1. Draw perpendicular diameters AB and CD and bisect OA at M.

2. Draw an arc centered at M with radius |CM|. Let N be the in-
tersection of this arc with OB.

3. Draw an arc centered at C with radius |CN|. Let R be the inter-
section of this arc with the original circle.

4. Move |CR| around the circle to create a regular pentagon.

O AB

C

D

MN

R

A purely geometric proof of the validity of this construction is too difficult for us, but you can easily
check it using a calculator, Pythagoras’ and the cosine rule: if the circle has radius 2, then

|CR|2 = |CN|2 = |ON|2 + |OC|2 = (
√

5− 1)2 + 22 = 10− 2
√

5 = 22 + 22 − 2 · 2 · 2 cos 72°

Construction problems have motivated mathematicians ever since. In 1796, Gauss (then 19) con-
structed a regular 17-gon. A classification of constructable regular polygons took until 1837.

Theorem. A regular n-gon is constructable if and only if n = 2kF1 · · · Fr where F1, . . . , Fr are distinct
primes of the form 2(2

n) + 1.

After the 17-gon, the next prime-sided constructable n-gon has 257 = 223
+ 1 sides!

By 400 BC, the Greeks were referencing the second and third impossible constructions of antiquity:

1. Trisecting a general angle.

2. Doubling (the volume of) a given cube.

3. Squaring a circle (construct a square with the same area as a given circle).14

It wasn’t until the advent of field theory in the 1800s that these were indeed proved to be impossible
using ruler-and-compass constructions.

Summary

Several of the mathematical techniques in this section are difficult, and the results are technical. With
practice, all should be accessible. It isn’t important to become proficient with all of these ideas!
Instead, by playing with them, you should develop an appreciation of two overarching points:

1. Even before Euclid, the focus of Greek mathematics was more abstract and less practical than
other ancient cultures (e.g., the Egyptians, Babylonians & Chinese), in large part due to the
influence of wider Greek philosophy and religion. The modern liberal arts ideal of learning
for its own sake—to celebrate the beauty of knowledge and to expand the mind—is, to a large
extent, a Greek inheritance.

2. By investigating mathematics abstractly, the ancient Greeks were already pondering funda-
mental mathematical questions and concepts, for instance: the relationship between number
and length, continuity, irrationality, infinitesimals & constructability. Such ideas have stimu-
lated mathematical research ever since. Indeed these particular issues would not rigorously be
resolved until the development of modern analysis and algebra in the 1800s by luminaries such
as Gauss, Cauchy and Riemann.

14“You can’t square that circle” is now a metaphor for something that can’t be done.
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Exercises 3.2. 1. Construct five Pythagorean triples using the formula
(
n, n2−1

2 , n2+1
2

)
where n is

odd. Construct five more using the formula
(
m,

(m
2

)2 − 1,
(m

2

)2
+ 1

)
where m is even.

2. Suppose 2n− 1 = p is prime (its only positive divisors are itself and 1). List the positive divisors
of 2n−1(2n − 1) and hence prove Theorem IX. 36.

3. Draw a picture with dots to show that eight times any triangular number plus 1 makes a square,
and that any odd square diminished by 1 becomes eight times a triangular number. That is:

(a) 8 · 1
2 m(m + 1) + 1 is a perfect square.

(b) If n is odd, then n2 − 1 = 8 · 1
2 m(m + 1) for some m.

4. Find a construction (using the ruler-and-compass constructions) to bisect a given angle, and show
that it is correct.

5. Sketch a construction inscribing a regular hexagon in a circle.

(Assume you can construct an equilateral triangle on a given segment—Thm I. 1 of Euclid, pg. 27)

6. (A line-doubling paradox) One line has twice the length of another and so has more points.
However, there is a bijective correspondence between the points on these lines; the two lines
therefore have the same number of points.

Explain the second observation. How can you resolve the paradox?

7. The cycle of fifths is a musical concept stating that twelve perfect fifths equals seven octaves
(pg. 18). State this claim numerically, and show that it is a contradiction.

(Hint: two strings are seven octaves apart if their lengths are in the ratio 27 : 1)

8. We use modern language to resolve Zeno’s paradox of Achilles and the Tortoise. Suppose
Achilles travels at speed vA, the tortoise at speed vB < vA, and that the tortoise starts a distance
d ahead of Achilles.

(a) Prove that tn = d
vA

(
vT
vA

)n
for each positive integer n.

(b) Compute ∑∞
n=0 tn using the geometric series formula from calculus.

(c) Verify the time-value computed in (b) as would a modern Physicist; by considering the
motion of Achilles relative to the tortoise.

9. Use Theaetetus’ definition of equal ratios to prove that 46 : 6 = 23 : 3.

10. (Hard) A line of length 1 is divided at x so that 1
x = x

1−x . Prove that 1 and x are incommensu-
rable. Indeed, show that 1 : x is the same as diagonal : side of a regular pentagon.

(Hint: the first line of the algorithm is 1 = x + x2. . . )

11. (Hard) Let a > b and c be positive lengths. Use Eudoxus’ definition to prove that c : b > c : a.

(Hint: let n be the smallest integer such that n(a− b) ≥ c; its existence is the “archimedean property”)
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3.3 Euclid and the Elements

Euclid worked in the Library of Alexandria, named for the Greek gen-
eral Alexander the Great who conquered Egypt in 323 BC. The Library
was constructed around 320 BC as a means of organizing the knowl-
edge of the world and for the demonstration of Greek power. Al-
though it was seriously damaged on several occasions, the Library re-
mained a center of scholarship until around AD 500. Below is a map of
the city around AD 400: note the size and centrality of the Library.

It is hard to argue against Euclid’s Elements (c. 300 BC) as the most influential mathematics text ever
produced. Likely a compilation of earlier mathematical work rather than a pure original, it was
edited and added to over the centuries, eclipsing and subsuming other works. Particular import
were the edits of Theon of Alexandria (c. AD 400) and his daughter Hypatia, both prolific scholars in
their own right. Due to edits such as these, the precise contents of the original are unknown.
Extant fragments date to around AD 100. The earliest (almost) complete copy is from the the 9th

century; written in Greek and held at the Vatican, it is missing some of the edits of Theon & Hypatia,
thus demonstrating that multiple versions were in circulation.

Earliest Fragment c. AD 100 Full copy 9th C
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Until the mid 20th century, some version of the Elements would have been used as a high-school
textbook in most western and middle-eastern countries. Many editions and variations have been
produced, four of which are shown below:

Latin translation, 1572 High School textbook, 1903

Pop-up edition, 1500s Color edition, 1847

You can download Byrne’s color edition here (very large file!). It is notably different from many
earlier editions: it contains a much longer list of definitions, inserts many more axioms, and relabels
propositions 4 and 5 as axioms (pages xviii–xxiii). The picture on the cover page is Euclid’s proof of
Pythagoras’ Theorem (Book I, Thm. 47).
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A Brief Overview of the Elements

The Elements consists of thirteen books covering two- and three-dimensional geometry, computa-
tions and number theory. Whether some version of every book was written by Euclid himself is
unknown.15 The key feature of the Elements is its axiomatic presentation. Each book begins with a list
of axioms/postulates and definitions and proceeds to prove theorems deduced from these. This ax-
iomatic method is essentially universal in modern mathematics, and its advent is fundamentally what
sets Greek mathematics apart from everything that came before.
We briefly discuss Book I, then give some flavor of the remainder of the text with a few example
results. Several examples of material from later books were mentioned in the previous section.

Book I Consists of 48 theorems, culminating with Pythagoras’ and its converse. It seems likely that
Euclid organized Book I with the goal of proving this important result in a rigorous manner: recall
(pg. 20) how the Pythagorean ‘proof’ relied on the erroneous notion of commensurability. Here are
the postulates from Book I: the first three are what define ruler-and-compass constructions (pg. 22).

P1 Given any two points, a straight line can be drawn between them

P2 Any line may be indefinitely extended

P3 Given a center and a radius, a circle may be drawn

P4 All right angles are equal to each other

P5 If a straight line crosses two others so that the angles on the same side make less than two right
angles, then the two lines meet on that side of the original.

The fifth postulate is awkwardly phrased. An equivalent modern statement is Playfair’s axiom:

There is at most one parallel through a given point not on line.

For centuries, mathematicians tried to prove that this postulate was a theorem of the others until; it
was eventually shown to be necessary with the advent of hyperbolic geometry in the 1800s. Euclid’s
refusal to use the parallel postulate until Theorem 29 suggests he understood this awkwardness.
Theorems are generally presented as problems: a pictorial construction is provided, then Euclid proves
that the construction really solves the problem. Here is Euclid’s first theorem.

Theorem (I. 1). Problem: To construct an equilateral triangle on a given segment.

Proof. Given construct two circles (P3)

Join one of the circle intersections to the endpoints of the original segment (P1)

The result is an equilateral triangle; indeed the three sides are congruent, for

are radii of a common circle, as are

15It is not even certain that Euclid was a single person as opposed to a figurehead or a name for a collective. It is hardly
surprising that we know so little about someone who lived 2300 years ago. The same questions are sometimes raised about
William Shakespeare who lived only 400 years ago!
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After this Euclid proceeds to establish several well-known results. Since this isn’t a geometry class,
we’ll omit most of the details. You can find more of these here, in Byrne, or elsewhere.

Thm I. 4 Side angle side: if triangles have two pairs of congruent sides and the angles between them
are also congruent, then the remaining sides and angles are congruent.

Thm I. 15 Vertical angles: if two lines meet, then the opposite angles made are congruent.

Thms I. 27 & 29 Angles and parallels: if a line falls on two other lines, then the two lines are parallel
if and only if the alternate angles are congruent (α ∼= β in the picture).

α

β

β δγ

α

Thm I. 15 Thms I. 27/29 Thm I. 32 Thm I. 41

Thm I. 32 Angle sums in a triangle: if one side of a triangle is protruded, the exterior angle equals
the sum of the opposite interior angles.

In the picture α + β = δ; in modern language α + β + γ = 180°.

Thm I. 41 A parallelogram and triangle on the same base and with the same height have area in the
ratio 2:1.

The last two results of Book I are Pythagoras and its converse.

Theorem (I. 47). The square on the hypotenuse of a right-triangle has area equal to the sum of the
areas of the squares on the remaining sides.

Proof. Given a right-angle at A, drop the perpendicular from A across |BC| to L.

△FBC and □ABFG share the same base BF and height AB.
By Thm I. 41,

area(□ABFG) = 2 area(△BCF)

Similarly (base BD, height BO)

area(□BOLD) = 2 area(△ABD)

Side-Angle-Side (Thm I. 4) =⇒ △ABD ∼= △FBC; the trian-
gles have the same area, and so

area(□ABFG) = area(□BOLD)

Similarly area(□ACKH) = area(□OCEL).

A

B CO

LD E

F

G

H

K

The converse (Thm I. 48) is Exercise 3.
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Book II Geometric solutions to problems that would now be treated using algebra. Much of this is
attributable to the Pythagoreans.

(Thm II. 11) A segment may be divided so that the rectangle contained by the whole and one
of the sub-segments is equal to the square on the remaining sub-segment.

We rephrase this in modern language. Suppose the given segment AB has length a, our goal is
to find H on AB such that |AH| = x and x2 = a(a− x). Euclid is providing a geometric solution
to a quadratic equation!

1. Construct □ABDC on AB

2. Let E be the midpoint of AC and connect EB

3. Extend AC and lay off EF ∼= EB on AC extended

4. Construct □AFGH and drop the perpendicular to I

5. To finish: prove that area(□AFGH) = area(□BDIH)

The solution x = |AH| =
√

5−1
2 a means that AH : HB is the

golden ratio.

A B

C D

E

F G

H

I

a

a− x

x

x

Book III Theorems regarding circles and tangency. Most of this material
likely came from Hippocrates.
(Thm III. 31) Thales’ Thm: a triangle in a semi-circle is right-angled.

Book IV Construction of regular 3, 4, 5, 6 and 15-sided polygons inscribing and exscribing a circle.
Also likely the work of Hippocrates.

Book V Ratios and magnitudes à la Eudoxus.

(Thm V. 11) If a : b = c : d and c : d = e : f then a : b = e : f

Book VI Ratios of magnitudes applied to geometry (similarity results).

(Thm VI. 4) Triangles with equal angles have corresponding sides proportional.

(Thm VI. 8) The altitude from the right angle of a right triangle divides it into two triangles
similar to each other and the the original.

(Thm VI. 31) Corrected Pythagorean proof (pg. 20) of Pythagoras’ using Eudoxus’ proportions
and Thm VI. 8.

Book VII Divisibility and the Euclidean algorithm. Probably due to the Pythagoreans and Theaete-
tus.

Book VIII Number progressions, geometric sequences. Possibly due to studies in music by Archy-
tas (a Pythagorean who taught Plato mathematics).

Book IX Number Theory: even/odd + perfect numbers.

(Thm IX. 20) There are infinitely many primes.
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Book X Discussion of commensurable and incommensurable ratios. Long and difficult, possibly
derived from Theaetetus.

Book XI Solid geometry (lines/planes in 3D).

(Thm XI. 28) A parallelepiped is bisected by its diagonal plane.

Book XII Ratios of areas and volumes (Eudoxus).

(Thm XII. 2) The areas of circles are in the same ratio as the squares on their diameters.

Book XIII Construction of regular polyhedra inside a sphere and their classification.

(Thm XIII. 10) If a regular pentagon, hexagon and decagon are inscribed in the same circle,
then their sides form a right-triangle.

One could study the Elements and its influence for a lifetime and not be done! Hopefully this very
brief overview convinces you why the book had such a profound impact on mathematics.

Exercises 3.3. 1. Prove Thales’ Theorem (III. 31) (pg. 29).

(Hint: start by joining the center of the circle to the apex of the triangle. . . )

2. Use the picture to provide a proof of Thm I. 32: the sum of the three
interior angles of a triangle is equal to two right angles.
Show that the proof depends on Thm I. 29, and therefore on the
parallel postulate.
(This isn’t quite the same as Euclid’s argument)

β αγ

α

3. Suppose that the square on side BC of △ABC has the same area
as the sum of the squares on the other sides AB, AC. As in the
picture, draw a perpendicular AD ∼= AB.

(a) Explain why DC ∼= BC.

(b) Hence conclude that△ABC is right-angled at A.
A B

C

D

4. Prove Thm III. 3: A diameter of a circle bisects a chord if and only if it is perpendicular to the
chord.

5. Verify that Euclid’s construction for Thm II. 11 really does solve the given problem.

(You can use modern algebra!)

6. Draw a semi-circle with diameter 9 + 5 = 14. Solve the equation 9
x = x

5 geometrically, by
constructing a vertical line whose length is x.

7. Show that areas of similar segments of circles are proportional to the squares of the length of
their chords.

(You may assume that areas of circles are proportional to the squares on their diameters and can use
modern algebra/trigonometry if you wish)
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3.4 Archimedes of Syracuse

Archimedes (287–212 BC) is arguably the greatest ancient mathematician. Syracuse is on the island
of Sicily at the foot of the Italian peninsula; at the time of Archimedes’ birth this was a Greek city-
state, though under threat from the expanding Roman Empire. Archimedes famously helped defend
Syracuse against the Romans using catapults, though he ultimately died at their hands after the city
fell. He is believed to have travelled to Alexandria in his youth and perhaps studied with scholars at
the library, including Eratosthenes (pg. 34).
Archimedes’ genius was practical not just mathematical. Beyond his anti-Roman catapults, he is
credited with a large number of inventions and technical innovations, including Archimedes’ screw,
still used in modern irrigation systems to elevate water. He is acknowledged as the founder of hydro-
statics, where Archimedes’ principle states that an object immersed in water loses weight equal to that
of the displaced water. A famous story recounts Archimedes using this to detect whether a smith
had used all the gold he had been given in the manufacture of a crown.

Example A cube with side length 20 cm floats such that the water-
line is halfway up the cube. By Archimedes’ principle, the weight of
the cube is the same as that of the volume of displaced water:

20× 20× 10 = 4000 cm3

which has a weight (mass) of roughly 4 kg.
20 cm

Levers Archimedes made great study of levers, both for practical purposes and as a method of
calculation.

r1 r2
M1

M2

Given masses M1, M2 located distances r1, r2 from a pivot, Archimedes states:

• The lever balances ⇐⇒ M1 : M2 = r2 : r1

• The lever rotates clockwise ⇐⇒ M1 : M2 < r2 : r1

• The lever rotates counter-clockwise ⇐⇒ M1 : M2 > r2 : r1

In modern terms we’d compare the torques τ1 = M1r1 and τ2 = M2r2. Since torque requires the
multiplication of non-numerical quantities, Archimedes would instead have considered this using
Eudoxus’ theory of proportions.
For example, to find the mass M2 required to balance a lever given M1 = 12 lb, r1 = 4 ft and r2 = 3 ft,
Archimedes would have observed that

M2 : M1 = 4 : 3 =⇒ M2 = 16 lb
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The Method: is Archimedes the founder of calculus? A previously unknown work of Archimedes
was discovered in 1899. As an amazing application of the lever principle, Archimedes makes an ar-
gument that looks remarkably like modern calculus; he could be claimed to be its earliest practitioner
by 1800 years! The method was outlined in a letter to Eratosthenes and includes part of an argument
for proving Archimedes’ favorite theorem, a picture of this result was engraved on his tomb.

Theorem. A cone, hemisphere and cylinder with the same base and height have volumes in the
ratio 1 : 2 : 3. Using modern formulæ, if the height is r, then the volumes are 1

3 πr3 : 2
3 πr3 : πr3.

Here is a modernized version of half the result. Suppose the ‘base’ is
a disk with radius 1. Archimedes removes the hemisphere from the
cylinder and places the cone beneath. Compare the cross-sections
the same distance y from the apex of the cone.

• The circular cross-section of the cone has radius y whence its
area is proportional to the square on the radius: πy2.

• The upper annular cross-section has area proportional to the
difference of the squares on the radius of the cylinder and on
the distance x. By Pythagoras’ the cross-sectional area is

π(12 − x2) = π(1− (1− y2)) = πy2

y

y
1

x

The cross-sections are therefore in balance with respect to a vertical lever whose pivot lies at the
center of the picture. Archimedes concludes that the cone and the upper-figure are in balance: that is

Vcone = Vcylinder −Vhemisphere

in line with the desired ratios.

Here is another argument of Archimedes’ with a suggestion of calculus. A disk comprises infinitely
many concentric circles, the circumference of each being proportional to its radius. ‘Unwind’ these
circles to obtain a triangle; one side is the radius of the disk, the other its circumference. The area of
a circle is therefore that of a triangle with sides the radius and circumference of the circle: A = 1

2 rc.

c

r

The Method includes several of these calculus-like discussions. While efficient, Archimedes felt that
his approach didn’t constitute a proof and provided alternative arguments elsewhere in his writings.
The essential problem is this;

Can we really say that an area equals its cross-sectional lines? Or that a volume equals its
cross-sectional areas? Lines have no width so if we add them up we have no area. If they
have width, then infinitely many of them have infinite area.

These are really variations of Zeno’s paradoxes (pg. 22) regarding infinitesimals and indivisibles!
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Archimedes’ arguments would be resurrected in the early 1600s by Cavalieri and Galileo as the de-
velopment of calculus gathered pace. The same duality of presentation characterised this later devel-
opment: Newton and others found the infinitesimal approach efficient, but felt the need to present
geometric proofs to convince readers that their results weren’t mere trickery.
It is tempting to imagine what might have happened if Archimedes’ method had been accepted and
preserved as part of the Greek canon; if calculus had been developed 1800 years earlier, how might
this have affected technological development? Would the space-race have happened in AD 500?!

Quadratures Archimedes also approximated areas and arc-lengths of various figures using limit-
like argumentation. Here is how he approached the area/circumference of a circle.

1. Inscribe a regular hexagon in a circle (of radius 1 say) and compute its perimeter (6).

2. Halve each angle to obtain a regular dodecagon: compute its perimeter (12
√

2−
√

3).

3. Repeat the angle-halving process: Archimedes did this with 24-, 48- and 96-gons to obtain an
increasing sequence of perimeters bounded above by the circumference of the circle (2π).

4. Repeat the same calculation with circumscribed polygons to obtain a decreasing sequence of
over-estimates.

5. Using 96-sided polygons allowed Archimedes to obtain the estimate 3 10
71 < π < 3 1

7 .

Archimedes’ halving process relied on an induction step, an ap-
proximation of which we mimic here. Suppose we have an
isosceles triangle with equal legs 1, altitude dn, and chord 2hn.
We halve the angle to find the new altitude dn+1 and chord 2hn+1.
Everything follows from three applications of Pythagoras’:

1 = d2
n + h2

n

(2hn+1)
2 = hn

2 + (1− dn)
2

1 = d2
n+1 + h2

n+1

Expanding and cancelling, we obtain

d2
n+1 =

1
2
(1 + dn), h2

n+1 = 1− d2
n+1 =

1
2
(1− dn)

1

1

dn

hn

hn

dn+1
hn+1

hn+1

1− dn

Since d0 =
√

3
2 and h0 = 1

2 , we may compute the entirety of both sequences:

d1 =
1
2

√
2 +
√

3, d2 =
1
2

√
2 +

√
2 +
√

3, . . . dn =
1
2

√

2 +

√
2 + · · ·+

√
2 +
√

3

h1 =
1
2

√
2−
√

3, h2 =
1
2

√
2−

√
2 +
√

3, . . . hn =
1
2

√

2−
√

2 + · · ·+
√

2 +
√

3

where the nth terms have n copies of the digit 2 under the square-root. The circumference and area
of the 6 · 2n-sided polygon inscribed in the circle are therefore

Cn = 12 · 2nhn, An = 6 · 2ndnhn = 6 · 2n−1hn−1 =
1
2

Cn−1
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These sequences increase to 2π and π respectively. For a 96-sided polygon, Archimedes would have
had to approximate

C4 = 12 · 24h4 = 96

√√√√
2−

√

2 +

√
2 +

√
2 +
√

3 > 6.282 =⇒ π > 3.141 > 3
10
71

Other Highlights of the later Greek Period: 300 BC–AD 500

We’ll consider ancient astronomy, including Greek contributions, in the next chapter. Here are a few
of the other developments of the late Greek period and some historical context.

• Eratosthenes (276–194 BC) grew up in Cyrene (c. 500 miles west of Alexandria in modern-day
Libya) and moved to Alexandria in adulthood to become its librarian. He is credited with a
simple algorithm for finding primes: the Sieve of Eratosthenes.

– List the integers n ≥ 2.

– Leave 2 and delete all its multiples.

– Leave 3 and delete its multiples.

– Repeat ad infinitum: each time one reaches a number, leave it and delete its multiples.

– The remaining list contains all the primes.

• Apollonius (225 BC) writes an eight-volume book on conic sections building on earlier work of
Menaechmusus (350 BC).

• By 146 BC the Greek empire had fallen under Roman rule. Alexandria remained important.
Educated Greeks still spoke and wrote in Greek rather than (Roman) Latin. For context, Julius
Caesar ruled Rome around this time (died 44 BC).

• Heron (AD 75) proves the formula
√

s(s− a)(s− b)(s− c) for the area of triangle, where s =
1
2 (a + b + c) is the semi-perimeter. This was likely known to Archimedes; Heron’s work was a
compilation of earlier mathematics.

• Around AD 100 the Neopythagorean’s worked in Alexandria, studying music, philosophy, and
number, with the intent of reviving the teachings of Pythagoras.

• Around AD 400, Theon and Hypatia produce the most widely-read edition of Euclid’s Elements
as well as improving upon several earlier mathematical topics.

• In AD 395 the Roman empire split into eastern and western parts centered on Rome and Byzan-
tium/Constantinople. The western empire rapidly declined under the pressures of corruption
and barbarian attacks, collapsing completely by AD 500. Alexandria experienced riots and a
bloody power-struggle (Hypatia was murdered by a mob in 415) and the library of Alexandria
was severely damaged and possibly destroyed at this time. In 642, Alexandria was captured
by the new Islamic caliphate. Much of the material in the library survived by being copied and
transported to various places of learning; particularly Constantinople and Baghdad. For the
next 600 years, the knowledge of Alexandria was largely a mystery to (western) Europe.
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Exercises 3.4. 1. If a weight of 8 kg is placed 10 m from the pivot of a lever and a weight of 12 kg is
placed 8 m from the pivot in the opposite direction, toward which weight will the lever incline?
Answer using Archimedes’ language.

2. Use Eratosthenes’ Sieve to find all the primes < 100.

3. (a) Prove Heron’s formula as follows.
i. Let h be the altitude and x the base of the left-hand right-

triangle. Apply Pythagoras’ to the two right-triangles to
show that

x =
a2 + b2 − c2

2a a

b ch

x

ii. Substitute in h2 = b2− x2 to find h in terms of a, b, c and thus deduce Heron’s formula.

(b) Find the area of a triangle with sides 4, 7 and 10.

4. Suppose Cn is the circumference of a 6 · 2n-sided inscribed polygon in a unit circle. Show that
the circumference of the corresponding circumscribed polygon is Cex

n = 1
dn

Cn.

5. Use the modern formula A = 1
2 ab sin C to prove that, for any k ∈N

1
2

k sin
2π

k
< π < k tan

π

k

Moreover, explain why both sides converge to π.

6. Instead of modern algebra, Archimedes used several geometric lemmas to help find the areas
of polygons inscribed in and circumscribing circles. Here is one; prove it!

Let OA be the radius of a circle and AC be tangent to the circle at A. Let D lie on AC such that
OD bisects ∠COA. Then

|DA|
|OA| =

|CA|
|CO|+ |OA| and |DO|2 = |OA|2 + |DA|2

(Hint: draw a picture and let T be the intersection of the circle and OC)

7. (Hard) Archimedes used a geometric series approach to evaluate the area inside a parabola.
Use modern algebra for this question.

(a) Suppose y = a + bx + cx2 is the equation of a
parabola. If P, Q, R have x co-ordinates in an arith-
metic sequence x− ϵ, x, x + ϵ, show that the area of
△PQR is A = |c|ϵ3; independent of x!

(b) With reference to the picture, if A is the area of the
large triangle, explain why the smaller triangle has
area A1 = 1

8 A.

(c) Use a geometric series to prove that the area inside
the parabola bounded by PR is 4

3 A
x

A

A1

P

Q

R
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4 Ancient Astronomy & Trigonometry

Astronomy is one of the most important drivers of mathematical development; early trigonometry
(literally triangle-measure) was largely developed in order to facilitate astronomical computations, for
which there are many practical benefits.

Calendars The phases of the moon (whence month), the seasons, and the solar year are paramount.
Without accurate calendars, food production, gathering and hunting are more difficult: When
will the rains come? When should we plant/harvest? When will the buffalo return?

Navigation The simplest navigational observation in the northern hemisphere is that the stars appear
to orbit Polaris (the pole star), thus providing a fixed reference point/direction in the night sky.
As humans travelled further, accurate computations became increasingly important.

Religion and Astrology In modern times, we distinguish astronomy (the science) from astrology
(how the heavens influence our lives), but for most of human history the two were inseparable.
In our light-polluted urban world, it is hard to imagine the significance the night sky held for our
ancestors, even 100–200 years ago. Almost all religions imbue the heavens with meaning, which
historically provided a huge religious/astrological imperative for mathematical and technological
development. Here are just a few examples of the relationship between astronomy, astrology and
culture.

• The concept of heaven as the domain of the gods, whether explicitly in the sky or simply atop a
high mountain (e.g., Olympus in Greek mythology, Moses ascending Mt. Sinai, etc.).

• Many ancient structures were constructed in alignment with heavenly objects:

– Ancient Egyptians viewed the region around Polaris as their heaven; pyramids included
shafts emanating from the burial chamber so that the deceased could ‘ascend to the stars.’

– Several Mayan temples and observatories appear to be oriented to the solstices (see be-
low). Such alignments can be found elsewhere in the Americas and throughout the world.

– Venus and Sirius, respectively the brightest planet and star in the night sky, were also
important objects of alignment.

• The modern (western) zodiac comes from Babylon, dating to before 1000 BC. A tablet dated
to 686 BC describes 60–70 constellations and stars with aspects that are familiar to modern as-
trologers, including Taurus, Leo, Scorpio and Capricorn. During the same time-period Chinese
and Indian astronomers developed different systems of constellations.16

• Calendars mark religious festivals, practices and even the age of the world.

– The traditional Hebrew calendar dates the beginning of the world to 3760 BC.
– The Mayan long count calendar dates the creation of the world to 3114 BC.
– The modern Gregorian calendar arose to facilitate an accurate determination of Easter.

• The star in the east is associated to the birth of Jesus in Christianity.

• Muslims orient themselves towards Mecca when at prayer; we’ll see later how this direction
(the qibla) may be computed, but the required data is astronomical.

16Chinese astronomy has 28 constellations (or mansions). As a point of comparison, Taurus corresponds roughly to the
Chinese ‘White Tiger of the West’ (Baihu, and similar terms in various East-Asian languages).
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4.1 Astronomical Terminology and Early Measurement

Seasonal variation exists because the earth’s axis is tilted approximately 23.5° with respect to the eclip-
tic (sun-earth orbital plane). Summer, in a given hemisphere, is when the earth’s axis is tilted towards
the sun, resulting in more sunlight and longer days. Astronomically, the seasons are determined by
four dates:

Summer/Winter Solstice (c. 21st June/December) The north pole is maximally tilted towards/away
from the sun. Solstice comes from Latin (Roman) meaning ‘sun stationary.’ The location of
the rising/setting sun and its maximal (noon) elevation changes throughout the year, with
extremes on the solstices: the summer solstice being when the setting sun is most northerly
and (north of the tropics) the noon sun is highest in the sky. Indeed the tropics (of Can-
cer/Capricorn) are the lines of latitude where the sun is directly overhead at noon on one
solstice.

Vernal/Autumnal Equinox (c. 21st March/September) Earth’s axis is perpendicular to the sun-earth
orbital radius. Equinox means equal night: day and night both last approximately 12 hours
everywhere since Earth’s axis passes through the day-night boundary.

The picture shows the orientation of the ecliptic, the earth’s axis and the day-night boundary.

Measurements can now be conducted relative to this set-up.

Fixed stars These form the background with respect to which everything else is measured. The ecliptic
is the sun’s apparent path over the year set against the fixed stars. Planets (wandering stars) are
also seen to move relative to this background.

Celestial longitude Measured from zero to 360° around the ecliptic with 0° at the vernal equinox. One
degree corresponds approximately to the sun’s apparent daily motion. The ecliptic is divided
into twelve equal segments: Aries is 0–30° (March to April 21st); Taurus is 30–60°, etc.

Celestial latitude Measured in degrees north or south of the ecliptic; the sun has latitude zero.

This formulation was largely co-opted by the Greeks from Babylon. The Greeks kept the Babylonian
base-60 degrees-minutes-seconds system, which, with minor modifications, persists to this day.17

17In modern times latitude and longitude (declination/right-ascension) are measured with respect to the earth’s equa-
torial plane rather than the ecliptic. Such equatorial co-ordinates are first known to have been introduced by Hipparchus of
Nicaea (below). Right-ascension is measured in hours-minutes-seconds rather than degrees, with 24 hours = 360°, though
modern scientific practice is to use decimals rather than the sexagesimal minutes and seconds.
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The Circumference of the Earth

Eratosthenes of Cyrene (c. 200 BC, pg. 34) performed one of the earliest accurate estimations of the
circumference of the earth. His idea was to measure the sun’s rays at noon in two different places.

• Syene (modern-day Aswan, Egypt) is approximately
5,000 stadia south of Alexandria.

• When the sun is directly overhead at Syene, it is in-
clined 7°12′ = 1

50 · 360° at Alexandria.

• Earth’s circumference is therefore approximately 50 ·
5, 000 = 250, 000 stadia.

rays

sun’sA

S

Eratosthenes’ original calculation is lost, though it was a little more complicated than the above.
From other (shorter) distances, historians have inferred that Eratosthenes’ stadion was ≈ 172 yards,
making his approximation for the circumference of the earth ≈ 24, 500 miles, astonishingly accu-
rate in comparison to the modern value of ≈ 25, 000 miles. Later mathematicians provided other
estimates based on other locations, but the basic method was the same.

Modelling the Heavens

Early Greek analysis reflects several assumptions.

• Spheres and circles are perfect, matching the ‘perfect design’ of the universe. The earth is a
sphere and the fixed stars (constellations) lie on a larger ‘celestial sphere.’ Models relied on
spheres and circles rotating at constant rates.

• The earth is stationary, so the celestial sphere rotates around it once per day.

• The planets lie on concentric spherical shells also centered on the earth.

When such assumptions are tested by observation, two major contradictions are immediate:

Variable brightness The apparent brightness of heavenly bodies, particularly planets, is not constant.

Retrograde motion Planets mostly follow the east-west motion of the heavens, though are sometimes
seen to slow down and reverse course.

If planets are moving at constant speed around circles centered on the earth, then how can these
phenomena be explained? The attempt to produce accurate models while ‘saving the phenomena’ of
spherical/circular motion led to the development of new mathematics.

One of the earliest known models is due to Eudoxus of Knidos (c. 370 BC, pg. 21). Eudoxus developed
a concentric-sphere model where planets and the sun are attached to separate spheres, each of which
has its poles attached to the sphere outside it; the outermost sphere is that of the fixed stars. The
motion generated by such a model18 is highly complex. Eudoxus’ approach is capable of producing
retrograde motion, but not the variable brightness of stars and planets.

18The link is to a very nice flash animation of Eudoxus’ model that would have been far beyond Eudoxus’ ability to
visualize and measure.
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Epicycles & Eccentric Orbits Apollonius of Perga (2nd/3rd C. BC) is most
famous for his study of conic sections, but is relevant in this section for
developing two models for solar/planetary motion.
In his eccenter model, a planetary/solar orbit is a circle (the deferent) whose
center is not the earth. This straightforwardly addresses the problem of
variable brightness since the planet is not a fixed distance from the earth.
The obvious criticism is why? What philosophical justification could there
be for the eccenter? Eudoxus’ model may have been complex and essen-
tially impossible to compute with, but was more in line with the assump-
tions of spherical/circular motion.

Eccenter Earth

Planet/Sun

Apollonius’ second approach used epicycles: small circles attached
to a larger circle—you’ll be familiar with epicycles if you’ve played
with the toy Spirograph. An observer at the center sees the apparent
brightness change, and potentially observes retrograde motion. In
modern language, the motion is parametrized by the vector-valued
function

x(t) = R
(

cos ωt
sin ωt

)
+ r

(
cos ψt
sin ψt

)

where R, r, ω, ψ are the radii and frequencies (rad/s) of the circles.

Combining these models allowed Apollonius to describe very complex motion. Calculation was
difficult however, requiring finding lengths of chords of various circles from a given angle, and vice
versa. It is from this requirement that some of the earliest notions of trigonometry arise.

One might ask why the Greeks didn’t make the ‘obvious’ fix and place the sun at the center of the
cosmos. In fact Aristarchus of Samos (c. 310–230 BC) did precisely this, suggesting that the fixed stars
were really just other suns at exceptional distance! However, the great thinkers of the time (Plato,
Aristotle, etc.) had a very strong objection to Aristarchus’ approach: parallax.

distant stars nearer star Earth and Sun

θ

If the earth moves around the sun and the fixed stars are really independent objects, then the posi-
tion of a nearer star should appear to change throughout the year. The angle θ in the picture is the
parallax of the nearer star. Unfortunately for Aristarchus, the Greeks were incapable of observing
any parallax.19 It took 2000 years before the work of Copernicus and Kepler in the 15-1600s forced
astronomers to take heliocentric models seriously (Helios is the Greek sun-god).

19The astronomical unit of one parsec is the distance of a star exhibiting one arc-second ( 1
3600 °) of parallax, roughly 3.3

light-years or 3× 1013 km, an unimaginable distance to anyone before the scientific revolution. The nearest star to the sun
is Proxima Centauri at 4.2 light years = 0.77 parsecs: is it any wonder the Greeks rejected the hypothesis?!

39

http://brunelleschi.imss.fi.it/galileopalazzostrozzi/multimedia/ApolloniusEpicycles.html


Hipparchus of Nicaea/Rhodes (c. 190–120 BC)

Born in Nicaea (northern Turkey) but doing much of his work on the Mediterranean island of Rhodes,
Hipparchus was one of the pre-eminent Greek astronomers. He made use of Babylonian eclipse data
to fit Apollonius’ eccenter and epicycle models to the observed motion of the moon. As part of this
work, he needed to be able to accurately compute chords of circles; his resulting chord tables are
acknowledged as the earliest tables of trigonometric values.

In an imitation of Hipparchus’ approach, we define a function
crd which returns the length of the chord in a given circle sub-
tended by a given angle. Translated to modern language,

crd α = 2r sin
α

2 α

r
crd α

crd(180◦ − α)

Hipparchus chose a circle with circumference 360° (in fact he used 60 · 360 = 21600 arc-minutes), the
result being that r = 21600

2π ≈ 57, 18 (written base 60!). Note that this is sixty times the number of
degrees per radian.20 His chord table was constructed starting with two obvious values:

crd 60° = r = 57, 18 crd 90° =
√

2r = 81, 2

Since (Thales) the large triangle is right-angled, the Pythagorean theorem was used to obtain chords
for angles 180°− α. In modern language

crd(180°− α) =
√
(2r)2 − (crd α)2 = 2r

√
1− sin2(α/2) = 2r cos

α

2
Pythagoras was again used to halve and double angles in an approach analogous to Archimedes’
quadrature of the circle (pg. 33). We rewrite the argument in this language.

In the picture, we double the angle α; plainly M is the mid-
point of AD and |DB| = crd(180°− 2α). Since∠BDA = 90°,
it follows that BD is parallel to OM and so

|OM| = 1
2
|BD| = 1

2
crd(180°− 2α)

Now apply Pythagoras to△CMD:
α

α

AB

C

D

O

M

(crd α)2 =

(
1
2

crd 2α

)2

+

(
r− 1

2
crd(180°− 2α)

)2

(|CD|2 = |DM|2 + |CM|2)

=
1
4
(crd 2α)2 + r2 − r crd(180°− 2α) +

1
4

crd(180°− 2α)2

=
1
4
(crd 2α)2 + r2 − r crd(180°− 2α) +

1
4
(4r2 − (crd 2α)2)

= 2r2 − r crd(180°− 2α)

In modern notation this is one of the double-angle trigonometric identities!

4r2 sin2 α

2
= 2r2 − 2r2 cos α ⇐⇒ cos α = 1− 2 sin2 α

2

20One radian is the angle subtended by an arc equal in length to the radius of a circle. Hipparchus essentially does this
in reverse; the circumference is fixed so that degree now measures both subtended angle and circumferential distance.
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Example To calculate crd 30°, we start with crd 60° = r. Then

crd 120° =
√

4r2 − r2 =
√

3 r

=⇒ crd 30° =
√

2r2 − r crd(180°− 60°) =
√

2r2 −
√

3r2 =

√
2−
√

3 r

In modern language this yields an exact value for sin 15°:

crd 30° = 2r sin 15° =⇒ sin 15° =
1
2

√
2−
√

3

Continuing this process, we obtain crd 150° =
√

2 +
√

3 r, whence

crd 15°)2 = 2r2 − r crd 150° = (2−
√

2 +
√

3) r =⇒ crd 15° =

√
2−

√
2 +
√

3 r

Again translating: sin 7.5° = 1
2

√
2−

√
2 +
√

3.
By applying this approach, Hipparchus computed the chord of each of the angles 7.5°, 15°, . . . , 172.5°,
in steps of 7.5°. Of course everything was an estimate since he had to rely on approximations for
square-roots. All Hipparchus’ original work is now lost. We primarily know of his work by reference.
In particular, the above method of chords is probably due to Hipparchus, although we see it first in
the work of Ptolemy, as we’ll consider next.

Exercises 4.1. 1. Calculate crd 150°, crd 165°, and crd 172 1
2 ° using the method of Hipparchus.

(Leave your answers as a multiple of r = crd 60°)

2. Sirius, the brightest star in the sky, is 2.64 parsecs (8.6 light-years) from the sun. Use modern
trigonometry to find its parallax.

3. The tropic of cancer is the line of latitude (approximately) 23.5° north of the equator marking
the locations where the sun is directly overhead at noon on the summer solstice.21 At the arctic
circle on the winter solstice, the sun is precisely on the horizon.

(a) Explain why the latitude of the arctic circle is 66.5° north.

(b) Find the angle the sun makes above the horizon at the arctic circle at noon on the summer
solstice.

4. Consider the epicycle model where the position vector of a planet is given by

x(t) = R
(

cos ωt
sin ωt

)
+ r

(
cos ψt
sin ψt

)

(a) Suppose R = 4 and r = 1, ω = 1 and ψ = 2, so that the epicycle rotates twice every orbit.
Sketch a picture of the full orbit.

(b) Suppose that ω, ψ are positive constants. Prove that an observer will see retrograde motion
if and only if rψ > Rω.
(Hint: differentiate x′(t) and think about its direction)

21Syene (pg. 38) is almost exactly on the Tropic of Cancer.

41



4.2 Ptolemy’s Almagest

Born in Egypt and living much of his life in Alexandria, Claudius Ptolemy (c. AD 100–170) was a
Greek/Egyptian/Roman22 astronomer and mathematician. Around AD 150, he produced the Math-
ematica Syntaxis, better known as the Almagest; the latter term is derived from the Arabic al-mageisti
(great work), reflecting its importance to later Islamic learning.
The Almagest is essentially a textbook on geocentric cosmology. It shows how to compute the motions
of the moon, sun and planets, describing lunar parallax, eclipses, the constellations, and elementary
spherical trigonometry, probably courtesy of Menelaus (c. AD 100). It contains our best evidence as
to the accomplishments of Hipparchus and describes his calculations. The text formed the basis of
Western/Islamic astronomical theory through the 1600s.

Ptolemy’s Calculations Ptolemy used several innovations to compute more chords and at a far
greater accuracy than Hipparchus.

Initial Data Ptolemy took r = 60 so that crd 60° = 60. He also had more initial data:

crd 90° = 60
√

2, crd 36° = 30(
√

5− 1), crd 72° = 30
√

10− 2
√

5

Halving/Doubling Angles Ptolemy used what was probably Hipparchus’ method:

crd2 α = 2r2 − r crd(180°− 2α) = 60
(
120− crd(180°− 2α)

)

crd(180°− α) =
√
(2r)2 − crd2 α =

√
1202 − crd2 α

with square-roots approximated to the desired accuracy. For example,

crd 30° =
√

60(120− crd 120°) =
√

60
(

120− 60
√

3
)
= 60

√
2−
√

3 ≈ 31; 3, 30

Multiple-Angle Formula Ptolemy computed crd 12° = crd(72°− 60°), then halved this for angles of
6°, 3°, 1.5°, and 0.75°. Chords for all integer multiples of 1.5° were computed using addition
formula.

Interpolation The observation α < β =⇒ crd β
crd α < β

α allowed Ptolemy to compute chords for every
half-degree to the incredible accuracy of two sexagesimal places. For approximating between
half-degrees, his table indicated how much should be added for each arc-minute ( 1

60 °). For
example, the second line of Ptolemy’s table reads

1° 1; 2, 50 ; 1, 2, 50

The first two columns state that crd 1° = 1; 2, 50 to two sexagesimal places.23 The third entry
says, for example, that

crd 1°5′ ≈ 1; 2, 50 + 5(; 1, 2, 50) = 1; 8, 4, 10 ≈ 1; 8; 4

To obtain these arc-minute approximations, it is believed Ptolemy computed half-angle chords
to an accuracy of five sexagesimal places (1 part in over 750 million!). The construction of the
chord-table was truly a gargantuan task, one for which Ptolemy almost certainly had assistance.

22Ptolemy (Ptolemaeus) is a Greek name, while Claudius is Roman, reflecting the changing cultural situation in Egypt.
23This is 1 + 2

60 + 50
602 = 1.0472222 . . . = 120 sin 1.00003625...

2 °, an already phenomenal level of accuracy.
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How did Ptolemy know the values of crd 36° and crd 72°? Everything necessary is in the Elements.

Theorem. 1. (Thm XIII. 9) In a circle, the sides of a regular inscribed hexagon and decagon are in
the golden ratio (this ratio is 60 : crd 36° in Ptolemy).

2. (Thm XIII. 10) In a circle, the square on an inscribed pentagon equals the sum of the squares on
an inscribed hexagon and decagon.

Purely Euclidean proofs are too difficult for us, so here is a way to see things in modern notation.

1. Let AB = x be the side of a regular decagon in-
scribed in a unit circle with center O.

△OAB is isosceles with angles 36°, 72°, 72°.

Let C lie on OB such that AC = x.

Count angles to see that △OAB and △ABC are
similar, that ∠OAC = 36° and so OC = x.

Similarity now tells us that

x =
1− x

x
=⇒ x =

√
5− 1
2

In a circle of radius 60, this gives the exact value

crd 36° = 60x = 30(
√

5− 1)

1

36◦
O

A

BC

D

x

y

2. Now let AD = y be the side of a regular pentagon inscribed in the same circle. Applying
Pythagoras, we see that

(y
2

)2
+

(
1− x

2

)2

= x2

Since x2 = 1− x, this multiplies out to give Euclid’s result

y2 = 12 + x2

from which we obtain the exact value

crd 72° = 60y = 30
√

10− 2
√

5

While these values were geometrically precise, Ptolemy used sexagesimal approximations to square-
roots to obtain

crd 36° = 37; 4, 55 crd 72° = 70; 32, 3

While these are the values stated in his tables, he must have used a far higher degree of accuracy in
order to obtain similarly accurate values for other chords.

43



Angle-addition Computation of crd(α ± β) was facilitated by versions of the multiple-angle for-
mulæ of modern trigonometry.

Theorem (Ptolemy’s Theorem). Suppose a quadrilateral is inscribed in a circle. Then the product
of the diagonals equals the sum of the products of the opposite sides.24

Proof. Choose E on AC such that ∠ABE ∼= ∠DBC. Then ∠ABD ∼= ∠EBC. Since ∠BAE ∼= ∠BDC are
inscribed angles of the same arc BC, we obtain two pairs of similar triangles:

A

B
C

D

E A

B
C

D

E

△ABE ∼ △DBC △ABD ∼ △EBC

The proof follows immediately: since |AE|
|CD| =

|AB|
|BD| and |CE|

|AD| =
|BC|
|BD| , we have

|AC| |BD| = (|AE|+ |CE|) |BD| = |AB| |CD|+ |AD| |BC|

Corollary. If α > β, then

120 crd(α− β) = crd α crd(180°− β)− crd β crd(180°− α)

In modern language, divide out by 1202 to obtain

sin
α− β

2
= sin

α

2
cos

β

2
− sin

β

2
cos

α

2

A

B
C

D O

βα

Proof. If |AD| = 120 is a diameter of the pictured circle, then Ptolemy’s Theorem says

crd α crd(180°− β) = crd β crd(180°− α) + 120 crd(α− β)

Similar expressions for crd(α + β) and crd(180°− (α± β)) were also obtained, essentially recovering
all versions of the multiple-angle formulæ for sin(α± β) and cos(α± β).

24It is generally considered that this result predates Ptolemy, though there is some debate as to whether it belongs in
the Elements. Book VI traditionally contains 33 propositions, however some editions append four corollaries, of which
Ptolemy’s Theorem is the last (Thm VI. D).
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Examples 1. Here is how Ptolemy might have calculated crd 42°. Let α = 72° and β = 30°, then

120 crd 42° = crd 72° crd 150°− crd 30° crd 108°

Since crd 72° = 30
√

10− 2
√

5 is known, and

crd 108° = crd(180°− 72°) =
√

1202 − crd2 72° = 30
√

6 + 2
√

5

we see that

crd 42° =
1

120

(
30

√
10− 2

√
5 · 60

√
2 +
√

3− 60
√

2−
√

3 · 30
√

6 + 2
√

5
)

= 15
(√

10− 2
√

5 ·
√

2 +
√

3−
√

2−
√

3 ·
√

6 + 2
√

5
)
≈ 43; 0, 15 ≈ 43.0042

Note all the square-roots which had to be approximated!

2. The Almagest also contained many practical examples. Here is one such.
A stick of length 1 is placed in the ground. The angle of ele-
vation of the sun is 72°. What is the length of its shadow?
Ptolemy says to draw a picture. The lower isosceles triangle
has base angles 72°, and the length of the shadow is ℓ. The
ratio of the chords is then computed:

1 : ℓ = crd 144° : crd 36°

=⇒ ℓ =
crd 36°

crd 144°
=

30(
√

5− 1)

30
√

10 + 2
√

5
≈ 0.32491

This is precisely cot 72°, though Ptolemy had no such notion.

36◦

1

ℓ

Exercises 4.2. 1. What are the exact values of sin 36° and sin 18°?

2. (a) Restate the interpolation formula α < β =⇒ crd β
crd α < β

α in terms of the sine function. What
facts about sin x

x does this reflect?
(b) Find crd 57′ (arc-minutes!) to two sexagesimal places.

3. Find the exact value of crd 54°

4. Prove the following using Ptolemy’s Theorem. What is this in modern language?

120 crd
(
180°− (α + β)

)
= crd(180°− α) crd(180°− β)− crd α crd β

5. Use Ptolemy’s Theorem to establish a version of the double-angle formula: sin α = 2 sin α
2 cos α

2 .

(Hint: draw a symmetric quadrilateral one of whose diagonals is a diameter)

6. Calculate the length of a noon shadow of a pole of length 60 using Ptolemy’s methods:

(a) On the vernal equinox at latitude 40°.
(b) At latitude 36° north on both the summer and winter solstices.

(Hint: recall Exercise 4.1.3)

45



5 Ancient Chinese Mathematics

Documented civilization Dates from c. 3000 BC. Until around
AD 200, China refers roughly to the area in the map: north
of the Yangtze and around the Yellow river. A more de-
tailed timeline map can be found here.

Earliest mathematics Oracle Bone enumeration dates from the
Shang dynasty (c. 1600–1046 BC), commensurate with the
earliest known Chinese character script. Most information
on the Shang comes from later commentaries, though orig-
inal oracle bones have been excavated, particularly from
the ancient capital Anyang. Astronomy, the calendar and
trade were dominant drivers of mathematics.

Zhou dynasty (1046–256 BC) and the Warring States period (475–221 BC) Many mathematical texts
were written, though most have been lost; content must be inferred from later commentaries.
Rapid change created pressure for new systems of thought and technology. Feudal lords em-
ployed philosophers, of whom the most famous was Confucius (c. 500 BC).25 Technological
developments included the compass (for navigation) and the use of iron in warfare.26

Later history and expansion After the victory of the Qin Emperor Shi Huang Di27 in 221 BC, China
was ruled by a succession of dynasties. In 1912, the Qing dynasty was overthrown and the
monarchy abolished, by which time Chinese territory had expanded to roughly its modern
borders. A Civil War (1927–1949) resulted in victory for the communists under Mao Zedong
and the foundation of the modern Chinese state. While this simple description might suggest
a long calm in which culture and technology could develop in comfort, in reality the empire
experienced many rebellions, schisms and flux, often exacerbated by the changing whims of
emperors and later leaders.

Transmission of knowledge East Asia (modern China, Korea, Japan, etc.) is geographically sepa-
rated from other areas of early civilization by tundra, desert, mountains and jungle. During
the Han dynasty (c. 200 BC–AD 220) a network of trading routes known as the silk road was es-
tablished, connecting China, India, Persia and Eastern Europe; the Great Wall was in part con-
structed to protect these trade routes. Geographical separation meant that trade was limited,
and there is little evidence of mathematical and philosophical ideas making the journey until
many centuries later. For instance, there is no evidence of sexagesimal notation being used in
China, suggesting that Babylonian and Greek astronomy did not travel eastwards beyond In-
dia. Similarly, there are eastern mathematical ideas (e.g., matrix-style calculations) which saw
no analogue in the west until many centuries later. There are, however, indications that early
decimal calculations in India may have been inspired by the Chinese counting board method.
On balance, it seems reasonable to conclude that Chinese and Mediterranean mathematics de-
veloped essentially independently.

25An adviser to Lu, a vassal state of the Zhou. Confucianism emphasises stability and unity as a counter to turmoil.
Taoism, the competing contemporary philosophical system, is more comfortable with change and adaptation.

26Sun Tzu’s military classic The Art of War dates from this time.
27Famous for book-burning, rebuilding the great walls, and for the Terracotta Army of Xi’an.
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Early Mathematical Texts

Zhou Bi Suan Jing (The Mathematical Classic of the Zhou Gnomon28 and the Circular Paths of Heaven)
The oldest suspected Chinese mathematical work was likely compiled some time in the period
500–200 BC. Largely concerned with astronomical calculations, it was presented in the form
of a dialogue between the 11th century Duke of Zhou (of I Ching fame) and Shang Gao (one
of his ministers, and a skilled mathematician). It contained perhaps the earliest statement of
Pythagoras’ Theorem as well as simple rules for fractions and arithmetic.

Suanshu Shu (A Book on Arithmetic) Compiled around 300–150 BC, it covered topics such as fractions,
the areas of rectangular fields, and the computation of fair taxes.

Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Arts) Written between 300 BC and AD 200, this
the most famous ancient Chinese mathematical text. Many topics are covered, including square
roots, ratios (false position and the rule of three29), simultaneous linear equations, areas and
volumes, right-angled triangles, etc. The Nine Chapters was hugely influential, in part due to
the detailed commentary and solution manual to its 246 problems written by Liu Hui in AD 263.
Several of our examples below come from Liu’s work.

These texts typically involved worked examples with wide application. There is no notion of ax-
iomatics on which one could construct a modern-style proof.

The Gao Gu Unsurprisingly, the Chinese do not attribute Pythagoras’ Theorem to the Greeks: its
name instead refers to the shorter and the longer of the two non-hypotenuse sides of the triangle.

Here is an early mention of the gao gu. Is this a
‘proof’? Is it a claim about all right-triangles, or
merely an observation of the triple (3, 4, 5)? It can
be made rigorous (see Exercise 4), but it is unclear
whether this was the intention of the author.

Another example describes how to find the diameter of the circle
inscribed in a right-triangle with gao 8 and gu 15. A picture was
drawn and the answer stated:

d =
2 · 8 · 15

8 + 15 + 17
= 6

Here is a modern explanation. Given a = 8 and b = 5, the hypotenuse is c =
√

82 + 152 = 17, and
the area of the large triangle is the sum of three smaller triangles, each having height 1

2 d:

1
2

ab =
1
2

a · 1
2

d +
1
2

b · 1
2

d +
1
2

c · 1
2

d =⇒ d =
2ab

a + b + c

Again we ask: is this a general method or an example?
28Gnomon: “One that knows or examines.” Also refers to the elevated piece of a sun/moondial.
29Given equal ratios a : b = c : d, where a, b, c are known, then d = bc

a .
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The Bamboo Problem Here is another problem from the Nine
Chapters, as depicted in Yang Hui’s 1262 Analysis of the Nine Chap-
ters.
A bamboo has height 10 chi. It breaks and the top touches the
ground 3 chi from the base of the stem. What is the height of the
break?
In modern language: if a, b, c are the sides of the triangle with
hypotenuse c, we know b + c = 10 and a = 3; we want b. The
solution given is

b =
1
2

(
10− 32

10

)
=

91
20

chi

Think about why!

The Out-In Principle Liu made many other contributions to
mathematics, including estimating π in a manner similar to
Archimedes. He made particular use of the out-in principle for
comparing area and volume:

1. Area and volume are invariant under translations.

2. If a figure is subdivided, the sum of the areas/volumes of
the parts equals that of the whole.

These are essentially axioms for area/volume in Euclidean ge-
ometry. For instance, Liu gave the argument shown in the pic-
ture in justification of the gao gu: the large square is subdivided
and the in pieces Ai, Bi, Ci translated to new out pieces Ao, Bo, Co
to assemble the required squares.

Ao

Ai

Bo

Bi

Co

Ci

Liu extended the out-in principle to analyze solids, comparing the volumes of four basic solids:

• Cube (lifang)

• Right triangular prism (qiandu)

• Rectangular pyramid (yangma)

• Tetrahedron (bienuan)

These could be assembled to calculate the volume of, say, a truncated pyramid:
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Chinese Enumeration

The ancient Chinese had two parallel systems of enumeration. Both are essentially decimal.

Oracle Bone Script and Modern Numerals The earliest Chinese writing, oracle bone script, dates
from around 1600 BC. The numbers 1–10 had distinct symbols, as did 20, 100, 1000 and 10000. These
were decorated to denote various multiples. Some examples are shown below.

Given all the possibilities for decoration, the system is complex and more advanced than other con-
temporary systems. Modern Chinese numerals are a direct descendant of this script:

Observe the similarity between the expressions for the first 10 digits. The second image denotes 842,
where the second and fourth symbols represent 100’s and 10’s respectively (literally eight hundred four
ten two). A zero symbol is not required as a separator: one could not confuse 205 (two hundred five)
with 250 (two hundred five ten). The system is partly positional: for instance the symbol for 8 can also
mean 800 if placed correctly, but only if followed by the symbol for 100.

Rod Numerals and the Counting Board The second dominant form of enumeration dates from
around 300 BC and was in wide use by AD 300. Numbers were denoted by patterns known as zongs
and hengs: zongs represent units, 100’s, 10000’s, etc., while hengs were for 10’s, 1000’s, 100000’s, etc.

Rod numerals were immensely practical—in extremis they could easily be scratched in the dirt! More
commonly, short bamboo sticks or counting rods—of which any merchant would carry a bundle—
would be used in conjunction with a counting board: a grid of squares on which sticks could be placed
for ease of calculation. This technology facilitated easy trade and gave rise to several methods of
calculation which will seem familiar. There was no need for a zero in this system as an empty space
did the job. Variations of the rod numeral system persisted in China morphing into the Suzhou system
which can still be found in some traditional settings.
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Basic Counting Board Calculations Addition and subtraction are straightforward by carrying and
borrowing in the usual way. The smallest number was typically placed on the right. Multiplication
is a little more fun. Here we multiply 387 by 147.

3 8 7

1 4 7
Arrange rods: we use modern numerals for clarity

3 8 7
4 4 1
1 4 7

3× 147 = 441, note the position of 147

8 7
4 4 1
1 1 7 6

1 4 7

Delete 3, move 147 and multiply: 8× 147 = 1176

8 7
5 5 8 6

1 4 7

Sum rows

7
5 5 8 6

1 0 2 9
1 4 7

Delete 8, move 147 and multiply: 7× 147 = 1029

5 6 8 8 9
1 4 7

Sum rows: in conclusion, 387× 147 = 56889

The algorithm is just long-multiplication, starting with the largest digit (3) instead of the units as is
more typical in Western education.

Division is similar to long-division. To divide 56889 by 147 one might have the following sequence
of boards

5 6 8 8 9
1 4 7

−→
3

5 6 8 8 9
1 4 7

−→
3 8

1 2 7 8 9
1 4 7

−→
3 8 7

1 0 2 9
1 4 7

In the first two boards, 147 goes 3 times into 568.
In board 3, we subtract 3× 147 from 568 to leave 127, shift 147 one place to the right, and observe
that 147 goes 8 times into 1278.
In the final step we have subtracted 8× 147 from 1278 to leave 102, before shifting 147 to its final
position on the right. Since 147 divides exactly seven times into 1029, we are done.

There is nothing stopping us from dividing when the result is not an integer; one simply continues
as in long-division, with fractions represented as decimals.
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Simultaneous linear equations The coefficients of a linear system were placed in adjacent columns
and then column operations were performed. The method is identical to what you learn in a linear
algebra class, but with columns rather than rows. Here is an example.

{
3x + 2y = 7
2x + y = 4

−→
3 2
2 1
7 4

−→
1 2
1 1
3 4

−→
1 1
1 0
3 1

−→
0 1
1 0
2 1

−→ x = 1, y = 2

This matrix method was essentially unique to East Asia until the 1800s.

Euclidean algorithm The counting board lent also itself to the computation of greatest common
divisors, which were used for simplifying fractions. Here is the process applied to 35

91 :

35 35 35 14 14 7
91 56 21 21 7 7

At each stage, one subtracts the smaller number from the larger. Once the same number is in each
row you stop. You should recognize the division algorithm at work! Since gcd(35, 91) = 7, both
could be divided by 7 to obtain 35

91 = 5
13 in lowest terms.

Negative numbers There is a strong case that the Chinese are the oldest adopters of negative num-
bers, though these were not originally thought of as such. Different colored rods were used to denote
a deficiency in a quantity, commonly when balancing accounts. The Nine Chapters describes using red
and black rods in this manner. This practice was known by AD 1, roughly 500 years before negative
numbers were used in calculations in India. It is possible that there was some transference of this
idea from China to India.

Music, Mysticism and Approximations Like the Pythagoreans, the ancient
Chinese were interested in music and pattern for mystical reasons. While the
Pythagoreans delighted in the pentagram, the Chinese created magic squares
(grids whose rows, columns and diagonals sum to the same total) as symbols
of perfection.

8 3 4
1 5 9
6 7 2

3× 3 magic square

The notion of equal temperament in musical tuning was first ‘solved’ in China by Zhu Zaiyu (1536–
1611), some 30 years before Mersenne & Stevin established the same idea in Europe. This required
the computation of the twelfth-root of 2 which Zhu found using approximations for square and cube
roots:

12
√

2 =
3

√√√
2

Zhu’s approximation was correct to 24 decimal places! Indeed the Chinese emphasis on practicality
meant that they often had the most accurate mathematical approximations of their time:

• Approximations to π including 22
7 ,
√

10, 355
113 , 377

120 . Most accurate in the world from 400–1400.

• Methods for approximating square and cube roots were found earlier than in Europe. Ap-
proximations to solutions of higher-order equations similar to the Horner–Ruffini/Newton–
Raphson method were also discovered earlier.

• Pascal’s triangle first appeared in China around 1100. It later appeared in Islamic mathematics
before making its way to Europe.
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Two Famous Problems

We finish with two famous Chinese problems. The first is known as the Hundred Fowl Problem and
dates from the 5th century AD. It was copied later in India and then by Leonardo da Pisa (Fibonacci)
in Europe, thus demonstrating how some Chinese mathematics travelled westwards.

If cockerels cost 5 qian (a copper coin), hens 3 qian, and 3 chicks cost 1 qian, and if 100
fowl are bought for 100 qian, how many cockerels, hens and chicks are there?

In modern language, we want non-negative integers x, y, z satisfying
{

5x + 3y + 1
3 z = 100

x + y + z = 100

The stated answers are (4, 18, 78), (8, 11, 81), (12, 4, 84) while the solution (0, 25, 75) was ignored.

Finally we consider the Chinese Remainder Theorem for solving simultaneous congruence equations.
This result dates from the 4th century AD, after which it travelled to India where it was described
by Bhramagupta, and thence to Europe. This example comes from Qin Jiushao’s Shu Shu Jiu Zhang
(Nine Sections of Mathematics, 1247).

Three thieves stole three identical vessels filled with rice, but whose exact capacity was
unknown. The thieves were caught and their vessels examined: the quantities left in each
vessel were 1 ge, 14 ge and 1 ge respectively. The thieves did not know the exact quantities
they’d stolen. The first used a horse ladle (capacity 19 ge) to take rice from the first vessel.
The second used a wooden shoe (17 ge) to take rice from his vessel. The third used a bowl
(12 ge). What was the total amount of rice stolen?

In modern language, the capacity x of each vessel satisfies

x ≡ 1 (mod 19), x ≡ 14 (mod 17), x ≡ 1 (mod 12)

The given answer, x = 3193 ge, represents the smallest possible capacity of each vessel, with all other
solutions being congruent modulo 19 · 17 · 12 = 3876, as you should be able to confirm if you’ve
studied number theory! The total amount of rice stolen is then

(x− 1) + (x− 14) + (x− 1) = 3x− 16 = 9563

Since congruence equations are simply underdetermined linear equations

x ≡ 1 (mod 19) ⇐⇒ ∃y ∈ Z such that x = 1 + 19y

solutions to both of these problems can be effected using counting board methods.
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Exercises 5. 1. Verify the result of the Bamboo problem.

2. Solve the Hundred Fowl Problem by substituting z = 100− x − y in the first equation and ob-
serving that x must be divisible by 4.

3. Use a counting board method to:

(a) Solve the linear system

{
8x + y = 28
3x + 2y = 17

(b) Multiply 218× 191.

4. Turn Zhao Shuang’s pictorial argument from the
Arithmetical Classic of the Gnomon into a proof of
Pythagoras’ Theorem.

5. Solve problem 24 of chapter 9 of the Nine Chapters.

A deep well 5 ft in diameter is of unknown depth (to the water level). If a 5 ft post is
erected at the edge of the well, the line of sight from the top of the post to the edge of
the water passes through a point 0.4 ft from the lip of the well below the post. What
is the depth of the well?

6. Solve problem 26 of chapter 6 of the Nine Chapters.

Five channels bring water into a reservoir. If only the first channel is open, the reser-
voir fills in 1

3 of a day. The second channel by itself fills the reservoir in 1 day, the third
channel in 2 1

2 days, the fourth in 3 days, and the fifth in 5 days. If all the channels are
opened together, how long will the reservoir take to fill?
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6 Indian and Islamic Mathematics

6.1 India, the Hindu–Arabic Numerals & Zero

The Indian/South Asian subcontinent is bordered to the north by
the Himalayan mountains and to the east by dense jungle. Its pri-
mary frontier has historically been the fertile Indus valley in the
west, now the central corridor of Pakistan, where recorded civi-
lization dates to at least 2500 BC. During the first millennium BC,
Hinduism developed as an amalgamation of previous practices
and beliefs; Buddhism and Jainism began to spread in the later
part of this period, in the Ganges valley further east.
Alexander the Great conquered as far east as the Indus in 326 BC,
bringing Greek, Babylonian and Egyptian knowledge in his wake.
The Greek overlords he left behind were rapidly overthrown and
the subcontinent became largely unified under the Mauryan Empire for the next 150 years. After
this came 1000 years of shifting control with several invasions from the west by the nearby Persians.
Islam conquered the Indus around 1000, and the greater part of India was unified under the Islamic
Mughal Empire by the 1500s. After its decline and fragmentation, the British took control in 1857.

The modern political situation reflects this complicated history. India gained its independence in 1947
after World War II, and was shortly thereafter partitioned according to religion: the greater Indus
valley and the lower Ganges/Brahmaputra comprise the Islamic states of Pakistan and Bangladesh,
with the majority of the landmass becoming the nominally secular but majority Hindu country of
India. The upper Indus valley (Kashmir) remains contested and has been the site of several military
conflicts between India, Pakistan and China.

Ancient India’s contributions to world knowledge and development are undoubtedly significant; it
is estimated that India accounted for 25–30% of the world’s economy during the 1st millenium AD!
It was moreover a technological and cultural crossroads, with its location making it well suited to
absorbing and synthesising ideas from both east and west; while some trade and knowledge passed
north of the Himalayas directly between China and the Middle East/Europe, far more percolated
slowly through India, being improved and given back in turn.

Brahmi Numerals & Numerical Naming Our primary focus is on possibly the most important
practical mathematical development in history: the decimal positional system of enumeration, com-
plete with fully-functional zero. The Brahmi numerals, one of the earliest antecedents of modern
numerals, first appeared around the 3rd century BC.

1 2 3 4 5 6 7 8 9 10

The example dates from around 100 BC and was used in Mumbai/Bombay. Additional symbols
denoted multiples of 10, 100, 1000, 10000, etc. As with Chinese characters, the system was partly
positional (800 would be written by prefixing the symbol for 100 by that for 8) and there was no
symbol or placeholder for zero.
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Symbols are only part of the story. The modern approach to naming numbers and constructing large
numbers can also be linked to the same period. The table below gives old Sanskrit names.

1 2 3 4 5 6 7 8 9
eka dvi tri catur pancha sat sapta asta nava

10 20 30 40 50 60 70 80 90
dasa vimsati trimsati catvarimsat panchasat sasti saptati asiti navati

100 1000 10000 100000 1000000 107 108 109 1010

sata sahasra ayuta niyuta prayuta arbuda nyarbuda samudra madhya

You should recognize similarities with some of the numbers in European languages, many of which
have Sanskrit roots. The construction of larger numbers should also seem familiar: for example tri
sahasra sat sata panchasat nava is precisely how we read 3659.

Naturally, old Sanskrit verbiage doesn’t map perfectly onto modern English. For instance, Sanskrit
had distinct words for powers of 10 up to (at least!) 1062, and employed a version of pre-subtraction:
e.g., ekanna-niyuta meant ‘one less than 100000,’ or 99999.

Gwalior Numerals During the first few centuries AD , a fully positional decimal place system came
into being. The earliest evidence comes from a manuscript found in Bakhshālı̄ (Pakistan) in 1881,
which has been carbon-dated to the 3rd or 4th century. The manuscript contains the earliest known
version of the modern symbol for zero, a circular dot. It is conjectured that the decimal place sys-
tem was inspired by the Chinese counting-board method, though convincing proof has yet to be
uncovered. Regardless of attribution, Chinese mathematicians were copying the method by the 8th

century.

The examples below are better understood than the Bakhshālı̄ manuscript and come from Gwalior
(northern India) around 876.

0 1 2 3 4 5 6 7 8 9 10

The similarity with modern numerals is clear; 0, 1, 2, 3, 4, 7, 9, 10 are very familiar. Zero has evolved
from the Bakhshālı̄ dot to a hollow circle. The symbols for 2 and 3 are conjectured to have devel-
oped in an attempt to write earlier versions (e.g. the Brahmi numerals) cursively; try writing three
horizontal strokes quickly. . .

The system is fully positional. Below are the numbers 270 and 30984:

Sanskrit is written left-to-right, with the leftmost digits representing the largest powers of 10. Note
how zero is used as a placeholder to clarify position so that, e.g., 27, 207, and 270 are clearly distin-
guishable.
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Zero On the right is a table of modern Sanskrit names and numerals; the digits and names are
certainly similar to their Gwalior counterparts.

The Sanskrit shuunyá means void or emptiness. It is related
to svi (hollow), which in turn derives from an ancient word
meaning to grow. This reflects a major idea within religions
of the area, with the void being the source of all things, of
creation and creativity. Contemplation of the void (the doc-
trine of Shunyata) is recommended before composing mu-
sic, creating art, etc. This contrasts with the Abrahamic re-
ligions where the void is something to be feared; an early
conception of hell was the eternal absence of God.
The Gwalior numerals travelled westwards, with Europe eventually inheriting the system via Islam;
as such they are today known the Hindu–Arabic numerals. Here is a short version of the etymological
journey of zero into European languages.

• Shunya was transliterated to sifr in Arabic where the double-meaning persisted: al-sifr was the
number zero, while safira meant it was empty.

• The term came to Europe in the 12th-13thcenturies courtesy of Fibonacci where it became cifra.
This was blended with zephyrum (west wind/zephyr) providing an alternate spelling.

• Cifra ultimately became the words cipher (English), chiffre (French) and ziffer (German), meaning
a figure, digit, or code.

• Zephyrum became zefiro in Italian and zero in Venetian.

Zero and the Hindu–Arabic numerals also travelled eastwards, with Qin Jiushao introducing the
zero symbol into China in the 13th century.

Our modern understanding of zero is a fusion of several concepts:

Numerical positioning For instance, to distinguish 101 from 11.

Absence of a quantity 101 contains no 10’s.

Symbol First a dot (bindu), then a circle (chidra/randhra meaning hole). The relationship between
shunya and a symbol was established by AD 2-300, as this quote from AD 400 (Vasavadatta)
illustrates

The stars shone forth, like zero dots [shunya-bindu] scattered as if on a blue rug. The
Creator reckoned the total with a bit of the moon for chalk.

Mathematical operations By the time of Brahmagupta (7th C.), a mathematical text might contain a sec-
tion called shunya-gania, with computations involving zero, including addition, multiplication,
subtraction, effects on ±-signs, division and the relationship with ∞ (ananta). In the 12th C.,
Bhaskaracharya stated:

If you were to divide by zero you would get a number that was “as infinite as the god
Vishnu.”
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Other ancient cultures had one or more of these aspects of zero, but the Indians were the first to put
them all together.

• The Egyptian hieroglyph nfr (beautiful/complete) indicated zero remainder in calculations as
early as 1700 BC and was also used as a reference point/level in buildings.

• Very late in Babylonian times, a placeholder symbol was used to separate powers of 60. It was
not used as a number.

• With the Chinese counting board, an empty space served as a placeholder.

• Various Mesoamerican cultures, such as the Maya, had a zero symbol that was used as a place-
holder, particularly when writing dates.

‘Real’ Indian Mathematics

Indian mathematicians made great progress on several fronts, not merely the decimal place system.

Much ancient work was influenced by religion. The sul-
basutras were written during pre-Hindu times and con-
tained instructions for laying out altars using ruler-and-
compass constructions. These could be quite complex,
as the construction of the base of the Mahavedi (great al-
tar) shows: The center line is divided left-to-right in the
ratio

1 : 7 : 12 : 11 : 5

and the altar contains five distinct Pythagorean triples.

30 pada 24 pada

36 pada

Of particular importance to our narrative is Indian work on trigonometry. Here are some highlights:

• The early 5th C. text Paitāmahasiddhānta is assumed to be an extension of Hipparchus’ work,
since it contains a table of chords based on a circle of radius 57,18; rather than Ptolemy’s 60.

• Indian mathematicians instituted the use of half-chords, in line with our modern understanding
of sine. Indeed the word sine is the result of a long sequence of (mis)translations and transliter-
ations via Arabic and Latin from the Sanskrit jyā-ardha (chord-half ).30 The Indians also began to
distinguish ‘base sine’ and ‘perpendicular sine’ (cosine).

• Created tables of sines/half-chords from 0° to 90° in steps of 3 3
4 °, using linear interpolation to

approximate values in between. By 650, Bhramagupta had much better approximations, using
quadratic polynomials to interpolate. By 1530, Indian mathematicians had discovered cubic
and higher approximations (essentially Taylor polynomials 130 years before Newton) for even
greater accuracy of sine, cosine and arctangent.

Navigation was one of the drivers of this development. While Mediterranean sailors rarely strayed
long out of sight of land, the Indians sailed the ocean and required accurate measurements to find
their latitude.

30Amazingly this became related to the word sinus meaning bay, gulf or bosom!
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Exercises 6.1. 1. The Mahavedi (pg. 57) contains five Pythagorean triples; find them.

2. To simplify square root expressions, Bhaskara used the formula

√
a +
√

b =

√
1
2

(
a +

√
a2 − b

)
+

√
1
2

(
a−

√
a2 − b

)

Prove Bhaskara’s formula and use it to simplify
√

2 +
√

3.

3. Here is an Indian method for ‘finding’ a circle whose area is equal to a given square.

In a square ABCD, let M be the intersection of the diago-
nals. Draw a circle with M as the center and MA the radius;
let ME be the radius of the circle perpendicular to the side
AD and cutting AD at G. Let GN = 1

3 GE. Then MN is the
radius of the desired circle.
Show that if AB = s and MN = r, then

r
s
=

2 +
√

2
6

Show that this implies a value for π equal to 3.088311755.

A

B C

D

M

E

G

N

4. Solve the following problem of Mahāvı̄ra.

Of a collection of mango fruits, the king took 1/6; the queen took 1/5 of the remain-
der, and the three chief princes took 1/4, 1/3, 1/2 of what remained at each step. The
youngest child took the remaining three mangoes. O you, who are clever in work-
ing miscellaneous problems on fractions, give out the measure of that collection of
mangoes.
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6.2 Islamic Mathematics I: Algebra

Muhammad ibn Abdullah was born in Mecca (modern Saudi Arabia) in 570. Around 610 he began
preaching Islam (submission to the will of God)—the third of the major Abrahamic religions, (chrono-
logically) following Judaism and Christianity. After several years of exile, he returned with an army,
conquering Mecca a few years before his death in 632.

Through military conquest, Muhammad’s successors expanded the caliphate (empire) at a truly re-
markable speed. At the time of his death, the Arabian peninsula was Islamic. By 660 Islam had
reached Libya and most of Persia, and by 750 extended from Iberia & Morocco to Afganistan & Pak-
istan. Serious schisms eventually arose31 and several successor empires emerged, the longest-lasting
of which was the Ottoman Empire (c. 1300–1922). Even though centralized political control ended
long ago, Islam remains dominant in the region pictured below (with the notable exceptions of Spain
and Portugal) and over a greater region of Africa and south-east Asia (e.g., Indonesia).

As with the Romans, early Muslims permitted conquered peoples—including Jews and Christians
(people of the book)—to maintain their culture, provided they acknowledged their overlords and paid
taxes. Those who converted to Islam were welcomed as full citizens, though deconversion (apostasy)
was not tolerated. Many of the great Islamic thinkers were born on the periphery and travelled to
the great centers of learning, particularly Baghdad during the Islamic golden age (8th–13thcenturies).
Knowledge was also absorbed from Alexandria and western India (Pakistan). In the mid-700s paper-
making came from China, greatly facilitating the dissemination and consolidation of knowledge.
Schools (madrassas) reflected a strong cultural and religious focus on learning.

The Islamic golden age overlapped the European dark ages (c. 500–1200) following the fall of Rome,
during which European philosophical development stagnated. By 1200, the crusades32 were well
underway and Islam had come to be seen as the enemy of Christian Europe. The infusion of knowl-
edge that came to Europe from Islam around this time helped spur the European renaissance & later
scientific revolution. Among European scholars almost to the present day, it was fashionable to credit
Islam merely with the preservation of ancient ‘European’ knowledge; a claim both fanciful and chau-
vinistic, but plainly stemming from medieval animosity.

31In particular between the Sunni and Shia branches of the faith. Much of the modern-day tension between Saudi Arabia
and Iran stems from this rupture.

32A series of religious–military campaigns 1096–1291 with the goal of wresting control of the Holy Land, particularly
Jerusalem, from Islam.
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Algebra & Algorithms

Proof and axiomatics were learned from Greek texts such as the Elements. Like the Greeks, Islamic
scholars gave primacy to geometry and proved algebraic relations in a geometric manner.33 Practical
and accurate calculation was more important than to the Greeks, and great advances were made in
this area. This included completing the development of the Indian decimal place system (hence the
dual credit Hindu–Arabic numerals).
The second most obvious legacy of Islamic mathematics is encountered daily in every mathematics
classroom. Algebra34 comes from the Arabic al-ğabr, meaning restoring. It originally referred to mov-
ing a deficient (negative) quantity from one side of an equation to another. A second term al-muqabala
(comparing/balancing) meant to subtract the same positive quantity from both sides of an equation.

Al-ğabr: x2 + 7x = 4− 2x2 =⇒ 5x2 + 7x = 4

Al-muqābala: x2 + 7x = 4 + 5x =⇒ x2 + 2x = 4

Islamic scholars did not use symbols or equations in a modern sense; statements were instead written
out in sentences.

Muhammad ibn Mūsā al-Khwārizmı̄ (780–850) Born near the Aral Sea in modern Uzbekistan, al-
Khwārizmı̄ eventually became chief librarian at the great school of learning, the House of Wisdom, in
Baghdad. His Compendious book on the calculation by restoring and balancing35 (820) is a synthesis of
Babylonian methods and Euclidean axiomatics; an algorithm demonstrated a solution, followed by
a geometric proof. After being translated into Latin in the 1100s it became a standard textbook of Eu-
ropean mathematics, displacing Euclid in places due to its greater emphasis on practical calculation.
The word algorithm reflects its importance: the Latin dixit algorismi literally means al-Kwārizmı̄ says.

Here is al-Khwārizmı̄’s approach to the quadratic equation x2 + 4x = 60, or, more properly:

What must be the square which, when increased by four of its roots, amounts to sixty?

The algorithm may be applied to any equation of the form x2 + ax = b
where a, b > 0: here a is the number of ‘roots,’ and b the total ‘amount.’

• Halve the number of roots
(
2 = 1

2 a
)

• Multiply by itself
(
4 = 1

4 a2)

• Add to the total amount
(
64 = 1

4 a2 + b
)

• Take the root of this
(

8 =
√

1
4 a2 + b

)

• Subtract half the number of roots
(

6 =
√

1
4 a2 + b− a

2

) x 2

x

2

Al-Kwārizmı̄ essentially constructs the quadratic formula = −a+
√

a2+4b
2 , while the pictorial justifica-

tion is Euclid’s (Elements, Thm II. 4). The geometry should be obvious: the square has been increased
by four of its roots and the algorithm is simply ‘completing the square.’
Other algorithms were supplied to solve every type of quadratic.

33Like Book II of the Elements. Such Greek texts were venerated by Islamic scholars; recognizing the depth of Ptolemy’s
work on astronomy and trigonometry, they bestowed the name by which it is now known, the Almagest (Great Work).

34Many words beginning al- are of Arabic origin (alkali, albatross, etc.), as are others that have been latinized (elixir).
35Al-kitāb al-mukhtasar fı̄ hisāb al-ğabr wa’l-muqābala.
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It is hard to notice from our example, but the crucial development from a math-history point of view
is the abstraction, in a modern sense the algebra; al-Khwārizmı̄’s approach applies equally to numbers
as it does to geometric objects, a very different approach to the geometry-focused Greeks.

As an example of the power of this idea, consider how Abū Kāmil (Egypt 850–930) generalized Eu-
clid’s Book II geometric-algebra arguments to permit substitution, provided the resulting equation
was quadratic.

If y =
1 + x
3 + x

and y2 + y = 1 then x =
√

5

Abū Kāmil essentially substitutes y = 1+x
3+x into the quadratic (with solution y =

√
5−1
2 ). While al-

Khwārizmı̄’s methods were geometrically justified, when combined in this fashion the entire pro-
cess no-longer admits a straightforward geometric interpretation. This method of substitution was
an early step towards establishing the modern primacy of algebra and number over geometry and
length.
Over the following centuries, this algebraic approach was further improved. In particular, Omar
Khayyam (1048–1131) produced ground-breaking work on cubic equations, astronomy, the binomial
theorem, and irrational numbers.

Exercises 6.2. 1. Solve the equations 1
2 x2 + 5x = 28 and 2x2 + 10x = 48 using al-Khwārizmı̄’s

methods (first multiply or divide by 2).

2. Al-Khwārizmı̄ gives the following algorithm for solving the equation bx + c = x2.

• Halve the number of roots.

• Multiply this by itself.

• Add this square to the number.

• Extract the square root.

• Add this to half the roots.

Translate this into a formula. Give a geometric argument
for the validity of the approach using the picture: HC
has length b where G is the midpoint; rectangle ABRH
has area c; KHGT and AMLG are squares; and the large
square ABDC has side-length x.

AB

CD

G

H

M

L

R N K

T

3. Solve the following problems by Abū Kāmil (use modern algebra!).

(a) Suppose 10 is divided into two parts and the product of one part by itself equals the
product of the other part by the square root of 10. Find the parts.

(b) Suppose 10 is divided into two parts, each of which is divided by the other, and the sum
of the quotients equals the square-root of 5. Find the parts.
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6.3 Islamic Mathematics II: Spherical Trigonometry and the Qibla

Late 8th century Indian work on trigonometry, linking back to Hipparchus, was known in Baghdad,
as was the work of Ptolemy. Islamic scholars were interested in trigonometry for reasons beyond
mere astronomy. A primary requirement in Islam is to face the Ka’aba in the Great Mosque at Mecca
when at prayer: this is the qibla (direction in Arabic). A mosque is typically built so that one wall
faces Mecca for convenience; if not possible, an arrow indicating the qibla might be placed in an
alcove. In Muhammad’s time (when Muslims faced Jerusalem not Mecca), determining the qibla
was relatively easy, though as Islam spread the curvature of the earth made determination more
difficult. The religious impetus behind this problem motivated Islamic mathematics for centuries,
and the methods developed (with minor modifications) are still used today, though in modern times
the mathematics is very much hidden behind GPS technology!

Terminology and Trigonometric Tables Scholars worked with the Indian half-chord (sine), and with
circles of various radii. Al-Battānı̄ (c. 858–929) introduced an early version of cosine as the complemen-
tary half-chord for angles less than 90°, and with an analogue of the modern function versine:36

versin θ = 1− cos θ

Al-Bı̄rūnı̄ (973–1048) defined versions of tangent, cotangent, secant and cosecant by projecting from
a gnomon (sundial) onto either a horizontal or a vertical plane. In the second picture below, the
gnomon is the vertical stick of length 1. With this definition, al-Bı̄rūnı̄ moves towards the modern
consideration of trigonometry in terms of triangles rather than circles.

sin α

1

cos α

versin α

α
α

crd 2α

1

tan α = cot β

sec α = csc β

β

α

Trigonometric tables with improved accuracy over Ptolemy were created for all these ‘functions.’
Abū al-Wafā (940–998) and his descendants computed sine & tangent values for every minute of arc
accurate to five sexagesimal places (one part in 777 million!) via repeated applications of the half-angle
formula and interpolating using the downwards concavity of the sine function (draw a picture!):

sin(α + β)− sin α < sin α− sin(α− β) whenever 0° < α− β < α + β < 90°

36Versed sine refers to the measurement of a length in a reversed direction (perpendicular) to that of sine.
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Calculating the Qibla In what follows we observe several conventions:

• A single letter A refers to a point or to the angle measure in a triangle with vertex A.

• AB means the segment of the great-circle joining points A, B or its arc-length. A spherical triangle
△ABC comprises three points on a sphere joined by segments of great-circles.

• AB means the straight line joining A, B with length |AB|.
• All results are modernized and applied to a unit sphere (center O). The arc-length along a

great-circle therefore equals the central angle subtended by that arc in radians: AB = ∡AOB.
To help visualize things, 3D movable versions of all pictures are online—click them!

Ptolemy and the Indians had already done some relevant work, though
Ptolemy’s approach relies heavily on Menelaus’ Theorem (c. 100AD ).

Theorem (Menelaus). For the pictured configuration of spherical triangles
on a sphere of radius 1,

sin CE
sin AE

=
sin CF
sin DF

· sin BD
sin AB

Applying Menelaus’ Theorem is difficult since one typically needs to create
many new spherical triangles. Al-Wafā simplified things considerably with
an alternative result.

Theorem (Al-Wafā). If △ABC and △ADE are spherical triangles with right angles at B, D and a
common acute angle at A, then

sin BC
sin AC

=
sin DE
sin AE

In fact these ratios equal sin α where α is the acute angle, though al-Wafā didn’t say this.

Proof. Let O be the center of the sphere. Project C orthogonally to the plane containing O, A, B to
produce K, then project K to OA to get L.
Consider the right-angled planar triangle CKL. Since α
is the angle between two planes, we have α = ∡CLK.
Moreover

|CK| = sin∡COK = sin∡COB = sin BC
|CL| = sin∡COL = sin∡COA = sin AC

The usual sine formula for plane triangles says

sin α =
|CK|
|CL| =

sin BC
sin AC

The same ratio is obtained for△ADE.
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The sine and cosine rules, both of which follow by dropping perpendiculars. Al-Wafā’s result quickly
recovers the spherical sine rule.

Corollary (Sine rule). If a, b, c are the side-lengths of a spherical
triangle with angles A, B, C, then

sin a
sin A

=
sin b
sin B

=
sin c
sin C

Proof. Drop a perpendicular to H from C. Al-Wafā says

sin B =
sin h
sin a

and sin A =
sin h
sin b

Eliminate sin h for the first equality. The rest is symmetry.

Al-Wafā’s proof was similar, though a little more complicated. He
extended AB and BC to quarter circles resulting in a spherical
triangle with right angles at D and E. Since DE is an arc with
central angle B, we have DE = B. Since BD = 90°, Al-Wafā’s
theorem implies

sin h
sin a

=
sin B

sin 90°
=⇒ sin h = sin a sin B

Mirroring this by extending AB past B and equating the sin h
terms yields the result.
Armed with these results, al-Wafā could solve spherical triangles.
As with his sine rule argument, his method required several aux-
iliary triangles.
Al-Bı̄rūnı̄ simplified matters by developing the cosine rule. We
apply his method to find the qibla from a location L—remember:
for simplicity, the sphere (Earth!) has radius 1.
Let M be Mecca and N the north pole. The qibla is β, the initial
bearing from L to M. Our (known) initial data are the latitudes
and longitudes of L, M, specifically:

• α is the difference in the longitudes.

• b, c are the colatitudes37 of M, L respectively.

The cosine rule follows from Ptolemy’s Theorem (pg. 44). Extend NL to Q with the same latitude as
M. Similarly let P ∈ NM have the same latitude as L. By symmetry, L, P, Q, M are coplanar, whence
the quadrilateral LPQM lies on the intersection of a plane and a sphere: a circle! Measured as straight
lines (chords) and using symmetry (|PQ| = |LM| and |LQ| = |PM|), Ptolemy says

|LM| |PQ| = |LQ| |PM|+ |LP| |QM| =⇒ |LM|2 = |LQ|2 + |LP| |QM|

37Colatitude is measured southwards from the north pole, thus equaling 90° minus latitude. Since the sphere has radius
1, the arc-lengths b, c equal the colatitudes in radians.
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The great circle arc-lengths on the sphere may be found from the straight distances via the usual
chord relations: e.g.,

|LM| = crd LM = 2 sin
LM

2

Ptolemy’s theorem now becomes a relation between arc-lengths

sin2 LM
2

= sin2 b− c
2

+ sin
LP
2

sin
QM

2

By bisecting α we obtain two pairs of right-triangles; al-Wafā tells
us that

sin
α

2
=

sin LP
2

sin c
=

sin QM
2

sin b

whence

sin2 LM
2

= sin2 b− c
2

+ sin2 α

2
sin c sin b (∗)

For final simplifications, apply the multiple-angle formulæ (sin2 x
2 =

1
2 (1− cos x) and cos(b− c) = cos b cos c + sin b sin c).

Corollary (Cosine rule). In a spherical triangle with sides a, b, c and
angle α opposite a, we have

cos a = cos b cos c + sin b sin c cos α

In our triangle of interest, a = LM. Given L, M, one uses the cosine rule to compute a and then the
sine rule to find the qibla β:

sin b
sin β

=
sin a
sin α

=⇒ sin β =
sin α sin b

sin a

Whew!

For fun, here is some real-world data: the co-ordinates of Mecca and London are 21°25’ N 39°49’ E
and 51°30’ N 8’ W respectively. This corresponds to

α = 39°57′, b = 68°35′, c = 38°30′

By al-Bı̄rūnı̄’s cosine rule,

cos a = cos 68°35′ cos 38°30′ + sin 68°35′ sin 38°30′ cos 39°57′ =⇒ a = 43.110°

Since Earth’s circumference is 24,900 miles, the London → Mecca distance is 43.110×24,900
360 = 2, 981

miles. Al-Wafā’s sine rule computes the qibla

β = 180°− sin−1 sin α sin b
sin a

= 118°59′

where we subtracted from 180° since London is north of Mecca. Check it yourself at the Great Circle
Mapper (the website uses airports so the result uses slightly different initial data).
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Spherical Trigonometry Cheat Sheet!

Let△ABC be a spherical triangle with side-lengths a, b, c on a sphere of radius 1.

Basic trigonometry. If△ABC is right-angled at C

sin A =
sin a
sin c

cos A =
tan b
tan c

tan A =
tan a
sin b

Al-Wafā essentially proved the first; the others follow from trig identities (cos2 A = 1− sin2 A . . .)

Sine rule (Al-Wafā)
sin A
sin a

=
sin B
sin b

=
sin C
sin c

Cosine rule (Al-Bı̄rūnı̄)

cos c = cos a cos b + sin a sin b cos C

The spherical Pythagorean Theorem is the special case cos c = cos a cos b (C = 90°).

If the sphere has radius r, simply divide all lengths by r before applying the results; e.g.,

sin A =
sin(a/r)
sin(c/r)

As r → ∞, we have sin a
r ≈ a

r and cos a
r ≈ 1 − a2

2r2 , which recover the flat (Euclidean geometry)
versions of these statements.

Examples

1. On a sphere of radius 1, an equilateral triangle has side length π
3 . Splitting it in half creates two

right-triangles with adjacent π
6 and hypotenuse π

3 . The angles in the triangle are therefore

α = cos−1 tan π
6

tan π
3
= cos−1 1

3
≈ 70.53°

The angle sum in the triangle is 3α ≈ 211.59°!

2. On the earth’s surface, an airfield is at position C and two planes are at A and B. The bearings
and distances to the aircraft are 45°, 2000 miles, and 90°, 4000 miles respectively. Find the
distance between the aircraft.

This is just the cosine rule! We have a triangle with sides 2000 and 4000 and angle 45° between
them. If r = 4000 miles is the radius of the earth, then

cos
c
r
= cos

2000
r

cos
4000

r
+ sin

2000
r

sin
4000

r
cos 45°

= cos
1
2

cos 1 +
1√
2

sin
1
2

sin 1

=⇒ c = 2833 miles

This is a little closer (as expected) than the value (2947 miles) one would obtain from assuming
a flat Earth!

Modern navigators use a slightly different, though equivalent, approach to minimize the error
in estimating cosine for small values: look up the haversine formula if you’re interested.
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Exercises 6.3. 1. A right-isosceles triangle on the surface of a unit sphere has equal legs of length
π
4 . Find the length of the hypotenuse and the sum of the angles in the triangle.

2. Explain the observation on page 62 that

0° < α− β < α + β < 90° =⇒ sin(α + β)− sin α < sin α− sin(α− β)

is the downwards concavity of the sine function.

3. Suppose we have a spherical triangle (sphere radius 1) as on page 65 with data

c = 30°, b = 60°, α = 60°

(a) Use the cosine rule to find a.
(b) Compute the remaining angles in the triangle. What do you observe about the sum of the

angles α + β + γ?

4. Determine the qibla for Rome (latitude 41°53’ N, longitude 12°30’ E).

5. Al-Bı̄rūnı̄ devised a method for determining the radius r of the
earth by sighting the horizon from the top of a mountain of known
height h. He would measure α, the angle of depression from the
horizontal to which one sights the apparent horizon. Show that

r =
h cos α

1− cos α

In a particular case, al-Bı̄rūnı̄ measures α = 34′ from a mountain of
height 652; 3, 18 cubits. Assuming that a cubit equals 18′′, convert
your answer to miles and compare with the modern value. Discuss
the efficacy of this method.

r
r

h α

6. On a sphere of radius r, Pythagoras’ Theorem may be stated

cos
c
r
= cos

a
r

cos
b
r

(∗)

where c is the hypotenuse and a, b the other side-lengths. Use the

Maclaurin series cos x =
∞
∑

n=0

(−1)nx2n

(2n)! to expand (∗) to degree 4.

Suppose a, b are constant so that c is a function of r. Prove that
lim
r→∞

c2 = a2 + b2. Why does this make sense?

7. Construct a triangle on the surface of a sphere of radius r by taking
two lines of longitude making an angle θ from the north pole to the
equator. Prove that the area of the triangle is

A = r2θ

What does Pythagoras (∗) say for this triangle?
(Hint: What fraction of the sphere is covered by the triangle?)
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7 The Renaissance in Europe

7.1 Fibonacci and Notational Development

Between the fall of Rome in 476 and the early renaissance38 (c. 1100) came Europe’s dark ages. The
one-dimensional view is that this was a time of limited learning and technological progress; as ever,
the reality was more complex. Learning persisted in monasteries, though new researches took second
place to a conservative focus on preserving the wisdom of the ancients.

By 1100, the small shifting kingdoms that had characterised Europe were starting to come together
as more stable feudal states.39 The maps below show the major feudal societies of medieval Eu-
rope (France, England, Holy Roman Empire, Poland, Austria) consolidating. While it would have
meant little to the average peasant, a large stable nation is able to produce and support a larger elite
population with the time and money to pursue education, and fund libraries and universities. By
the 1700s, the borders of western Europe are largely recognizable; political and social organization
had expanded so that a much larger proportion of the population—though small in comparison to
today—were able to take advantage of and contribute to the growth of knowledge. The European
renaissance is often contrasted with a decline in Islamic power, but again the story is more complex:
Islam retreats from Spain, while the Ottoman Empire becomes dominant in south-east Europe.

Between 900 and 1300, the population of Europe roughly tripled to around 100 million. Trade in-
creased, along with which came knowledge.40 Learning (and land) came via wars with Islam (the
Crusades, Spain, etc.). It helped that Islamic scholars so venerated the Greeks; Europeans could tell
themselves that they were merely ‘reclaiming’ ancient knowledge which had been ‘stolen’ by their
cultural and religious enemies. The fall of Constantinople to Mehmet in 1453 marks both the high
point of Islamic conquest and the start of the decline of Islamic scientific dominance. Many intellec-
tuals fled Constantinople—where the Byzantines still preserved much of Alexandria’s learning—for
Rome, helping to further fuel developments. With powerful enemies to the east, Europeans began
travelling greater distances by sea,41 beginning the colonial era of global European empire.

38Literally rebirth. Dates vary by location and discipline (Italy vs. France, art vs. philosophy, etc.) but a wide net would
encompass the 12th to 17th centuries.

39An arrangement where powerful landowners could demand service (rent, food, warriors) from their tenants.
40A particularly important trading hub was Venice, from where Marco Polo (1254–1324), perhaps the most famous trader

of the period, travelled the silk road to China.
41Christopher Columbus (born Genoa 1451) famously ‘discovered’ America in 1492 while looking for sea routes to Asia.
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Scientific and philosophical progress was spurred by the translation of works from Arabic and an-
cient Greek into Latin, with the first universities being formed to teach this canon: Bologna 1088,
Paris 1150, and Oxford 1167. The typical student was a young man of wealth who had been privately
tutored in grammar, logic & rhetoric (the trivium). At university he would study the Greek-influenced
quadrivium (geometry, astronomy, arithmetic & music). While Islamic improvements were incorpo-
rated, scholars gave pre-eminence to the Greeks: Euclid for geometry, Aristotle for logic/physics,
Hippocrates/Galen for medicine, Ptolemy for astronomy. Early universities were often funded by
the Church and ‘research’ was more likely to involve the justification of biblical passages using Aris-
totle than the conduct of experiments.

Leonardo da Pisa (Fibonacci c. 1175–1250) Fibonacci42 likely first encountered the Hindu–Arabic
numerals while trading with his father in North Africa. He was impressed by the ease of calculation
they afforded and is the first European known to use them (contemporary Europeans used Roman
numerals and Egyptian fractions). Fibonacci’s 1202 text Liber Abaci was written to instruct traders
in their use. The first page below explains how to compute with decimal fractions, with the two
columns at the bottom of the page showing how to repeatedly multiply 100 (and then 10) by the
fraction 9

10 . Thus:

100, 90, 81,
9

10
72 (= 72.9),

1
10

6
10

65 (= 65.61),
9
10

4
10

0
10

59 (= 59.049), etc.

Note how the fractional part is written backwards on the left, using a bar to separate numerator and
denominator; the Indians wrote fractions without a bar and it is thought Islamic scholars inserted it
for clarity in the 1100s. The second picture is of Fibonacci’s famous sequence: read top-to-bottom 1, 2,
3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. Amongst other inheritances from the Hindu–Arabic tradition,
Fibonacci is the first known European to work with negative numbers, provided these represented
deficiencies or debts in accounting.

42The name was given to Leonardo by French scholars of the 1800s: filius Bonacci means son of Bonacci.
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Algebraic Notation and Development

To a modern reader, the most obvious mathematical development of the renaissance is notational.
Fibonacci’s fractional notation was cutting-edge for the 1200s but essentially everything else except
numbers and fractions was written in sentences. The next 500 years slowly brought notational im-
provements which eventually allowed algebra to eclipse geometry as the primary language of rea-
soning. Here is a brief summary.

Italian Abacists, 14th C. This group continued Fibonacci’s advocacy for the Hindu–Arabic system
against the traditional use of Roman numerals, and also for the use of accompanying algo-
rithms. Their approach was highly practical and largely for conducting trade. Here is a typical
problem described by the group:

The lira earns three denarii a month in interest. How much will sixty lire earn in eight
months?

The Abacists introduced shorthands and symbols for unknowns and certain mathematical op-
erations. Cosa (‘thing’) was used for an unknown. Censo, cubo and radice meant, respectively,
square, cube and (square-)root. These expressions could be combined, for example ‘ce cu’ (read
censo di cubo) referred to the sixth power of an unknown (x3)2 = x6.

Luca Pacioli, Italy late 1400s. Introduced p, m (piu, meno) for plus and minus. For example 8m2 de-
noted eight minus two.

Nicolas Chuquet, France 1484. His text Triparty en la science des nombres borrowed Pacioli’s p and m,
and introduced an R-notation for roots. For instance R47 meant 4

√
7, while

5
√

4−
√

2 would be written R54mR2

The underline indicates grouping (modern parentheses).

Christoff Rudolff, Vienna 1520s. Introduced symbols similar to x and ζ for an unknown and its
square. He had other symbols for odd powers and produced tables showing how to multiply
these. The words he used show Italian and French influence: algebra in the German-speaking
world was known as the art of the coss (German for thing). Rudolff also introduced ± symbols
as algebraic operations, though these had been used for around 30 years as a prefix denoting an
excess or deficiency in a quantity (profit/loss in accounting). A period denoted equals and he is
also credited with the first use of the square-root sign

√
, which is nothing more than a stylized

r. This would be written in front of a number to denote a root, e.g.
√

23 rather than
√

23.

Robert Recorde, England 1557. Introduced the equals sign in The Whetstone of Witt, asserting, ‘No
two things are more equal than a pair of parallel lines.’

Francois Viète, France 1540–1603. Before Viète, mathematicians typically described how to solve
particular equations algorithmically via examples (e.g. x3 + 3x = 14 rather than x3 + bx = c),
expecting readers to change numbers to fit a required situation. Viète pioneered the modern
use of abstract constants, using letters to represent both unknowns and constants.
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Simon Stevin, Holland 1548–1620. De Thiende (The Tenths) demonstrated how to calculate using
decimals rather than fractions. Stevin arguably completed the journey whereby the concept
of number subsumed that of magnitude, asserting that every ratio is a number. This increased
the application of algebra by permitting the description of any geometric magnitude.

William Oughtred, England 1575–1660. Introduced × for multiplication, though he often simply
used juxtaposition. Oughtred combined Viète’s general approach (abstract constants) with
symbolic algebra. For instance, to solve a quadratic equation Aq + BA + C = 0, where Aq
means ‘A-squared’ (A-quadratum in Latin) and B, C are constants, he’d write the quadratic for-
mula as

A =
√ :

1
4

Bq − C : −1
2

B

In Oughtred’s notation, colons were parentheses.

Thomas Harriot, England 1560–1621. Made several steps towards modern notation including juxta-
position for multiplication and a modern encompassing root-sign. For example,

4
√

cccc + 27aa 3
√

2 + b meant
4
√

c4 + 27a2 3
√

2 + b

René Descartes, France/Holland 1596–1650. Used exponents for powers (a2, a3) and solidified the
convention of using letters at the end of the alphabet (x, y, z) for unknowns and those at the
beginning (a, b, c) for constants.

While modern mathematics uses many specialized symbols (∅,⇒, e, π, etc.), basic notation is essen-
tially unchanged from the mid 1600s. This is not to say that all mathematicians uniformly used the
most modern notation: for instance, papers of Leonhard Euler (1700s) used Harriot’s juxtaposition
notation for exponents, and some published works from the late 1800s still wrote equations in words.
It is also worth mentioning in this context Gutenberg’s 1439 invention of the printing press, which
naturally aided the dissemination of all learning. The relative ease of production meant a great
increase in the availability of written material, but also in the rejection/abandonment of some older
texts when money could not be found to make an updated printed edition.

Exercises 7.1. 1. Repeatedly divide 10 by 5 a total of five times (to 10
55 ), expressing the results using

Fibonacci’s notation.

2. What would Nicolas Chuquet have meant by the expression 4pR37 mR5?

3. How would William Oughtred have expressed the solution to the quadratic equation Aq =
BA + C? What about Thomas Harriot?

4. I am owed 3240 florins. The debtor pays me 1 florin the first day, 2 the second day, 3 the third
say, etc. How many days does it take to pay off the debt?

5. (A problem of Antonio de Mazzinghi) Find two numbers such that multiplying one by the
other makes 8 and the sum of their squares is 27.

(Hint: let the numbers be x±√y)
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7.2 Polynomials: Cardano, Factorization & the Fundamental Theorem

As an example of contemporary algebraic notation, we consider Girolamo Cardano’s 1545 Ars Magna
(Great Art or the Rules of Algebra), in which he describes how to solve quadratic and cubic equations.

The example on the right (start of Caput V, page 9 of the linked
pdf), is the beginning of Cardano’s description of how to solve
x2 + 6x = 91, quadratum & 6 res aequalie 91 (square and 6 things
equals 91), by completing the square. He employs several single-
letter abbreviations but still writes in sentences and provides a
pictorial justification. In modern algebra, the argument is nothing
more than completing the square:

x2 + 6x = 91 =⇒ x2 + 2 · 3x + 32 = 91 + 32

=⇒ (x + 3)2 = 100
=⇒ x + 3 = 10
=⇒ x = 7

where the picture justifies 72 + 2 · 21 + 32 = 102.

The quadratic algorithms were well-established by this time; on
the following page of his text, we find a picture from the work
of al-Khwārizmı̄ (Exercise 6.2.2), after which comes more obvious
mathematical notation. Even though Rudolff’s ± and √ were in
use, Cardano wrote almost everything in words augmented with
fractional notation and Pacioli’s p and m.
As was typical for the time, Cardano describes negative solutions
as fictitious; he even writes the square root of −15 at one point,
though only to mention its absurdity. He also follows the Islamic
approach of solving a concrete problem of each type rather than
proceeding abstractly, though observe the gratia exempli (“for the
sake of an example”) as acknowledgement that the general prob-
lem x2 + ax = b may be solved identically.

It is for the solution of cubic (and quartic) equations that Cardano
is most famous. Below we describe, in modern notation, Car-
dano’s method for solving the cubic equation x3 + bx = c where
b, c > 0, though we stress (again) that Cardano only gave examples
not a general formula.

Let u, v satisfy u3 − v3 = c and uv = b
3 . Then x = u− v is seen to solve the cubic.

x3 + bx = (u− v)3 + b(u− v) = u3 − 3u2v + 3uv2 − v3 + b(u− v)

= (u3 − v3) + (u− v)(b− 3uv) = c

However u and v also satisfy

(u3 + v3)2 = (u3 − v3)2 + 4(uv)3 = c2 + 4
(

b
3

)3
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so we obtain a system of linear equations in the unknowns u3, v3 which are easily solved:





u3 + v3 =

√
c2 + 4

(
b
3

)3

u3 − v3 = c
=⇒





u =
3

√√( c
2

)2
+

(
b
3

)3
+ c

2

v =
3

√√( c
2

)2
+

(
b
3

)3
− c

2

=⇒ x = u− v =
3

√√√√
√

( c
2

)2
+

(
b
3

)3

+
c
2
− 3

√√√√
√

( c
2

)2
+

(
b
3

)3

− c
2

Examples 1. We apply Cardano’s method to x3 + 6x = 7, which has the obvious solution x = 1.
{

u3 − v3 = 7
uv = 6

3 = 2
=⇒ (u3 + v3)2 = 72 + 4 · 23 = 81 =⇒ u3 + v3 = 9

=⇒ u3 =
1
2
(9 + 7) = 8, v3 =

1
2
(9− 7) = 1

=⇒ x = u− v =
3
√

8− 3
√

1 = 2− 1 = 1

2. This time we solve x3 + 3x = 14.
{

u3 − v3 = 14
uv = 3

3 = 1
=⇒ (u3 + v3)2 = 142 + 4 · 13 = 200 =⇒ u3 + v3 = 10

√
2

=⇒
{

u3 = 1
2 (10
√

2 + 14) = 5
√

2 + 7 = (
√

2 + 1)3

v3 = 5
√

2− 7 = (
√

2− 1)3

=⇒ x = u− v = (
√

2 + 1)− (
√

2− 1) = 2

As this shows, Cardano’s formula might produce an ugly expression for a simple answer. And,
of course, the cube root of 5

√
2± 7 is something that’s on the tip of everyone’s tongue!

3. The equation x3 + 3x = 10 may be solved using Cardano’s method, though in this case the
answer is just ugly.

{
u3 − v3 = 10
uv = 3

3 = 1
=⇒ (u3 + v3)2 = 102 + 4 · 13 = 104 =⇒ u3 + v3 = 2

√
26

=⇒ u3 =
√

26 + 5, v3 =
√

26− 5

=⇒ x = u− v =
3
√√

26 + 5− 3
√√

26− 5 ≈ 1.6989

Being unable or unwilling to work directly with negative numbers, Cardano modified his method
to solve other cubics such as x3 + c = bx, and moreover described how to remove a quadratic term
from a cubic using what is now known as the Tschirnhaus substitution (x = y− a

3 ):

x3 + ax2 + bx + c =
(

y− a
3

)3
+ a

(
y− a

3

)2
+ b

(
y− a

3

)
+ c = y3 − a2

3
y + · · · (∗)

Cardano’s student, Lodovico Ferrari, extended the method to solve quartic equations in terms of the
solution of a resultant cubic.
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Negative Solutions and Complex Numbers

By the late 1500s, mathematicians were mentioning negative solutions to equations—these were usu-
ally described as fictitious, or false roots, but this didn’t stop them from being investigated. Rafael
Bombelli (1526–1572, Rome) even introduced a notation for complex numbers, described their alge-
bra, and showed how they could be used to find solutions to any quadratic or cubic equation. For
instance, he wrote 4 + 3i and 4− 3i as follows:

4 p di m 3, read ‘quattro piu di meno tre’ (four plus of minus three), and,
4 m di m 3, ‘quattro meno di meno tre.’

Given Bombelli’s belief in the fictitiousness of complex numbers, the effort he expended in their
honor is extraordinary: this is a prime example of pure abstraction, math for the sake of math!

In modern language, the three roots of Cardano’s cubic x3 + bx = c are

u− v, ζu− ζ2v, ζ2u− ζv

where ζ = e2πi/3 = −1+
√

3i
2 is a primitive cube root of unity. Together with the Tschirnhaus substitu-

tion (∗), Cardano’s formula therefore solves all cubic equations.

Examples 1. Returning to one of our previous examples, if x3 + 3x = 14, then u =
√

2 + 1 and
v =
√

2− 1, from which the three solutions are

u− v = 2

ζu− ζ2v = (
√

2 + 1)
−1 +

√
3i

2
− (
√

2− 1)
−1−

√
3i

2
= −1 +

√
6i

ζ2u− ζv = (
√

2 + 1)
−1−

√
3i

2
− (
√

2− 1)
−1 +

√
3i

2
= −1−

√
6i

2. To find a solution to x3 + 3x2 = 3, we perform the Tschirnhaus substitution x = y− 3
3 = y− 1

before applying Cardano’s method:

y3 − 3y2+3y− 1 + 3(y2 − 2y + 1) = 3 =⇒ y3 − 3y = 1 (b = −3, c = 1)

=⇒
{

u3 − v3 = 1
uv = − 3

3 = −1
=⇒ (u3 + v3)2 = 12 + 4(−1)3 = −3

=⇒ u3 + v3 =
√

3i =⇒ u3 =
1
2
(
√

3i + 1), v3 =
1
2
(
√

3i− 1)

=⇒ x = u− v− 1 =
3

√√
3i + 1

2
− 3

√√
3i− 1

2
− 1

This is ugly! If you know Euler’s formula and you choose a compatible pair of cube roots (you
need uv = −1), this will evaluate to one of three real numbers: the positive solution is in fact
x = 2 cos 20°− 1 ≈ 0.8794.
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Factorization & the Fundamental Theorem of Algebra

By the late 1500s, Viète’s abstraction allowed him to streamline Cardano’s methods. He also investi-
gated the relationship between the coefficients of a polynomial and its roots. For Viète the roots had
to be positive, but later improvements by Thomas Harriot and Albert Girard (1629) applied this to
all polynomials with any roots. For instance, if ax2 + bx + c = 0 has roots r1, r2, then

(r1 − r2)
(
a(r1 + r2) + b

)
= a(r2

1 − r2
2) + b(r1 − r2) =

(
ar2

1 + br1 + c
)
−

(
ar2

2 + br2 + c
)
= 0

Provided the roots are distinct,43 we conclude that

b
a
= −(r1 + r2),

c
a
= −r2

1 −
b
a

r1 = −r2
1 + (r1 + r2)r1 = r1r2

These are the quadratic version of what are known as Viète’s formulas; other versions exist for every
degree. Their use amounts to an early form of factorization.

Example To solve 3x2 − 2x− 1 = 0, first spot that r1 = 1 is a root. By Viète’s formulas,

r1 + r2 = −b
a
=

2
3

=⇒ r2 = −1
3

or alternatively r1r2 =
c
a
= −1

3
=⇒ r2 = −1

3

Think about the relationship between this approach and factorization!

A nice side-effect is a method for obtaining the quadratic formula by solving a pair of simultaneous
equations analogous to Cardano’s cubic approach:





r1 + r2 = − b
a

r1 − r2 =
√
(r1 + r2)2 − 4r1r2 =

√(
b
a

)2
− 4 c

a

=⇒ r1, r2 = − b
2a
± 1

2

√(
b
a

)2

− 4
c
a

Viète’s formulas were central to the later development of Galois Theory (1830) and the Abel–Ruffini
theorem regarding the insolubility of quintic and higher-degree polynomials.

The remaining key results regarding solutions of polynomials also appeared around this time:

Fundamental Theorem of Algebra Including multiplicity, a degree n polynomial has n complex
roots. Girard offered the first version in 1629, though a complete proof didn’t appear until
the work of Argand, Cauchy and Gauss in the early 1800s.

Factor Theorem In 1637, Descartes proved that p(r) = 0⇐⇒ p(x) is divisible by x− r.

For instance, to find the roots of p(x) = x3 + 2x2 − 13x + 10, Descartes would observe:

• p(1) = 0 =⇒ x− 1 is a factor; use long-division to obtain p(x) = (x− 1)(x2 + 3x− 10).

• q(x) = x2 + 3x− 10 has q(2) = 0; divide to get q(x) = (x− 2)(x + 5).

• The roots of p(x) are therefore 1, 2 and −5 (Descartes called this last a false root).

43In fact the formulas hold even when r1 = r2.
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Exercises 7.2. 1. (a) Find Viète’s formulas for the polynomial p(x) = x3 + ax2 + bx + c with roots
r1, r2, r3; that is, find the coefficients a, b, c in terms of the roots.
(Hint: Multiply out p(x) = (x− r1)(x− r2)(x− r3). . . )

(b) Solve x3 − 6x2 + 9x − 4 = 0 using Girard’s method: first, determine one solution by in-
spection, then use Viète’s formulas for the cubic to investigate the relationship between
the remaining roots.

2. (a) Apply Cardano’s method to the equation x3 + 6x = 20.
(Hint: to finish, compute (1 +

√
3)3)

(b) If b, c > 0, Cardano’s method finds a single positive solution to x3 + bx = c. Explain why
such an equation always has exactly one real solution which is moreover positive.

3. Prove that if t is a root of x3 = cx + d, then

r1 =
t
2
+

√
c− 3t2

4
and r2 =

t
2
−

√
c− 3t2

4

are both roots of x3 + d = cx. Use this to solve x3 + 3 = 8x.

4. Consider the cubic equation aaa − 3raa + ppa = 2xxx (as written by Harriot). Show that the
substitution a = e + r reduces this to an equation without a square term.

As an example, reduce the equation aaa − 18aa + 87a = 110 to a cubic in e without a square
term. Find all three solutions in e and therefore find the solutions to the original equation in a.

5. Find all roots of the cubic p(x) = 2x3 − 3x2 − 3x + 2 using Descartes’ factor theorem.

6. Use Cardano’s method (with Tschirnhaus substitution and complex numbers!) to find the so-
lutions to the equation

x3 + 4 = 3x2

Verify that you get the same solutions using Descartes’ factor theorem.

(Hint: all solutions are integers!)

7. (If you are very comfortable with complex numbers) Use Euler’s formula to verify that the
equation x3 + 3x2 = 3 has the positive solution x = 2 cos 20°− 1. It also has two negative real
solutions: find them!
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7.3 Astronomy and Trigonometry in the Renaissance

Distinctly European progress in trigonometry came courtesy of Johannes Müller (a.k.a. Regiomon-
tanus,44 1436–1476). De Triangulis Omnimodius (Of all kinds of triangles, 1463) provided an axiomatic
update of Ptolemy’s Almagest and its Islamic improvements. Though the title refers to triangles,
his approach remains circle-based (chords and half-chords). Regiomontanus was a renowned as-
tronomer; his tracking of a comet from late 1471 to spring 1472 provided controversial evidence that
objects could move between the, supposedly fixed, heavenly spheres of ancient Greek theory.
Domenico Novara (1454–1504), Regiomontanus’ student, inherited much of his unpublished work.
He became a student of Pacioli in Florence and an astronomer at the University of Bologna, though
he is now perhaps best known as adviser to a young Pole, Nicolaus Copernicus (1473–1543), who
studied in Bologna from 1496 with the ostensible intent of joining the priesthood. . .

Copernicus concluded that Ptolemy’s geocentric model could not be
reconciled with astronomical observation. De revolutionibus orbium ce-
lestium (On the revolutions of the heavenly spheres), published a year after
his death, describes how to compute within a heliocentric (sun-centered)
model. This, Copernicus believed, was the obvious solution to the
problem of retrograde motion that had plagued the ancient Greeks.45

The animation demonstrates Copernicus’ solution: with the sun at the
center, the retrograde motion of Mars and Jupiter are easily explained.
The outer circle represents the ‘fixed stars’ against which the motion
of the planets are observed.

M

J

Copernicus’ work is now described as a revolution, though it was not perceived so at the time. De
revolutionibus was dedicated to the Pope, welcomed by the Church, and used by Vatican astronomers
to aid in calculation. The difficulty and narrow readership of his work made it unthreatening to
contemporary dogma. Copernicus did not present heliocentrism as reality nor did he advocate for
overturning long-held beliefs. Within a century, however, the Copernican theory had found its bull-
dog in Galileo, and conflict between science and the Church became unavoidable.

Trigonometry is finally about triangles!

Georg Rheticus (1514–1574) defined trigonometric functions purely
in terms of triangles, referring to the perpendiculum (sine) and ba-
sis (cosine) of a right-triangle with fixed hypotenuse. Rheticus was
a student of Copernicus and helped posthumously to publish his
work.
In 1595, Bartholomew Pitiscus finally introduced the modern term
with his book Trigonometriæ, in which he purposefully sets out to
solve problems related to triangles. The picture is the title page from
the second edition (1600—MDC in Roman numerals). Both Rheti-
cus and Pitiscus had problems which look very familiar to modern
readers, such as solving for unknown sides of triangles.

44His grand-sounding name is a latinization of his birthplace Königsberg (King’s Mountain), Bavaria, Germany.
45Copernicus wasn’t the first to suggest such a model. Several ancient Greek scholars embraced heliocentrism, with

Aristarchus of Samos (c. 310–230 BC) credited with its first presentation. However, Aristarchus’ views were rejected by the
mainstream Greeks, and it is likely Copernicus never encountered his work.
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Example (Pitiscus) A field has five straight edges of
lengths 7, 9, 10, 4 and 17 in order. The distance from the
first to third vertex is 13 and from the third to fifth is 11.
What is the area of the field?
The problem can be solved easily using Heron’s formula,
but Pitiscus opts for trigonometry. We give a modernized
version that depends on applying the law of cosines to the
three large triangles.

7

9

13

10

11

4

17

a b
c

α
β γ

cos α =
72 + 132 − 92

2 · 7 · 13
=

137
182

cos β =
172 + 132 − 112

2 · 17 · 13
=

337
442

cos γ =
42 + 112 − 102

2 · 4 · 11
=

37
88

The values of α, β, γ and therefore the altitudes a, b, c of the three major triangles could be read off a
table, or found exactly using Pythagoras’:

a = 7 sin α = 7
√

1− cos2α =
7

182

√
1822 − 1372 =

3
26

√
1595,

b = 13 sin β =
1
34

√
81795, c = 4 sin γ =

5
22

√
255

The total area is easily computed:

A =
1
2
(13a + 17b + 11c) =

1
4

(
3
√

1595 +
√

81795 + 5
√

255
)
≈ 121.4

Kepler’s Laws

Johannes Kepler (1571–1630) was a student of Tycho Brahe46 for the last two years of Brahe’s life. He
inherited Brahe’s position, decades-worth of astronomical data, and his philosophy on the impor-
tance of observation-based theory. Kepler also embraced the mystical Pythagorean view that nature
reflects harmony, a belief that partly drove his scientific pursuits. To Kepler, any observation of a nat-
ural, simple ratio was something of great import. For example, in observing that the daily movement
of Saturn at its furthest point from the sun was roughly 4/5 of that at its nearest point, his temptation
was to assume that ‘roughly’ must be ‘exactly.’

Thanks to Brahe, Kepler had data on roughly thirteen orbits of
Mars and two of Jupiter. From these data, he posited three laws.

1. Planets move in ellipses with the sun at one focus.

2. The orbital radius sweeps out equal areas in equal times. In
the picture, the sectors all have the same area and the planet
moves more slowly the further it is from the sun.

3. The square of the orbital period is proportional to the cube of
the semi-major axis of the ellipse: T2 ∝ a3. 2a

46Tycho Brahe (1546–1601) was a Danish astronomer who worked for Austro-Hungarian Emperor Rudolph II in Prague
for 25 years, producing a wealth of accurate astronomical measurements. While these helped burnish the Copernican
theory, he is also known for his 1572 observation of a nova (a new star that later disappeared, now understood to be the
death of a distant star), and then a comet in 1577; both provided yet more evidence for the changeability of the heavens.
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Kepler’s laws are empirical observations rather than the result of mathematical proof. However, the
process of their discovery demonstrates Kepler’s tremendous mathematical abilities.

Starting point Kepler began by assuming the essential correctness of the Copernican model in that
all planets exhibit uniform circular motion round the sun.

Orbital Estimation Kepler’s data told him the direction to each
planet, but not the distance, though his Copernican assump-
tion allowed him to estimate the relative distance.47 For exam-
ple, using the direction from Earth to Mars at equally spaced
times and by drawing circles of different radii for possible or-
bits of Mars, he was able estimate an orbit where Mars’ mo-
tion would also be uniform. This required an enormous num-
ber of trigonometric calculations: each measurement of plan-
etary longitude/latitude relative to Prague had to be converted
to measurements relative to the sun. Everything was subject
to errors of estimation.

Modifying the model Kepler altered his model to reflect Earth’s slightly non-circular orbit. He first
tried an equant model (in the style of the ancient Greeks), offsetting the center of the orbit
slightly from the sun. Despite this, he failed to fit his data for Mars to pure circular motion.

The First Law Abandoning circles, Kepler now permitted planets to move in ovals. He decided to
approximate Mars’ orbit with an ellipse and set out to calculate its parameters, stumbling on
an almost perfect match when the sun was placed at a focus. The geometric significance of the
focus was exactly the natural beauty sought by Kepler. Having now established the first law
for Mars, he repeated the exercise for the other known planets (Mercury, Venus, Earth, Jupiter,
Saturn) as well as he could given his inferior data.

The Second Law Kepler’s second law followed an infinitesimal argument based on inspired guess-
work. To fit his elliptical orbits, planetary velocity was non-constant, appearing inversely pro-
portional to the distance from the sun (v = k

r ). Kepler used this to approximate the area of a
sector swept out by the radius vector: over a small time-interval ∆t, a planet travels a distance
v∆t and thus sweeps out an approximate triangle of area 1

2 rv∆t = 1
2 k∆t. In modern language,

this is the conservation of angular momentum. Kepler had no justification beyond the fact that
it seemed to fit the data. In particular, he did not know why a planet should move more slowly
when further from the sun.

The Third Law This was stated with very limited analysis. Given the relative sizes of each orbit and
its period, some inspired guesswork allowed him to observe that T2

a3 is approximately the same
value for each.

Kepler’s discoveries were revealed over many years in several texts, and his magnum opus Epitome
astronomiæ Copernicanæ was published in 1621. Within a century Issac Newton had provided a math-
ematical justification of Kepler’s laws based on the theory of calculus and his own axioms: an inverse
square law for gravitational acceleration and his own three laws of motion.

47Following Ptolemy, Brahe thought the Earth-Sun distance was around 1/10 of its true value. Kepler thought this an
underestimate by at least a factor of three. In 1659, Christiaan Huygens found the distance to an accuracy of 3%.
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A Religious Interlude: Protestantism, the Counter-Reformation and Calendar Reform

In 1563, Pope Gregory began the Catholic Church’s push-back against the spread of Protestantism,48

the counter-reformation. Of particular interest to science and mathematics was the newly created In-
dex Librorum Prohibitorum, a list of books contradicting Church doctrine. This was also a response
to the new technology of mass-printing, which made disseminating controversial new ideas easier.
Heliocentrism came quickly under attack: Kepler’s book was banned immediately upon publica-
tion in 1621. However, his location far from Rome meant that Kepler and his ideas were relatively
safe. The ultimate result of Gregory’s crackdown was the slow ceding of scientific power to northern
(Protestant) Europe where papal diktat had no effect.
In contrast to the anti-scientific book-banning fervor of the counter-reformation, Pope Gregory is
also famous for shepherding an astounding scientific achievement: calendar reform. By 1500, as-
tronomers knew the solar year to be roughly 11 1

4 minutes shorter than the 365 1
4 days of the Julian

calendar.49 For 1200 years, Easter had been decreed to be the Sunday after the first full moon after
the vernal equinox (March 20th/21st), but by 1500 the equinox was happening 10–11 days earlier. The
impetus to correct the date of Easter meant that calendar reform and astronomical modelling were
now an important Church project.
A century of effort50 resulted in the Gregorian calendar (designed by Aloysius Lilius and Christopher
Clavius). Gregory imposed the new calendar in all Catholic countries in 1582. The 10 day deficit was
corrected by eliminating October 5th–14th 1582. To prevent the error re-occurring, the computation
of leap-years was also changed: centuries are now leap-years only if divisible by 400, thus 1600 was
a leap year, but 1900 was not. The Gregorian calendar is astonishingly accurate, losing only one day
every 3000 years. Since it emanated from Rome, many Protestant parts of Europe took decades if not
centuries to adopt the new calendar. The Eastern Orthodox Church still computes Easter using the
Julian calendar, which is now 13 days behind the Gregorian.

Galileo Galilei (1564–1642)

Based in northern Italy, Galileo was close to the center of Church power; unlike Copernicus and
Kepler, he openly challenged its orthodoxy. While undoubtedly a great mathematician, he is more
importantly considered the father of the scientific revolution for his reliance on experiment and ob-
servation. He famously observed Jupiter’s moons with a telescope of his own invention, noting that
objects orbiting an alien body was counter to Ptolemaic theory. Skeptics, when shown this image,
preferred to assert that it must be somewhere inside the telescope!
In 1632 Galileo published Dialogue Concerning the Two Chief World Systems, a Socratic discussion be-
tween three characters: Salviati argued for Copernicus, Simplicio was for Ptolemy, and Sagredo was
an independent questioner. The character of Simplicio was provocatively modeled on conserva-
tive philosophers who refused to consider experiments and bore a notable resemblance to the Pope.
Salviati almost always came out on top and Simplicio was made to appear foolish. The text resulted
in Galileo’s conviction for heresy; all his publications, past and future, were banned, and he spent
the remainder of his life under house arrest.

48Martin Luther’s Ninety-five Theses (1517) is generally considered the start of the Protestant Reformation. Europe saw
several gruesome religious wars over the next 150 years as various countries broke from Catholicism and Rome.

49Named for Julius Caesar, the Julian year has 365 days with a leap-day added every four years.
50Pope Sixtus IV tried to recruit Regiomontanus to the cause in 1475, though the mathematician died first. Copernicus

was among those invited to consider proposals in the early 1500s, though he distanced himself, perhaps because he knew
that his developing heliocentric ideas would not be accepted.
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Despite Church efforts, Galileo’s works continued to be distributed by his supporters and he contin-
ued working. His most important scientific text, Discourses Concerning Two New Sciences (materials
science and kinematics) was smuggled out of Italy to be published in Holland in 1638. In this book
he resurrects his characters from Two Chief World Systems and famously refutes Aristotle’s claim that
heavier objects fall more rapidly than lighter ones.51 Here are two results from this text.

Theorem. If acceleration is uniform, then the average speed is the average of the initial and terminal
speeds.

Proof. Galileo argues pictorially.

In essence, CD is the time-axis, increasing downward. Velocity is measured hor-
izontally from the time-axis to the uniformly sloped line AE, of which I is the
midpoint.
The distance travelled is the area between AE and the time-axis, which plainly
equals the area of the rectangle between GF and the time-axis. The velocity cor-
responding to GF is the average of those corresponding to A and E.
Here is the calculation using modern algebra. Suppose the object has velocity
vA as it passes A and vB as it passes vB, and that t = |AB|. Then the distance
travelled is

vavt = vAt + area(△ABE) = vAt +
1
2
(vB − vA)t =

1
2
(vA + vB)t

whence vav is the average of the initial and final speeds.

Corollary. A falling object dropped from rest will traverse distance in proportion to time-squared,

d1 : d2 = t2
1 : t2

2

This is Galileo’s version of the well-known kinematics formula d = 1
2 gt2.

Proof. Let d1, d2, v1, v2 represent the distances travelled and the speeds of the dropped body at times
t1 and t2. Since acceleration is uniform,

v1 : v2 = t1 : t2

By the Theorem,

d1 =
0 + v1

2
t1 =

1
2

v1t1, and d2 =
1
2

v2t2

whence

d1 : d2 = v1t1 : v2t2 = t2
1 : t2

2

51Supposedly by dropping weights off the leaning tower of Pisa, though take this story with a pinch of salt. . .
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Galileo follows this by decomposing the motion of a projectile into horizontal (uniform speed) and
vertical (uniform acceleration) components, thereby proving that projectiles follow parabolic paths.
Galileo covered several other important mathematical topics, some of which we’ll mention when we
discuss calculus. While his mathematical ideas were cutting-edge for the time, it is his insistence
on testing theory against data that makes him a true revolutionary. By 1600 very few of Aristotle’s
easy-to-refute claims had been rejected due to experimental testing; the hostility Galileo provoked
by doing so perhaps explains why. This is the core of the scientific revolution: primacy is given to
experiment and observation over ancient ‘wisdom,’ whatever the source.
Galileo was finally cleared of heresy by the Catholic Church in 1992.

Exercises 7.3. 1. Compute today’s date in the Julian calendar and explain your calculation.

2. (A problem of Copernicus) Given the three sides of an isosceles
triangle, to find the angles.
Suppose AB and AC are the equal legs of the triangle. Circum-
scribe a circle around the triangle and draw another with center A
and radius AD = 1

2 AB.

(a) Why is Copernicus introducing the second circle?

(b) Explain why the ratio of each of the equal sides to the base of
△ABC equals that of the radius AD to the chord DE.

(c) If |AB| = |AC| = 10 and |BC| = 6, use modern trigonometry
to find the three angles of the original triangle.

A

B C

D E

3. Verify that Heron’s formula gives the same solution to Pitiscus’ problem (pg. 78).

4. Given that Earth’s orbital period is 1 year and that the mean distance of Mars from the sun is
1.524 times that of Earth, use Kepler’s third law to determine the orbital period of Mars.

5. According to Kepler’s second law, at what point in a planet’s orbit will it be moving fastest?

6. Galileo states the following.

A projectile fired at an angle α = 45° above the horizontal at a given initial speed
reaches a distance of 20,000. Then, with the same initial speed it will reach a distance
of 17,318 when α = 60°, or α = 30°.

Check this statement: if you want a challenge, try to do without the standard Physics formulæ
and instead use ratios!
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8 Analytic Geometry and Calculus

8.1 Axes and Co-ordinates

Modern mathematics is almost entirely algebraic: we trust equations and the rules of algebra more
than pictures. For example, modern mathematics considers the expression (x + y)2 = x2 + 2xy + y2

to follow from the laws (axioms) of algebra:

(x + y)2 = (x + y)(x + y) (definition of ‘square’)
= x(x + y) + y(x + y) (distributive law)

= x2 + xy + yx + y2 (distributive law twice more)

= x2 + 2xy + y2 (commutativity)

For most of mathematical history, this result would have been viewed
geometrically as in Euclid’s Elements (Thm II. 4):

The square on two parts equals the squares on each part plus
twice the rectangle on the parts.

The proof was a simple picture.

We’ve seen how algebra and algebraic notation were slowly adopted in renaissance Europe. While its
utility for efficient calculation was noted, algebra was not initially considered acceptable for proof and
calculations would be justified geometrically. From our modern viewpoint this seems backwards: if a
student today were asked to prove Euclid’s result, they’d likely label the ‘parts’ x and y, before using
the algebraic formula at the top of the page to justify the result! Of course each line in the algebraic
proof has a geometric basis:

• Distributivity says that the rectangle on a side and two parts equals the sum of the rectangles
on the side and each of the parts respectively.

• Commutativity says that a rectangle has the same area if rotated 90°.

Modern mathematics has converted geometric rules into algebra and largely forgotten their geomet-
ric origin! This slow movement from geometry to algebra is one of the great revolutions of mathe-
matical history, completely changing the way mathematicians think. More practically, the conversion
to algebra allows easier generalization: how would one geometrically justify an expression such as

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 ?

Euclidean Geometry is synthetic: based on purely geometric axioms without formulæ or co-ordinates.
The revolution of analytic geometry was to marry algebra and geometry using axes and co-ordinates.
Modern geometry is primarily analytic and it is now rare to find a mathematician working solely in
synthetic geometry—algebra’s domination of Euclidean geometry is total! The critical step in this
revolution was made almost simultaneously by two Frenchmen. . .
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Pierre de Fermat (1601–1665) Mathematics was Fermat’s pastime rather than his profession, though
this didn’t prevent him making great strides in several areas such as probability, analytic geometry,
early calculus, number theory and optics.52 Some of Fermat’s fame comes from his enigma, with most
of what we know of his work coming in letters to friends in which he rarely offers proofs. He would
regularly challenge friends to prove results, and it is often unknown whether he had proofs himself
or merely suspected a general statement. Being outside the mainstream, his ideas were often ignored
or downplayed. When he died, his notes and letters contained many unproven claims. Leonhard
Euler (1707–1783) in particular expended much effort proving several of these.

Fermat’s approach to analytic geometry was not dissimilar to that of Descartes which we shall de-
scribe below: he introduced a single axis which allowed the conversion of curves into algebraic
equations. We’ll return to Fermat when we discuss the beginnings of calculus in the next section.

René Descartes (1596–1650) In his approach to mathematics, Descartes is the chalk to Fermat’s
cheese, rigorously recording everything. His defining work is 1637’s Discours de la méthode. . . 53 While
enormously influential in philosophy, Discours was intended to lay the groundwork for investigation
within mathematics and the sciences—Descartes finishes Discours by commenting on the necessity
of experimentation in science and on his reluctance to publish due to the environment of hostility
surrounding Galileo’s prosecution.54 The copious appendices to Discours contain Descartes’ scientific
work. It is in one of these, La Géométrie, that Descartes introduces axes and co-ordinates.

We now think of Cartesian axes and co-ordinates as plural, but
both Fermat and Descartes used only one axis. Here is a sketch
of their approach.
Draw a straight line (the axis) containing two fixed points la-
belled 0 (the origin) and 1. All points on the axis are identified
with numbers x (originally only positive).
A curve is described as an algebraic relationship between x and
the distance y from the axis to the curve measured using a family
of parallel lines intersecting both. −2 −1 0 1 2 3 x

y

Neither Descartes nor Fermat had a second axes, though their approach implicitly imagines one,
the measuring line through the origin. It therefore makes sense for us to speak of the co-ordinates
(x, y); the modern terms abscissa (x) and ordinate (y) date from shortly after the time of Descartes. It
wasn’t long before a second axis orthogonal to the first was instituted (Frans van Schooten, 1649), an
approach that quickly became standard.

52Fermat was wealthy but not aristocratic, attending the University of Orléans for three years where he trained as a
lawyer. You’ve likely encountered his name in relation to two famous results in number theory:

Fermat’s Little Theorem p prime =⇒ xp ≡ x (mod p) for all integers x.

Fermat’s Last Theorem If n ∈N≥3, then xn + yn = zn has no integer solutions with xyz ̸= 0. Fermat is not believed to have
proved this beyond a special case (n = 4), with a complete proof not appearing until the 1990s.

53. . . of rightly conducting one’s reason and of seeking truth in the sciences. The primary part of this work is philosophical and
contains his famous phrase cogito egro sum (I think therefore I am).

54At this time, France was still Catholic. Descartes had moved thence to Holland in part to pursue his work more freely.
In 1649 Descartes moved to Sweden where he died the following year.
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Example 1 The previous picture shows some of the flexibility in Descartes’ approach. The curve
y = x2 + 1 is drawn, where the ‘y-axis’ is inclined 60° to the horizontal. To recognize the curve in a
more standard fashion, we can perform a change of co-ordinates. Suppose P = (x, y) with respect to
the slanted axes and (X, Y) with respect to the usual orthogonal axes.

−2 −1 0 1 2 3 x

y

x, X axes

Y axis y axis

origin x

y Y

X

60°

P

The second picture shows that
{

X = x + y cos 60° = x + 1
2 y

Y = y sin 60° =
√

3
2 y

For any point on the curve,

√
3X−Y =

√
3x =⇒ (

√
3X−Y)2 = 3x2 = 3(y− 1) = 3

(
2√
3

Y− 1
)

=⇒ 3X2 − 2
√

3XY + Y2 − 2
√

3Y + 3 = 0

which is an implicit equation for a parabola.55

Example 2 Analytic geometry affords easy proofs of many results that are significantly harder in
Euclidean geometry. For instance, here is the famous centroid theorem.
Choose axes pointing along two sides of a triangle with the origin at
one vertex.
If the two axes-side lengths are a and b, then the third side has equa-
tion bx + ay = ab or y = b− b

a x and the midpoints of the sides have
co-ordinates as in the picture. Now compute the point 1/3 of the
way along each median: for instance

2
3

( a
2

, 0
)
+

1
3
(0, b) =

1
3
(a, b)

One obtains the same result with the other medians, whence all three
meet at a common point G, the centroid of the triangle. (0, 0) (a, 0)

(0, b)

( a
2 , 0)

(0, b
2) ( a

2 , b
2)

G

This ability to choose axes to fit the problem is a critical advantage of analytic geometry, largely dispens-
ing with the tedious consideration of congruence in synthetic geometry.

55This really is a parabola, just rotated! This may be confirmed by computing its discriminant: a non-degenerate quadratic
curve aX2 + bXY + cY2 + linear terms is a parabola if and only if b2 − 4ac = 0.
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Descartes used his method to solve problems that had proved more difficult synthetically, such as
finding complicated intersections of curves. As we’ll see in the next section, such arguments would
often rely on his Factor Theorem (pg. 75). Given the novelty of his approach, Descartes typically
gave geometric proofs of all assertions to back up his algebraic work. However he also saw the
future, stating that once several examples were done it was no longer necessary to draw physical
lines and provide a geometric argument, the algebra was the proof.

Exercises 8.1. 1. Assume that xy = c represents a hyperbola with asymptotes the x- and y-axes.
Show that xy + c = rx + sy also represents a hyperbola, and find its asymptotes.

2. Determine the locus of the equation b2 − 2x2 = 2xy + y2.

(Hint: add x2 to both sides and remember that ‘axes’ do not have to be orthogonal. . . )

3. We describe a method whereby Descartes constructed the product of two lengths.

Let
−→
BC and

−→
BD be rays forming an acute angle at B.

Our goal is to multiply |BD| by |BC|.
Suppose |AB| = 1, where A lies on

−→
BD.

Join AC and draw DE parallel to AC so that E ∈ −→BC.

Prove that |BE| is the product of |BD| and |BC|.

A

B
C

D

E

Similarly, given lengths |BE| and |BD|, construct a segment whose length is the quotient |BE|
|BD| .

4. Here is a geometric justification of Descartes for the solution of the equation x2 = ax + b2,
where a, b > 0.

• Let OQ and PQ be perpendicular with lengths a
2

and b respectively.

• Draw the circle centered at O with radius a
2 .

• Draw and extend the line
←→
OP.

• The solution is x = |NP|.

M

N

PQ

O

b

a
2

(a) Prove that Descartes’ construction indeed recovers a solution.

(b) Show that the other solution to the equation x2 = ax + b2 is negative (false to Descartes).
How is it visible in the picture?

(c) Explain how the same picture could be used to solve the equation x2 + ax = b2.
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8.2 The Beginnings of Calculus

At the heart of calculus is the relationship between velocity, displacement, rate of change and area.

• The instantaneous velocity of a particle is the rate of change of its displacement.

• The displacement of a particle is the net area under its velocity-time graph.

To state these principles requires graphs. Analytic geometry makes computation much easier (rate
of change means slope). Once it appeared in the early 1600s, the rapid development of calculus was
arguably inevitable. However, many of the basic ideas long predate Descartes and Fermat.
In the context of the above principles, the Fundamental Theorem of Calculus is intuitive: complete
knowledge of displacement (from some starting point) is equivalent to complete knowledge of ve-
locity. The modern statement is more daunting, though familiar:

Theorem. 1. If f is continuous on [a, b], then F(x) :=
∫ x

a f (u)du is continuous on [a, b], differen-
tiable on (a, b), and F′(x) = f (x).

2. If F is continuous on [a, b] with integrable derivative on (a, b), then
∫ b

a F′(x)dx = F(b)− F(a).

The triumph of the modern version is its abstraction and wide applicability: we’ve gone way beyond
considerations of velocity ( f ) and displacement (F). The challenge of teaching56 and proving the Fun-
damental Theorem lies in developing and understanding what is meant by continuous, differentiable
and integrable. The quest for good definitions of these concepts is the story of analysis in the 17-1800s.
We begin with some older considerations of the velocity and area problems.

The Velocity Problem pre-1600

The modern ideas of uniform/average velocity are straightforward:

Measure how far an object travels in a given time interval and divide one by the other.

While several ancient Greek mathematicians considered this (and uniform acceleration), the chal-
lenge of considering a ratio of two unlike quantities (distance : time) proved difficult to surmount.
Around 1200, Gerard of Brussels resurrected this approach as a definition of velocity, though it was
not considered a numerical quantity in its own right.
Gerard was credited in the 1330s by the Oxford/Merton Thinkers as influencing their investigations
of instantaneous velocity, a much more difficult issue. They offered the following definition and made
the first statement of the ‘mean speed theorem,’ though both are vague and logically dubious.

Definition. The velocity of a particle at an instant will be measured as the uniform velocity along
the path that would have been taken by the particle if it continued with that velocity.

This is really a convoluted idea of inertial motion.

Theorem. If a particle is uniformly accelerated from rest to some velocity, it will travel half the
distance it would have traveled over the same interval with the final velocity.

56Calculus students can easily be taught the mechanics of calculus (the power law, chain rule, etc.) without having any
idea of its meaning; witness the power and curse of analytic geometry and algebra!
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For centuries it was thought that Galileo was the first to state such ideas (compare his falling body
discussion, pg. 81), but the Oxford group beat him by 250 years. They had no algebra with which to
prove their assertions and essentially only asserted examples.
In the 1350’s, Nicolas Oresme (Paris) considered velocity geometrically by (essentially) drawing
velocity-time graphs. As we saw previously, this is essentially the approach taken by Galileo; it
is also an early version of axes. A major difference is that Galileo married mathematics to observation;
uniform acceleration for Galileo was precisely the motion of a falling body.
A proper definition of instantaneous velocity is difficult because it requires limits, measuring average
velocity over smaller and smaller intervals. You are in good company if you find this challenging:
Zeno’s arrow paradox is essentially an objection to the very idea of instantaneous velocity! Even if
one accepts the concept, its direct measurement, even in modern times, is essentially impossible.57

The Area Problem pre-1600

We’ve previously seen two situations in which calculus-like methods were used to describe areas.

• Archimedes (sec. 3.4) computed/approximated the area of a circle and inside a parabola using
infinitely many triangles. His ‘cross-section’ approach to finding area and volume also seems
modern, though this work remained unknown until 1899.

• Kepler (pg. 79) argued for his second law (equal areas in equal times) using infinitesimally small
triangles to approximate segments of an ellipse. He also applied this method to several other
problems, crediting Archimedes with the approach.

The modern notion of Riemann sums is just a special case of approximating an area using small
rectangles: the philosophical challenge is again the notion of limits and infinitesimals.

In an early antecedent, Oresme describes how to compute
the distance travelled by a particle whose speed is constant
on a sequence of intervals. For example:
Over the time interval

[ 1
2n+1 , 1

2n

)
a particle travels at speed

1 + 3n. How far does it travel in 1 second?
Oresme drew boxes to compute areas and obtain

d =
∞

∑
n=0

(1 + 3n)
(

1
2n −

1
2n+1

)
=

∞

∑
n=0

1 + 3n
2n+1 = 4

Similar to Archimedes, the infinite sum was evaluated by
spotting two patterns:

0

10

20

30
y

0 1
x

1
2
+

1
22 +

1
23 · · ·+

1
2n+1 = 1− 1

2n+1
0
2
+

1
22 +

2
23 +

3
24 + · · ·+ n

2n+1 = 1− n + 2
2n+1

Oresme had neither our notation nor our (limit-dependent) concept of an infinite series! He also
worked with similar problems for uniform accelerations over intervals. These are not true Riemann
sums, nor are they physical, for a particle cannot suddenly change speed!

57For instance, radar Doppler-shift (as used to catch speeding motorists) requires measuring the wavelength of a radar
beam, which essentially compute the average velocity over a very small time interval.
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Calculus à la Fermat & Descartes

The advent of analytic geometry allowed Fermat and Descartes to turn the computation of instanta-
neous velocity and related differentiation problems into algebraic processes. The velocity of an object
is now identified with the slope of the displacement-time graph, which can be computed using vari-
ations on the modern method of secant lines. We discuss their competing methods.

Fermat’s method of adequation Consider the function p(x) =
x3− 12x + 19; the goal is to find the minimum, which we know
to be located at the x-value m = 2.
Fermat argues that if x1, x2 are located near m such that p(x1) =
p(x2), then the polynomial p(x2) − p(x1) (which equals zero!)
is divisible by x2 − x1. Indeed

0 =
p(x2)− p(x1)

x2 − x1

=
x3

2 − 12x2 + 19− x3
1 + 12x1 − 19

x2 − x1

=
(x2 − x1)(x2

2 + x1x2 + x2
1 − 12)

x2 − x1

= x2
2 + x1x2 + x2

1 − 12

0

5

10

15

p(
x)

0 1 2 3
x

x1 x2

Since this holds for any x1, x2 with p(x1) = p(x2), Fermat claims it also holds when x1 = x2 = m
(note the assumption of continuity!), and he concludes

3m2 − 12 = 0 =⇒ m = 2

By considering values of x near m, it is clear that Fermat really has found a local minimum. We
recognize the idea that the slope of the tangent line is zero at local extrema.

This approach dates from the 1620s and is similar to earlier work of Viète. Fermat later alters his
method by considering values p(x) and p(x + e) for small e (x is ‘adequated by e’). The difference
p(x + e)− p(x) is more easily divided by e without factorizing. Compared with the above, we obtain

0 =
p(x + e)− p(x)

e
=

x3 + 3x2e + 3xe2 + e3 − 12x− 12e + 19− x3 + 12x− 19
e

=
3x2e + 3xe2 + e3 − 12e

e
= 3x2 − 12 + 3xe + e2

Fermat finished by setting e to zero and solving for x as before. Observe the derivative p′(x) =
3x2 − 12 and how e plays the role of h in the modern expression

p′(x) = lim
h→0

p(x + h)− p(x)
h

Fermat’s method works for any polynomial, where the limit definition of derivative requires no more
than simple evaluation at h = 0. Fermat also extended his method to cover implicit curves and their
tangents.
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Descartes’ method of normals Descartes and Fermat are known to have corresponded regarding
their methods. Descartes indeed seems to have felt somewhat challenged by Fermat, and engaged
in some criticism of his approach. Descartes’ method (in La Géométrie) relies on circles and repeated
roots of polynomials in order to compute tangents.
In this example, we compute the slope of the curve y = 1

4 (10x− x2) at the point P = (4, 6).

0 4

P
Q

R

t

N

n

r
y

ν
x

Let N = (4+ ν, 0) be where the normal to the curve intersects the x-axis.58 Draw a circular arc radius
r centered at N. If r is close to n, the circle intersects the curve in two points Q, R near to P. The line←→
QR plainly approximates the tangent at P.
The co-ordinates of Q, R may be found by solving algebraic equations: substituting y = 1

4 (10x− x2)
into the equation for the circle results in an equation with two known roots, namely the x-values of
Q and R. By the factor theorem,

{(
x− (4 + ν)

)2
+ y2 = r2

y = 1
4 (10x− x2)

=⇒ (x−Qx)(x− Rx) f (x) = 0

where f (x) is some polynomial (in this case quadratic). Rather than doing this explicitly, Descartes
observes that if the radius r is adjusted until it equals n, then Q and R coincide with P and the above
equation has a double-root:

{(
x− (4 + ν)

)2
+ y2 = n2

y = 1
4 (10x− x2)

=⇒ (x− Px)
2 f (x) = (x− 4)2 f (x) = 0

Factorization can be done by hand using long-division (note that ν and n are currently unknown!):
substituting as above, we obtain

0 = x4 − 20x3 + 116x2 − 32(4 + ν)x + 16(4 + ν)2 − 16n2

= (x− 4)2(x2 − 12x + 4) + 32(3− ν)x + 16(12 + 8ν + ν2 − n2)

Since the remainder 32(3− ν)x + 16(12 + 8ν + ν2 − n2) must be the zero polynomial, we conclude
that ν = 3. By similar triangles, the slope of the curve at P is therefore

y√
t2 − y2

=
ν

y
=

1
2

58At the time, ν was known as the subnormal and t the tangent.
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Fermat and Area The previous methods permit differentiation, albeit inefficiently. Fermat also ap-
proached the area problem, in a manner similar to Oresme. Here is an example where we find the
area under the curve y = x3 between x = 0 and x = a.

Let 0 < r < 1 be constant. The rectangle on the interval
[arn+1, arn] touching the curve at its upper right-corner has
area

An = (arn − arn+1) · (arn)3 = a4(1− r)r4n

The sum of the areas is therefore

∞

∑
n=0

An = a4(1− r)
∞

∑
n=0

r4n =
a4(1− r)

1− r4

=
a4

1 + r + r2 + r3

Setting r = 1 recovers the area under the curve: 1
4 a4.

y

xaarar2ar3· · ·

a3

(ar)3

(ar2)3

A0

A1

A2

This is non-rigorous by modern standards and again implicitly invokes limits59 by setting r = 1.
Regardless, Fermat is able to establish the power law

∫ a
0 xn dx = 1

n+1 an+1 for any positive integer n.

Italian Calculus in the 17th Century: the Area and Volume Problems

In contrast to the work of Fermat and Descartes, contemporary Italian scholars were more focused on
integration problems. Here is Galileo’s classic ‘soup bowl’ problem, where he compares the volume
between a hemisphere and a cylinder to that of a cone.

Galileo observed60 that the cross-sectional areas on both sides are equal (to πy2). Since all cross-
sections are equal, so must be the volumes. Unfortunately for Galileo, he couldn’t sufficiently address
two philosophical objections:

The zero-measure problem If cross-sections are ‘equal,’ then the top cross-sections state that a circle
‘equals’ a point.

Infinitesimals sum to the whole? Can we claim that equal cross-sections imply equal volumes?

It was Galileo’s advocacy on these points that first gained him notoriety with the Church. His later
evangelism for the Copernican theory merely rekindled old animosities.

59For Fermat, r = n
m would have been rational, and he’d have set m = n at the end as in his adequation method

60As did Archimedes 1900 years earlier (pg. 32), though Galileo was unaware of it.
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Bonaventura Cavalieri (1598–1647) Cavalieri, a student of Galileo and a Jesuat scholar, gave a more
thorough discussion of indivisibles in 1635. He is particularly remembered for Cavalieri’s principle:

If geometric figures have proportional cross-sectional measure at every point relative to a
line, then the figures have measure in the same proportion.

Galileo’s soup bowl is an example of this reasoning, where the
‘line’ is any vertical.
Another classic example involves sliding a stack of coins or a
deck of cards; the volume of the slanted coin stack equals that
of the cylinder.

Extending his principle, Cavalieri inferred the power law
∫ a

0 xndx = 1
n+1 an+1, giving reasonable

arguments for n = 1 and 2. Here is a sketch of his approach for n = 2.

Draw a cube of side x inside a cube of side a. This consists of three
congruent pyramids with base a2 and eight a.
Consider the pyramid apex O and whose base is the square face near-
est the viewer. The cross-section of this pyramid at position x has
area x2. In Cavalieri’s language, the pyramid is ‘all the squares;’ in
modern language

∫ a

0
x2 dx =

1
3

a3

Cavalieri also used his method (Book IV, Prop 19 of Geometria Indivisibilis) to calculate the area en-
closed in an Archimedean spiral. Suppose B moves at constant speed along a line OA rotating at
constant speed about O. In polar co-ordinates B traces a curve r = kθ for 0 ≤ θ ≤ 2π (we take k = 1).

If |OB| = r, then the arc inside the spiral has length

ℓ(r) = 2πr · 2π − θ

2π
= r(2π − r)

Imagine the arc as a noodle which, when cut at B and allowed to fall,
forms the line CD. The area in the spiral therefore equals that within the
parabola which (thanks to Archimedes and Cavalieri himself) is 4

3 that of
the largest triangle that can fit inside, namely

4
3
· 1

2
(2π)ℓ(π) =

4
3

π3

r

y = r(r− 2π)

O

D

C

B
A

Cavalieri did this slightly differently, his parabola being drawn in a rectangle and the difference
subtracted from a triangle, but the above is easier to visualize.

Cavalieri did not court controversy like Galileo, being well-aware of the contentious nature of indi-
visibles and taking great pains to distinguish ‘all the lines/squares’ of a figure from the figure itself.
Geometria Indivisibilis was dense and difficult, so it wasn’t easy to challenge. Cavalieri therefore re-
mained relatively safe, even as his political rivals (the Jesuit order) worked hard to stamp out the
‘dangerous’ study of indivisibles.
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Evangelista Torricelli (1608–1647) A contemporary of Galileo and Cavalieri, Torricelli made several
applications of Cavalieri’s principle and advocated for its careful use.

If the sides of a rectangle are in the ratio 2 : 1, so also are indicated
red and blue segments. In Cavalieri’s language, ‘all the lines’ of the
red triangle are twice ‘all the lines’ of the blue triangle! Torricelli ob-
serves that the red triangle cannot have twice the area of the blue, since
they are congruent and points out that Cavalieri’s principle has been
misapplied: the cross-sections were not measured with reference to a
common line.

In modern language,
∫ 2

0
1
2 x dx =

∫ 1
0 2y dy are equal via the substitution x = 2y. The point is that the

infinitesimals are also in the same ratio dx : dy = 2 : 1.

Another of Torricelli’s examples offers a seeming paradox.

The hyperbola with equation z = 1
x is rotated around the z-

axis. A cylinder centered on the z-axis with radius x lying
under the surface has surface area

A = circumference · height = 2πxz = 2π

Underneath the graph at x, Torricelli draws a circular disk
with area 2π. Since the area of this disk is independent of
x, he argues that the volume under the original surface out
to radius a equals the volume of the solid cylinder:

V = 2πa

Torricelli argues that this is a correct use of Cavalieri’s
principle since the cylindrical ‘cross-sections’ and the cir-
cular cross-sections are both measured with respect to the
same line (the x-axis).
This is precisely the method of volume by cylindrical
shells that we learn in modern calculus:

V =
∫ a

0
2πx · 1

x
dx = 2πa

The conundrum is that the surface is infinitely tall! How
can we justify the idea that it lies above a finite volume?

Galileo, Cavalieri and Torricelli mark the end of 400 years of Italian dominance of in science and
mathematics dating back to Fibonacci. Their ideas were too controversial to thrive so close to the
center of Church power. The center of European science and philosophy therefore moved northward.
The English and French (protestant) reformations of the 1500s together with developing ideas of
reformed government61 meant that Northern Europe provided more fertile ground for new ideas.

61For instance Hobbes’ Leviathan written during the English Civil War (1642–1651) was a plea for the constraint of abso-
lute monarchical power. The War itself indeed proved decapitatingly effective at reining in a King. . .
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Exercises 8.2. 1. Find the maximum of p(x) = 5 + x− 2x2 using Fermat’s first method.

2. Use Fermat’s second method (“+e”) to find the maximum of bx− x3. How might Fermat decide
which of the two solutions to choose as his maximum?

3. Justify Fermat’s first method of determining maxima and minima by showing that if M is a
maximum of p(x), then the polynomial p(x)−M always has a factor (x − a)2, where a is the
value of x giving the maximum.

4. Use Descartes’ method of normals to compute the slope of the curve y = x2 at (a, a2).

5. Suppose the surface of a sphere of radius r is subdivided into infinitesimal regions of equal
area. Following Kepler, use the formula for the volume of a cone ( 1

3 base·height) to find the
relationship between the volume V of the sphere and its surface area A.

6. (A problem of Kepler) Show that the largest circular cylinder that can be inscribed in a sphere
is one in which the ratio of diameter to altitude is

√
2 : 1.

(Hint: Relate the problem to finding the maximum of the function f (x) = x− 1
4 x3, for which you can

use modern calculus)

7. We consider a version of Gregory St. Vincent’s 1647 approach to the area under the hyperbola
xy = 1.

(a) If 1 < a < b and r > 0 as in the picture, explain why
the areas A and B under the curve satisfy the same
inequalities

b− a
b

< A, B <
b− a

a

(Since [a, b] may be subdivided into arbitrarily many subin-
tervals, the areas A1 and A2 are therefore equal)

0

1
y

0 1
x

a b ar br

A
B

(b) If A(x) is the area under the hyperbola between 1 and x, explain why A satisfies the loga-
rithmic identity

A(x1x2) = A(x1) + A(x2)

Why are you not surprised by this?
(For simplicity, assume 1 < x1 < x1x2)

8. Consider two copies of triangle with sides a, b arranged
into a rectangle. Argue that ‘all the lines’ of the rectangle
are twice ‘all the lines’ of the triangle.
(In modern language,

∫ a
0 b dy = 2

∫ a
0

b
a y dy)

b

a

9. Repeat Cavalieri’s analysis of the spiral (pg. 92) to find the area inside one revolution of the
curve r = kθ for any k > 0.
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8.3 Calculus in the late 1600s

By the second half of the 17th century, the mathematical center of Europe had moved northwards,
to France, Germany, Holland and Britain. In this section we present some of this work, culminating
with the efforts of Newton and Leibniz.

Hendrick van Heuraet (1634–1660) Working in Holland, van
Heuraet studied Descartes’ and argued that the arc-length of a
curve described by a function y equals the area under the curve
z = n

y where n is the ‘normal’ curve. His method appeared in
Frans van Schooten’s 1659 version of Descartes’ La Geometrie. To
see why this should make sense, recall Descartes’ method of nor-
mals and observe that the ratio n : y equals that of ds : dx in a
differential triangle.
His most famous example involved calculating the arc-length of
the curve y2 = x3. By Descartes’ method,

{
(x− a− ν)2 + y2 = n2

y2 = x3

=⇒ 0 = x3 + x2 − 2(x + ν)x + (a + ν)2 − n2

= (x− a)2(x + 2a + 1) + (3a2 − 2ν)x

+ ν2 + 2aν− 2a3 − n2

y

x
a0

0

y

ν

n

dx

dyds

z

x
a0

0

1
Arc-length

equals
Area

Since the remainder must be zero, we conclude that ν = 3
2 a2, from which

n =
√

ν2 + y2 =

√
9
4

a4 + a3 =⇒ z =
n
y
=

√
9
4

a + 1

The arc-length from x = 0 to a is therefore the area under the parabola z2 = 9
4 x + 1 between the same

limits. By the usual Archimedean 4
3 -triangle approach, we see that

Arc-length =
4
3

[
1
2
·
(

4
9
+ a

)
z(a)− 1

2
· 4

9
· 1

]
=

[
a +

4
9

]3/2

− 8
27

James Gregory (1638–1675) Hailing from Aberdeen, Scotland, Gregory studied in Italy with Stefano
Angeli, a pupil of Torricelli, before returning to Scotland where he became chair of mathematics at
St. Andrews, and then Edinburgh.
Gregory repeats van Heuraet’s work relating the length of a curve to the area under another, before
considering whether the process can be reversed: given a curve z(x), can we find a curve y(x) such
that the arc-length of y is given by the area under z? In modern language, given z, find y such that

∫ a

0

√
1 + y′2 dx =

∫ a

0
z dx

which we’d view as solving the ODE dy
dx =

√
z2 − 1. Gregory’s solution was to define y to be the area

under the curve
√

z2 − 1 from 0 to a. This is essentially part 1 of the fundamental theorem of calculus:
if you want something whose slope (derivative) is given, define it to be the area under the curve!
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Isaac Barrow (1630–1677) Like Gregory, Barrow also studied mathematics in Italy (and France),
before returning to England to become the inaugural Lucasian Professor of Mathematics62 at Trinity
College Cambridge. Barrow’s work remained predominantly geometric; he stated proving geometric
versions of both parts of the fundamental theorem, though credited Gregory with part of the argu-
ment. In a precursor of Newton’s work, he also modified Fermat’s algorithm for differentiation. For
example, here is how Barrow would have found the slope of the curve x2 + 2xy2 = c at a point (x, y):

• Replace x and y with x + e and y + a respectively and expand:

x2 + 2ex + e2 + 2xy2 + 4axy + 2a2x + 2ey2 + 4eay + 2ea2 = c

• Delete everything from the original equation x2 + 2xy2 = c and every expression containing
two or more of the terms e, a:

2ex + 4axy + 2ey2 = 0

• Rearrange: the slope is the ratio a : e = −x− y2 : 2xy

This is implicit differentiation, where dx = e and dy = a. Note again the essential difficulty with
these algorithmic approaches to calculus: the infinitesimal quantities e, a are necessary for the calcu-
lation, but most of them are discarded when no longer useful! Can we really calculate with objects
that must simultaneously exist and be zero?63

Isaac Newton (1642–1727)

The caricature of Newton is of an obsessive genius—difficult to get along with, but with a phenom-
enal ability to concentrate on problems. One possibly apocryphal story describes how he continued
lecturing to an empty room even after no-one had turned up!

We are mostly interested in Newton’s mathematics,
though his wider fame comes from its wide applica-
tion, particularly to gravitation. In Philosophiæ Natu-
ralis Principia Mathematica (1686), Newton applied his
three laws of motion64 and the machinery of calcu-
lus to prove the relationship between Kepler’s laws
of planetary motion (pg. 78) and an inverse-square
gravitational force. The Principia is Newton’s first
published work involving calculus, though many
of its results and his method appear to have been
worked out 20 years previously, just after completing
his undergraduate studies and while Cambridge was
closed due to the 1665–6 plague epidemic. Kepler’s 1st law =⇒ inverse-square force

62One of the most prestigious world-wide academic positions in theoretical Physics, in large part due to the fame of its
second incumbent: Issac Newton. Later chairs include Paul Dirac and Stephen Hawking.

63This is at the heart of Bishop George Berkeley’s (after whom the Californian city and university are named) famous
1734 objection to calculus; that infinitesimals are merely the “ghosts of departed quantities.”

64I. Inertial motion; II. F = ma; III. Equal-and-opposite forces. Consider these as the axioms of Newtonian mechanics.
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Newton’s geometric presentation was typical for the time. He comments on how calculations are
more efficient using indivisible methods, but that the ‘hypothesis of indivisibles seems somewhat
harsh’ (he likely wants to counter the impression that his method is philosophically shaky). Newton’s
approach makes it hard for modern readers to extract calculus algorithms; indeed the Principia is not
a calculus textbook and it is not really possible to learn calculus directly from it. Nevertheless, it
contains notions of many standard concepts, for instance:

Limits/continuity Book I, Lemma I: “Quantities, . . . which in any finite time converge continually
to equality, and before the end of that time approach nearer to each other than by any given
difference, become ultimately equal.”

One can see modern ideas appearing (e.g., ∀ϵ > 0, |a− b| < ϵ =⇒ a = b) though there is a
long way to go! What, for instance does approach mean?

Product Rule In the following pages, Newton argues for the product rule by augmenting the sides
of a rectangle.

A

B

a

b

If a, b are infinitesimal changes in the sides of a rectangle with sides A, B, then the moment of
mutation (infinitesimal change) of the generated rectangle AB is the quantity aB + bA. In more
familiar language,

(A + a)(B + b)− AB ≈ aB + bA

where Newton ignores the double-infinitesimal quantity ab, exactly as did Barrow and others
before him.

Power Law In the same pages, Newton asserts the general power law for rational exponents

. . . the moment of any power A
n
n will be

n
m

aA
n−m

m .

in what seems like a non-rigorous appeal to induction based on the product rule. In reality,
Newton established this using infinitesimal arguments; we’ll see one of his methods for this
shortly.

In contrast to the mostly synthetic presentation in the Principia, Newton made great use of algebra
in his private calculations and correspondence with friends. Some of these private works were pub-
lished many years later. We discuss some of his methods in what follows.
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Fluxions and Fluents Newton’s main language for calculus (he had several!) referred to time-
dependent quantities x, y as fluents and their derivatives as fluxions, denoted using dots ẋ, ẏ; the
modern notation y′ comes from this.65 Anti-derivatives were denoted by placing an accent directly
over a quantity: x́ is a fluent of which x is the fluxion. Newton had several algorithms for computing
fluxions, often variants of those of previous mathematicians: for instance, here he finds the relation-
ship between the fluxions of fluents x, y satisfying x2 + 3xy3 + y = 5.

• Rearrange as a polynomial in x: thus x2 + (3y3)x + (y− 5) = 0.

• Multiply terms by a decreasing arithmetic sequence (e.g. 2, 1, 0) and the entire expression by ẋ
x :

(2x + 3y3)ẋ

• Repeat for y, using the same arithmetic sequence; in this example, 2 corresponds to x2, so we start
with 3 for y3:

(3x)y3 + 0y2 + y + (x2 − 5) = 0⇝ (9xy2 + y)ẏ

• Sum these expressions, set equal to zero and rearrange for the required ratio:

(2x + 3y2)ẋ + (9xy2 + y)ẏ = 0 =⇒ ẏ
ẋ
= −2x + 3y2

9xy2 + y

The arithmetic sequence encodes the power law for derivatives, and the result is exactly what you’d
expect from modern implicit differentiation.

The Binomial Series Also discovered during the plague years, but first appearing in a private letter
of 1676, is Newton’s discovery of the binomial series

(1 + x)α = 1 +
∞

∑
k=1

α(α− 1)(α− 2) · · · (α− k + 1)
k!

xk

which allowed Newton to expand expressions such as

(1 + x)1/2 = 1 +
1
2

x− 1
8

x2 +
1
16

x3 − 5
128

x4 + · · ·

Newton’s version was only for fractional exponents and is more difficult to read:

P + PQ
m
n

= P
m
n
+

m
n

AQ +
m− n

2n
BQ +

m− 2n
3n

CQ +
m− 3n

4n
DQ + · · · (∗)

Newton wrote exponents using juxtaposition, and A, B, C, D, . . ., meant ‘the previous term’: thus
P m

n = Pm/n, A = Pm/n and B = m
n AQ = m

n Pm/nQ. In more modern language, (∗) reads

(P + PQ)m/n = Pm/n +
m
n

Pm/nQ +
m(m− n)

2n2 Pm/nQ2 +
m(m− n)(m− 2n)

6n3 Pm/nQ3 + · · ·

65A fluent is a ‘flowing’ quantity: to us, a smooth function, though this was not formally defined. To be in flux is to be
changing, hence ‘rate of change.’ Newton’s dot-notation (‘pricked letters’) persists in the modern field of dynamics: for
instance r̈ = −GM

r3 r is the differential equation arising from Newton’s second law together with the inverse-square law for
gravitation (note the double dot for the second derivative).
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Newton’s ‘proof’ wouldn’t pass modern muster. His discoveries were the result of some involved
pattern-spotting! Several examples were explicitly verified by multiplying out or using long-division.
For instance the series for

√
1 + x may be obtained

1 + x = (1 + ax + bx2 + cx3 + · · · )2 = 1 + 2ax + (a2 + 2b)x2 + (2c + 2ab)x3 + · · ·

=⇒ a =
1
2

, b = −1
2

a2 = −1
8

, c = −ab =
1

16
, etc.

=⇒
√

1 + x = 1 +
1
2

x− 1
8

x2 +
1
16

x3 + · · ·

Newton did not work through the full theory of infinite series as you would encounter in a typical
undergraduate analysis course. For instance:

•
√

1 + x is well-defined for x ≥ −1, yet the resulting series only converges when −1 ≤ x ≤ 1.
What happens in general: must a series converge to the original/generating function?

• Is it legitimate to differentiate and integrate power series term-by-term as if they are polynomi-
als? Answer: (mostly) yes, though it was 150 years before Cauchy, Weierstraß and others could
rigorously confirm this.

The Power Law & the Fundamental Theorem Newton’s ability to expand expressions as infinite
series was essential to his arguments. Here is one of his arguments to prove the power law.

1. Assume that the area under a curve y is given by a function

z =
x

m
n +1

m
n + 1

=
n

m + n
x

m+n
n

2. If x is increased by an infinitesimal amount o, then the new area
under the curve is found using the binomial series

z + oy =
n

m + n
(x + o)

m+n
n =

n
m + n

x
m+n

n

(
1 +

o
x

) m+n
n

=
n

m + n
x

m+n
n

(
1 +

m + n
n
· o

x
+

(m + n)m
2n2 · o2

x2 + · · ·
)

oy
z

x

y

3. Following Barrow, Newton cancels the terms in the original equation, divides by o, and throws
out all remaining o-terms. The result is

y =
n

m + n
x

m+n
n

m + n
n
· 1

x
= xm/n

Note the essential with the fundamental theorem, which is intuitively obvious when y is a
‘flowing’ (continuous) quantity: the additional area is approximately an infinitesimal rectangle
oy = dz with base o = dx and height y, whence

dz = y dx↭
dz
dx

=
d

dx

∫ x
y(t)dt = y(x)
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Using similar approaches, Newton produced one of the first tables of integrals, listing much of what
you’d find inside the covers of an undergraduate calculus textbook! He also obtained power series
for trigonometric and logarithmic functions, partly following the work of Gregory and others. By
combining his approach with the power law, he was able to efficiently integrate and differentiate an
enormous variety of functions.

Gottfried Wilhelm Leibniz (1646–1716)

Leibniz hailed from Leipzig, southwest of Berlin, in what was then part of the Holy Roman Empire.
His initial studies were in philosophy, following his professor father. Though he eventually became
a diplomat and then counsellor to the Duke of Hanover, his taste for advanced mathematics was
fueled during his 1672–76 sojourn in Paris, where he was introduced to van Shooten’s expansion of
Descartes’ geometric ideas, in particular the concept of the differential triangle (page 95) which was
already in use by others such as Pascal and Barrow.

The familiar notations for derivatives dy
dx and integrals

∫
y dx come from Leibniz. Very loosely, here

is its origin and how it relates to the fundamental theorem. Suppose that

(x0, z0), (x1, z1), . . . , (xn, zn), x0 < x1 < · · · < xn

describe a sequence of points along a curve z(x) defined on an interval [x0, xn]. One may then form
the sequences of differences and sums of the ordinates zi:

(
δzi

)
=

(
z1 − z0, z2 − z1, . . . , zn − zn−1

)
,

(
∑ zi

)
=

(
z0, z0 + z1, . . . , z0 + · · ·+ zn

)

Two relationships between sums and differences are immediate:

1. The difference sequence of the sums returns the original sequence:
(
δ ∑ zi

)
=

(
z0, z1, . . . , zn

)

2. The sum of the difference sequence is the net change in the ordinate:

∑
(
δzi

)
= (z1 − z0) + (z2 − z1) + · · ·+ (zn − zn−1) = zn − z0

Leibniz’s notation arises from viewing a curve as an infinite sequence of points: he writes dz for the
infinitesimal differences and

∫
for the sum of infinitely many infinitesimal objects. Observation 2

becomes
∫

dz = z(xn)− z(x0): the sum of the infinitesimal changes in z is its net change. Indeed, if
we assume that z(x) describes the area66 under a curve y(x), the fact that dz = y dx recovers part 2 of
the fundamental theorem of calculus:

2.
∫

y dx = z: the area under the curve is the sum of its infinitesimal increments.

Observation 1 makes sense once we apply it to a ‘sequence’ of infinitesimals zi ⇝ y dx, whence it
becomes part 1 of the fundamental theorem:

1. d
(∫

y dx
)
= y dx, or alternatively, d

dx

(∫
y dx

)
= y: the rate of change of the area

function is the ordinate.

66Notation is chosen to match Newton’s discussion of the power law (page 99).
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While we are happy to refer to infinitesimals and infinite sums, Leibniz was more cagey in his pub-
lications out of fear of criticism. He referred to each dx as an arbitrary (if small) finite line segment,
and therefore—like every other contemporary practitioner of calculus—fails to get to grips with the
essential paradoxes involved. Regardless, he and his followers became adept at manipulating differ-
ential expressions. For instance, if y = z3 + 2z, Leibniz might compute

dy = (z + dz)3 + 2(z + dz)− z3 − 2z = 3z2 dz + 3z(dz)2 + (dz)3 + 2 dz

= (3z2 + 2z)dz

where the (dz)2 and (dz)3 terms are discarded due to their (relatively) infinitesimal size. Using
such approaches Leibniz justified general formulas such as the linearity of derivatives, the product,
quotient and power rules. Even the chain rule is easy in Leibniz’s notation: given y(x) =

√
1 + x3,

Leibniz might perform a substitution u = 1 + x3 and observe that

dy = d
√

u =
du

2
√

u
=

3x2 dx
2
√

1 + x3

Like Newton, Leibniz work extensively with power series. As a final example here is his computation
of that for sine. In contrast to Newton’s approach,67 Leibniz derived the well-known second-order
ODE satisfied by sine.

In a circle of radius 1, let s be the polar angle and y = sin s the ordinate.
By considering the differential triangle, we see that

dy
ds

=
√

1− y2 =⇒ (1− y2)(ds)2 = (dy)2 (∗)

Leibniz supposes that infinitesimals ds describing the arc are constant
and applies d again (with the product rule):68

−2y (dy)(ds)2 = 2(dy)d(dy) =⇒ d(dy)
(ds)2 = −y

(
=

d2y
ds2

)

sy1

√
1− y2

s

dx

ds dy

He then writes y(s) = sin s = c0 + c1s + c2s2 + c3s3 · · · as a power series. Since at s = 0, y = sin s = 0
and ds = dy (by ∗), Leibniz sees that c0 = 0 and c1 = 1. He now differentiates twice and equates
coefficients:

2c2 + 6c3s + 12c4s2 + 20c5s3 + 30c6s4 + · · · = −s− c2s2 − c3s3 − c4
4 − · · ·

=⇒ 0 = c2 = c4 = c6 = · · · , c3 = −1
6

, c5 = − 1
20

c3 =
1

120
, . . .

to obtain the familiar series

y = sin s = s− 1
6

s3 +
1

120
s5 + · · · = s− 1

3!
s3 +

1
5!

s5 − 1
7!

s7 + · · ·

While not precisely the same as modern calculus—in particular, the differentials dx, dy, ds are sep-
arate quantities—this should all seem very familiar! The computational efficiency of such notation
super-charged mathematics and its applicability to real-world problems.

67Newton first found a series for arcsine before computing its inverse.
68We’ve bracketed everything. When these are removed, we obtain the standard Leibniz notation for second derivatives!
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Exercises 8.3. 1. Show that to find the length of the arc of the parabola y = x2 one needs to
determine the area under the hyperbola y2 − 4x2 = 1.

2. Use Barrow’s a, e method to determine the slope of the tangent line to the curve x3 + y3 = c3.

3. Calculate a power series for 1
1−x2 by using long-division.

4. Use the binomial series to obtain a power series expression for ln(1 + x), which Newton knew
to describe the area under the curve 1

1+x .

5. Using his calculus, Newton was able to extend older methods of approximation.

• Suppose f (c) = 0 and that a0 is an initial approximation to c.

• The tangent line at
(
a0, f (a0)

)
has equation

y = f (a0) + f ′(a0)(x− a0)

which intersects the x-axis at a1 := a0 − f (a0)
f ′(a0)

.

• Iterate to obtain a sequence (an) that (typically) converges to c:

an+1 = an −
f (an)

f ′(an)
lim
n→∞

an = c

f(
x)

x
a0a1a2

c

(a) If f (x) = x2 − c, show that Newton’s method is the ancient Babylonian method of the
mean.

(b) Use Newton’s method to solve the equation x2− 2 = 0 to a result accurate to eight decimal
places. How many steps does this take?

6. Calculate the relationship of the fluxions in the equation x3 − ax2 + axy− y3 = 0 using multi-
plication by the progression 4, 3, 2, 1. Compare to what happens if you use the progression 3,
2, 1, 0. What do you notice?

7. Use Leibniz’s differential triangle to argue that

x = cos s and dx = −y ds

Where does the negative sign come from? Hence find the standard power series representation
for cosine and conclude that the rate of change (derivative) of sine is cosine.

8. Given a curve y(x) with y(0) = 0, Leibniz’s transmutation theorem relates the area under y and
the curve z(x) = y − x dy

dx obtained by considering the y-intercepts of the tangent lines to the
original:

∫ a

0
y dx =

1
2

[
ay(a) +

∫ a

0
z dx

]

If xp = yq, find z and use the transmutation theorem to find the area
∫ a

0 y dx.

How does the transmutation theorem relate to integration by parts?
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