
6 Indian and Islamic Mathematics

6.1 India, the Hindu–Arabic Numerals & Zero

The Indian/South Asian subcontinent is bordered to the north by
the Himalayan mountains and to the east by dense jungle. Its pri-
mary frontier has historically been the fertile Indus valley in the
west, now the central corridor of Pakistan, where recorded civi-
lization dates to at least 2500 BC. During the first millennium BC,
Hinduism developed as an amalgamation of previous practices
and beliefs; Buddhism and Jainism began to spread in the later
part of this period, in the Ganges valley further east.
Alexander the Great conquered as far east as the Indus in 326 BC,
bringing Greek, Babylonian and Egyptian knowledge in his wake.
The Greek overlords he left behind were rapidly overthrown and
the subcontinent became largely unified under the Mauryan Empire for the next 150 years. After
this came 1000 years of shifting control with several invasions from the west by the nearby Persians.
Islam conquered the Indus around 1000, and the greater part of India was unified under the Islamic
Mughal Empire by the 1500s. After its decline and fragmentation, the British took control in 1857.

The modern political situation reflects this complicated history. India gained its independence in 1947
after World War II, and was shortly thereafter partitioned according to religion: the greater Indus
valley and the lower Ganges/Brahmaputra comprise the Islamic states of Pakistan and Bangladesh,
with the majority of the landmass becoming the nominally secular but majority Hindu country of
India. The upper Indus valley (Kashmir) remains contested and has been the site of several military
conflicts between India, Pakistan and China.

Ancient India’s contributions to world knowledge and development are undoubtedly significant; it
is estimated that India accounted for 25–30% of the world’s economy during the 1st millenium AD!
It was moreover a technological and cultural crossroads, with its location making it well suited to
absorbing and synthesising ideas from both east and west; while some trade and knowledge passed
north of the Himalayas directly between China and the Middle East/Europe, far more percolated
slowly through India, being improved and given back in turn.

Brahmi Numerals & Numerical Naming Our primary focus is on possibly the most important
practical mathematical development in history: the decimal positional system of enumeration, com-
plete with fully-functional zero. The Brahmi numerals, one of the earliest antecedents of modern
numerals, first appeared around the 3rd century BC.

1 2 3 4 5 6 7 8 9 10

The example dates from around 100 BC and was used in Mumbai/Bombay. Additional symbols
denoted multiples of 10, 100, 1000, 10000, etc. As with Chinese characters, the system was partly
positional (800 would be written by prefixing the symbol for 100 by that for 8) and there was no
symbol or placeholder for zero.
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Symbols are only part of the story. The modern approach to naming numbers and constructing large
numbers can also be linked to the same period. The table below gives old Sanskrit names.

1 2 3 4 5 6 7 8 9
eka dvi tri catur pancha sat sapta asta nava

10 20 30 40 50 60 70 80 90
dasa vimsati trimsati catvarimsat panchasat sasti saptati asiti navati

100 1000 10000 100000 1000000 107 108 109 1010

sata sahasra ayuta niyuta prayuta arbuda nyarbuda samudra madhya

You should recognize similarities with some of the numbers in European languages, many of which
have Sanskrit roots. The construction of larger numbers should also seem familiar: for example tri
sahasra sat sata panchasat nava is precisely how we read 3659.

Naturally, old Sanskrit verbiage doesn’t map perfectly onto modern English. For instance, Sanskrit
had distinct words for powers of 10 up to (at least!) 1062, and employed a version of pre-subtraction:
e.g., ekanna-niyuta meant ‘one less than 100000,’ or 99999.

Gwalior Numerals During the first few centuries AD , a fully positional decimal place system came
into being. The earliest evidence comes from a manuscript found in Bakhshālı̄ (Pakistan) in 1881,
which has been carbon-dated to the 3rd or 4th century. The manuscript contains the earliest known
version of the modern symbol for zero, a circular dot. It is conjectured that the decimal place sys-
tem was inspired by the Chinese counting-board method, though convincing proof has yet to be
uncovered. Regardless of attribution, Chinese mathematicians were copying the method by the 8th

century.

The examples below are better understood than the Bakhshālı̄ manuscript and come from Gwalior
(northern India) around 876.

0 1 2 3 4 5 6 7 8 9 10

The similarity with modern numerals is clear; 0, 1, 2, 3, 4, 7, 9, 10 are very familiar. Zero has evolved
from the Bakhshālı̄ dot to a hollow circle. The symbols for 2 and 3 are conjectured to have devel-
oped in an attempt to write earlier versions (e.g. the Brahmi numerals) cursively; try writing three
horizontal strokes quickly. . .

The system is fully positional. Below are the numbers 270 and 30984:

Sanskrit is written left-to-right, with the leftmost digits representing the largest powers of 10. Note
how zero is used as a placeholder to clarify position so that, e.g., 27, 207, and 270 are clearly distin-
guishable.
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Zero On the right is a table of modern Sanskrit names and numerals; the digits and names are
certainly similar to their Gwalior counterparts.

The Sanskrit shuunyá means void or emptiness. It is related
to svi (hollow), which in turn derives from an ancient word
meaning to grow. This reflects a major idea within religions
of the area, with the void being the source of all things, of
creation and creativity. Contemplation of the void (the doc-
trine of Shunyata) is recommended before composing mu-
sic, creating art, etc. This contrasts with the Abrahamic re-
ligions where the void is something to be feared; an early
conception of hell was the eternal absence of God.
The Gwalior numerals travelled westwards, with Europe eventually inheriting the system via Islam;
as such they are today known the Hindu–Arabic numerals. Here is a short version of the etymological
journey of zero into European languages.

• Shunya was transliterated to sifr in Arabic where the double-meaning persisted: al-sifr was the
number zero, while safira meant it was empty.

• The term came to Europe in the 12th-13thcenturies courtesy of Fibonacci where it became cifra.
This was blended with zephyrum (west wind/zephyr) providing an alternate spelling.

• Cifra ultimately became the words cipher (English), chiffre (French) and ziffer (German), meaning
a figure, digit, or code.

• Zephyrum became zefiro in Italian and zero in Venetian.

Zero and the Hindu–Arabic numerals also travelled eastwards, with Qin Jiushao introducing the
zero symbol into China in the 13th century.

Our modern understanding of zero is a fusion of several concepts:

Numerical positioning For instance, to distinguish 101 from 11.

Absence of a quantity 101 contains no 10’s.

Symbol First a dot (bindu), then a circle (chidra/randhra meaning hole). The relationship between
shunya and a symbol was established by AD 2-300, as this quote from AD 400 (Vasavadatta)
illustrates

The stars shone forth, like zero dots [shunya-bindu] scattered as if on a blue rug. The
Creator reckoned the total with a bit of the moon for chalk.

Mathematical operations By the time of Brahmagupta (7th C.), a mathematical text might contain a sec-
tion called shunya-gania, with computations involving zero, including addition, multiplication,
subtraction, effects on ±-signs, division and the relationship with ∞ (ananta). In the 12th C.,
Bhaskaracharya stated:

If you were to divide by zero you would get a number that was “as infinite as the god
Vishnu.”
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Other ancient cultures had one or more of these aspects of zero, but the Indians were the first to put
them all together.

• The Egyptian hieroglyph nfr (beautiful/complete) indicated zero remainder in calculations as
early as 1700 BC and was also used as a reference point/level in buildings.

• Very late in Babylonian times, a placeholder symbol was used to separate powers of 60. It was
not used as a number.

• With the Chinese counting board, an empty space served as a placeholder.

• Various Mesoamerican cultures, such as the Maya, had a zero symbol that was used as a place-
holder, particularly when writing dates.

‘Real’ Indian Mathematics

Indian mathematicians made great progress on several fronts, not merely the decimal place system.

Much ancient work was influenced by religion. The sul-
basutras were written during pre-Hindu times and con-
tained instructions for laying out altars using ruler-and-
compass constructions. These could be quite complex,
as the construction of the base of the Mahavedi (great al-
tar) shows: The center line is divided left-to-right in the
ratio

1 : 7 : 12 : 11 : 5

and the altar contains five distinct Pythagorean triples.

30 pada 24 pada

36 pada

Of particular importance to our narrative is Indian work on trigonometry. Here are some highlights:

• The early 5th C. text Paitāmahasiddhānta is assumed to be an extension of Hipparchus’ work,
since it contains a table of chords based on a circle of radius 57,18; rather than Ptolemy’s 60.

• Indian mathematicians instituted the use of half-chords, in line with our modern understanding
of sine. Indeed the word sine is the result of a long sequence of (mis)translations and transliter-
ations via Arabic and Latin from the Sanskrit jyā-ardha (chord-half ).30 The Indians also began to
distinguish ‘base sine’ and ‘perpendicular sine’ (cosine).

• Created tables of sines/half-chords from 0° to 90° in steps of 3 3
4 °, using linear interpolation to

approximate values in between. By 650, Bhramagupta had much better approximations, using
quadratic polynomials to interpolate. By 1530, Indian mathematicians had discovered cubic
and higher approximations (essentially Taylor polynomials 130 years before Newton) for even
greater accuracy of sine, cosine and arctangent.

Navigation was one of the drivers of this development. While Mediterranean sailors rarely strayed
long out of sight of land, the Indians sailed the ocean and required accurate measurements to find
their latitude.

30Amazingly this became related to the word sinus meaning bay, gulf or bosom!
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Exercises 6.1. 1. The Mahavedi (pg. 57) contains five Pythagorean triples; find them.

2. To simplify square root expressions, Bhaskara used the formula√
a +

√
b =

√
1
2

(
a +

√
a2 − b

)
+

√
1
2

(
a −

√
a2 − b

)
Prove Bhaskara’s formula and use it to simplify

√
2 +

√
3.

3. Here is an Indian method for ‘finding’ a circle whose area is equal to a given square.

In a square ABCD, let M be the intersection of the diago-
nals. Draw a circle with M as the center and MA the radius;
let ME be the radius of the circle perpendicular to the side
AD and cutting AD at G. Let GN = 1

3 GE. Then MN is the
radius of the desired circle.
Show that if AB = s and MN = r, then

r
s
=

2 +
√

2
6

Show that this implies a value for π equal to 3.088311755.

A

B C

D

M

E

G

N

4. Solve the following problem of Mahāvı̄ra.

Of a collection of mango fruits, the king took 1/6; the queen took 1/5 of the remain-
der, and the three chief princes took 1/4, 1/3, 1/2 of what remained at each step. The
youngest child took the remaining three mangoes. O you, who are clever in work-
ing miscellaneous problems on fractions, give out the measure of that collection of
mangoes.
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6.2 Islamic Mathematics I: Algebra

Muhammad ibn Abdullah was born in Mecca (modern Saudi Arabia) in 570. Around 610 he began
preaching Islam (submission to the will of God)—the third of the major Abrahamic religions, (chrono-
logically) following Judaism and Christianity. After several years of exile, he returned with an army,
conquering Mecca a few years before his death in 632.

Through military conquest, Muhammad’s successors expanded the caliphate (empire) at a truly re-
markable speed. At the time of his death, the Arabian peninsula was Islamic. By 660 Islam had
reached Libya and most of Persia, and by 750 extended from Iberia & Morocco to Afganistan & Pak-
istan. Serious schisms eventually arose31 and several successor empires emerged, the longest-lasting
of which was the Ottoman Empire (c. 1300–1922). Even though centralized political control ended
long ago, Islam remains dominant in the region pictured below (with the notable exceptions of Spain
and Portugal) and over a greater region of Africa and south-east Asia (e.g., Indonesia).

As with the Romans, early Muslims permitted conquered peoples—including Jews and Christians
(people of the book)—to maintain their culture, provided they acknowledged their overlords and paid
taxes. Those who converted to Islam were welcomed as full citizens, though deconversion (apostasy)
was not tolerated. Many of the great Islamic thinkers were born on the periphery and travelled to
the great centers of learning, particularly Baghdad during the Islamic golden age (8th–13thcenturies).
Knowledge was also absorbed from Alexandria and western India (Pakistan). In the mid-700s paper-
making came from China, greatly facilitating the dissemination and consolidation of knowledge.
Schools (madrassas) reflected a strong cultural and religious focus on learning.

The Islamic golden age overlapped the European dark ages (c. 500–1200) following the fall of Rome,
during which European philosophical development stagnated. By 1200, the crusades32 were well
underway and Islam had come to be seen as the enemy of Christian Europe. The infusion of knowl-
edge that came to Europe from Islam around this time helped spur the European renaissance & later
scientific revolution. Among European scholars almost to the present day, it was fashionable to credit
Islam merely with the preservation of ancient ‘European’ knowledge; a claim both fanciful and chau-
vinistic, but plainly stemming from medieval animosity.

31In particular between the Sunni and Shia branches of the faith. Much of the modern-day tension between Saudi Arabia
and Iran stems from this rupture.

32A series of religious–military campaigns 1096–1291 with the goal of wresting control of the Holy Land, particularly
Jerusalem, from Islam.
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Algebra & Algorithms

Proof and axiomatics were learned from Greek texts such as the Elements. Like the Greeks, Islamic
scholars gave primacy to geometry and proved algebraic relations in a geometric manner.33 Practical
and accurate calculation was more important than to the Greeks, and great advances were made in
this area. This included completing the development of the Indian decimal place system (hence the
dual credit Hindu–Arabic numerals).
The second most obvious legacy of Islamic mathematics is encountered daily in every mathematics
classroom. Algebra34 comes from the Arabic al-ğabr, meaning restoring. It originally referred to mov-
ing a deficient (negative) quantity from one side of an equation to another. A second term al-muqabala
(comparing/balancing) meant to subtract the same positive quantity from both sides of an equation.

Al-ğabr: x2 + 7x = 4 − 2x2 =⇒ 5x2 + 7x = 4

Al-muqābala: x2 + 7x = 4 + 5x =⇒ x2 + 2x = 4

Islamic scholars did not use symbols or equations in a modern sense; statements were instead written
out in sentences.

Muhammad ibn Mūsā al-Khwārizmı̄ (780–850) Born near the Aral Sea in modern Uzbekistan, al-
Khwārizmı̄ eventually became chief librarian at the great school of learning, the House of Wisdom, in
Baghdad. His Compendious book on the calculation by restoring and balancing35 (820) is a synthesis of
Babylonian methods and Euclidean axiomatics; an algorithm demonstrated a solution, followed by
a geometric proof. After being translated into Latin in the 1100s it became a standard textbook of Eu-
ropean mathematics, displacing Euclid in places due to its greater emphasis on practical calculation.
The word algorithm reflects its importance: the Latin dixit algorismi literally means al-Kwārizmı̄ says.

Here is al-Khwārizmı̄’s approach to the quadratic equation x2 + 4x = 60, or, more properly:

What must be the square which, when increased by four of its roots, amounts to sixty?

The algorithm may be applied to any equation of the form x2 + ax = b
where a, b > 0: here a is the number of ‘roots,’ and b the total ‘amount.’

• Halve the number of roots
(
2 = 1

2 a
)

• Multiply by itself
(
4 = 1

4 a2)
• Add to the total amount

(
64 = 1

4 a2 + b
)

• Take the root of this
(

8 =
√

1
4 a2 + b

)
• Subtract half the number of roots

(
6 =

√
1
4 a2 + b − a

2

) x 2

x

2

Al-Kwārizmı̄ essentially constructs the quadratic formula = −a+
√

a2+4b
2 , while the pictorial justifica-

tion is Euclid’s (Elements, Thm II. 4). The geometry should be obvious: the square has been increased
by four of its roots and the algorithm is simply ‘completing the square.’
Other algorithms were supplied to solve every type of quadratic.

33Like Book II of the Elements. Such Greek texts were venerated by Islamic scholars; recognizing the depth of Ptolemy’s
work on astronomy and trigonometry, they bestowed the name by which it is now known, the Almagest (Great Work).

34Many words beginning al- are of Arabic origin (alkali, albatross, etc.), as are others that have been latinized (elixir).
35Al-kitāb al-mukhtasar fı̄ hisāb al-ğabr wa’l-muqābala.
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It is hard to notice from our example, but the crucial development from a math-history point of view
is the abstraction, in a modern sense the algebra; al-Khwārizmı̄’s approach applies equally to numbers
as it does to geometric objects, a very different approach to the geometry-focused Greeks.

As an example of the power of this idea, consider how Abū Kāmil (Egypt 850–930) generalized Eu-
clid’s Book II geometric-algebra arguments to permit substitution, provided the resulting equation
was quadratic.

If y =
1 + x
3 + x

and y2 + y = 1 then x =
√

5

Abū Kāmil essentially substitutes y = 1+x
3+x into the quadratic (with solution y =

√
5−1
2 ). While al-

Khwārizmı̄’s methods were geometrically justified, when combined in this fashion the entire pro-
cess no-longer admits a straightforward geometric interpretation. This method of substitution was
an early step towards establishing the modern primacy of algebra and number over geometry and
length.
Over the following centuries, this algebraic approach was further improved. In particular, Omar
Khayyam (1048–1131) produced ground-breaking work on cubic equations, astronomy, the binomial
theorem, and irrational numbers.

Exercises 6.2. 1. Solve the equations 1
2 x2 + 5x = 28 and 2x2 + 10x = 48 using al-Khwārizmı̄’s

methods (first multiply or divide by 2).

2. Al-Khwārizmı̄ gives the following algorithm for solving the equation bx + c = x2.

• Halve the number of roots.

• Multiply this by itself.

• Add this square to the number.

• Extract the square root.

• Add this to half the roots.

Translate this into a formula. Give a geometric argument
for the validity of the approach using the picture: HC
has length b where G is the midpoint; rectangle ABRH
has area c; KHGT and AMLG are squares; and the large
square ABDC has side-length x.

AB

CD

G

H

M

L

R N K

T

3. Solve the following problems by Abū Kāmil (use modern algebra!).

(a) Suppose 10 is divided into two parts and the product of one part by itself equals the
product of the other part by the square root of 10. Find the parts.

(b) Suppose 10 is divided into two parts, each of which is divided by the other, and the sum
of the quotients equals the square-root of 5. Find the parts.
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6.3 Islamic Mathematics II: Spherical Trigonometry and the Qibla

Late 8th century Indian work on trigonometry, linking back to Hipparchus, was known in Baghdad,
as was the work of Ptolemy. Islamic scholars were interested in trigonometry for reasons beyond
mere astronomy. A primary requirement in Islam is to face the Ka’aba in the Great Mosque at Mecca
when at prayer: this is the qibla (direction in Arabic). A mosque is typically built so that one wall
faces Mecca for convenience; if not possible, an arrow indicating the qibla might be placed in an
alcove. In Muhammad’s time (when Muslims faced Jerusalem not Mecca), determining the qibla
was relatively easy, though as Islam spread the curvature of the earth made determination more
difficult. The religious impetus behind this problem motivated Islamic mathematics for centuries,
and the methods developed (with minor modifications) are still used today, though in modern times
the mathematics is very much hidden behind GPS technology!

Terminology and Trigonometric Tables Scholars worked with the Indian half-chord (sine), and with
circles of various radii. Al-Battānı̄ (c. 858–929) introduced an early version of cosine as the complemen-
tary half-chord for angles less than 90°, and with an analogue of the modern function versine:36

versin θ = 1 − cos θ

Al-Bı̄rūnı̄ (973–1048) defined versions of tangent, cotangent, secant and cosecant by projecting from
a gnomon (sundial) onto either a horizontal or a vertical plane. In the second picture below, the
gnomon is the vertical stick of length 1. With this definition, al-Bı̄rūnı̄ moves towards the modern
consideration of trigonometry in terms of triangles rather than circles.

sin α

1

cos α

versin α

α
α

crd 2α

1

tan α = cot β

sec α = csc β

β

α

Trigonometric tables with improved accuracy over Ptolemy were created for all these ‘functions.’
Abū al-Wafā (940–998) and his descendants computed sine & tangent values for every minute of arc
accurate to five sexagesimal places (one part in 777 million!) via repeated applications of the half-angle
formula and interpolating using the downwards concavity of the sine function (draw a picture!):

sin(α + β)− sin α < sin α − sin(α − β) whenever 0° < α − β < α + β < 90°

36Versed sine refers to the measurement of a length in a reversed direction (perpendicular) to that of sine.
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Calculating the Qibla In what follows we observe several conventions:

• A single letter A refers to a point or to the angle measure in a triangle with vertex A.

• AB means the segment of the great-circle joining points A, B or its arc-length. A spherical triangle
△ABC comprises three points on a sphere joined by segments of great-circles.

• AB means the straight line joining A, B with length |AB|.
• All results are modernized and applied to a unit sphere (center O). The arc-length along a

great-circle therefore equals the central angle subtended by that arc in radians: AB = ∡AOB.
To help visualize things, 3D movable versions of all pictures are online—click them!

Ptolemy and the Indians had already done some relevant work, though
Ptolemy’s approach relies heavily on Menelaus’ Theorem (c. 100AD ).

Theorem (Menelaus). For the pictured configuration of spherical triangles
on a sphere of radius 1,

sin CE
sin AE

=
sin CF
sin DF

· sin BD
sin AB

Applying Menelaus’ Theorem is difficult since one typically needs to create
many new spherical triangles. Al-Wafā simplified things considerably with
an alternative result.

Theorem (Al-Wafā). If △ABC and △ADE are spherical triangles with right angles at B, D and a
common acute angle at A, then

sin BC
sin AC

=
sin DE
sin AE

In fact these ratios equal sin α where α is the acute angle, though al-Wafā didn’t say this.

Proof. Let O be the center of the sphere. Project C orthogonally to the plane containing O, A, B to
produce K, then project K to OA to get L.
Consider the right-angled planar triangle CKL. Since α
is the angle between two planes, we have α = ∡CLK.
Moreover

|CK| = sin∡COK = sin∡COB = sin BC
|CL| = sin∡COL = sin∡COA = sin AC

The usual sine formula for plane triangles says

sin α =
|CK|
|CL| =

sin BC
sin AC

The same ratio is obtained for △ADE.
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The sine and cosine rules, both of which follow by dropping perpendiculars. Al-Wafā’s result quickly
recovers the spherical sine rule.

Corollary (Sine rule). If a, b, c are the side-lengths of a spherical
triangle with angles A, B, C, then

sin a
sin A

=
sin b
sin B

=
sin c
sin C

Proof. Drop a perpendicular to H from C. Al-Wafā says

sin B =
sin h
sin a

and sin A =
sin h
sin b

Eliminate sin h for the first equality. The rest is symmetry.

Al-Wafā’s proof was similar, though a little more complicated. He
extended AB and BC to quarter circles resulting in a spherical
triangle with right angles at D and E. Since DE is an arc with
central angle B, we have DE = B. Since BD = 90°, Al-Wafā’s
theorem implies

sin h
sin a

=
sin B

sin 90°
=⇒ sin h = sin a sin B

Mirroring this by extending AB past B and equating the sin h
terms yields the result.
Armed with these results, al-Wafā could solve spherical triangles.
As with his sine rule argument, his method required several aux-
iliary triangles.
Al-Bı̄rūnı̄ simplified matters by developing the cosine rule. We
apply his method to find the qibla from a location L—remember:
for simplicity, the sphere (Earth!) has radius 1.
Let M be Mecca and N the north pole. The qibla is β, the initial
bearing from L to M. Our (known) initial data are the latitudes
and longitudes of L, M, specifically:

• α is the difference in the longitudes.

• b, c are the colatitudes37 of M, L respectively.

The cosine rule follows from Ptolemy’s Theorem (pg. 44). Extend NL to Q with the same latitude as
M. Similarly let P ∈ NM have the same latitude as L. By symmetry, L, P, Q, M are coplanar, whence
the quadrilateral LPQM lies on the intersection of a plane and a sphere: a circle! Measured as straight
lines (chords) and using symmetry (|PQ| = |LM| and |LQ| = |PM|), Ptolemy says

|LM| |PQ| = |LQ| |PM|+ |LP| |QM| =⇒ |LM|2 = |LQ|2 + |LP| |QM|

37Colatitude is measured southwards from the north pole, thus equaling 90° minus latitude. Since the sphere has radius
1, the arc-lengths b, c equal the colatitudes in radians.
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The great circle arc-lengths on the sphere may be found from the straight distances via the usual
chord relations: e.g.,

|LM| = crd LM = 2 sin
LM

2

Ptolemy’s theorem now becomes a relation between arc-lengths

sin2 LM
2

= sin2 b − c
2

+ sin
LP
2

sin
QM

2

By bisecting α we obtain two pairs of right-triangles; al-Wafā tells
us that

sin
α

2
=

sin LP
2

sin c
=

sin QM
2

sin b

whence

sin2 LM
2

= sin2 b − c
2

+ sin2 α

2
sin c sin b (∗)

For final simplifications, apply the multiple-angle formulæ (sin2 x
2 =

1
2 (1 − cos x) and cos(b − c) = cos b cos c + sin b sin c).

Corollary (Cosine rule). In a spherical triangle with sides a, b, c and
angle α opposite a, we have

cos a = cos b cos c + sin b sin c cos α

In our triangle of interest, a = LM. Given L, M, one uses the cosine rule to compute a and then the
sine rule to find the qibla β:

sin b
sin β

=
sin a
sin α

=⇒ sin β =
sin α sin b

sin a

Whew!

For fun, here is some real-world data: the co-ordinates of Mecca and London are 21°25’ N 39°49’ E
and 51°30’ N 8’ W respectively. This corresponds to

α = 39°57′, b = 68°35′, c = 38°30′

By al-Bı̄rūnı̄’s cosine rule,

cos a = cos 68°35′ cos 38°30′ + sin 68°35′ sin 38°30′ cos 39°57′ =⇒ a = 43.110°

Since Earth’s circumference is 24,900 miles, the London → Mecca distance is 43.110×24,900
360 = 2, 981

miles. Al-Wafā’s sine rule computes the qibla

β = 180° − sin−1 sin α sin b
sin a

= 118°59′

where we subtracted from 180° since London is north of Mecca. Check it yourself at the Great Circle
Mapper (the website uses airports so the result uses slightly different initial data).
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Spherical Trigonometry Cheat Sheet!

Let △ABC be a spherical triangle with side-lengths a, b, c on a sphere of radius 1.

Basic trigonometry. If △ABC is right-angled at C

sin A =
sin a
sin c

cos A =
tan b
tan c

tan A =
tan a
sin b

Al-Wafā essentially proved the first; the others follow from trig identities (cos2 A = 1 − sin2 A . . .)

Sine rule (Al-Wafā)
sin A
sin a

=
sin B
sin b

=
sin C
sin c

Cosine rule (Al-Bı̄rūnı̄)

cos c = cos a cos b + sin a sin b cos C

The spherical Pythagorean Theorem is the special case cos c = cos a cos b (C = 90°).

If the sphere has radius r, simply divide all lengths by r before applying the results; e.g.,

sin A =
sin(a/r)
sin(c/r)

As r → ∞, we have sin a
r ≈ a

r and cos a
r ≈ 1 − a2

2r2 , which recover the flat (Euclidean geometry)
versions of these statements.

Examples

1. On a sphere of radius 1, an equilateral triangle has side length π
3 . Splitting it in half creates two

right-triangles with adjacent π
6 and hypotenuse π

3 . The angles in the triangle are therefore

α = cos−1 tan π
6

tan π
3
= cos−1 1

3
≈ 70.53°

The angle sum in the triangle is 3α ≈ 211.59°!

2. On the earth’s surface, an airfield is at position C and two planes are at A and B. The bearings
and distances to the aircraft are 45°, 2000 miles, and 90°, 4000 miles respectively. Find the
distance between the aircraft.

This is just the cosine rule! We have a triangle with sides 2000 and 4000 and angle 45° between
them. If r = 4000 miles is the radius of the earth, then

cos
c
r
= cos

2000
r

cos
4000

r
+ sin

2000
r

sin
4000

r
cos 45°

= cos
1
2

cos 1 +
1√
2

sin
1
2

sin 1

=⇒ c = 2833 miles

This is a little closer (as expected) than the value (2947 miles) one would obtain from assuming
a flat Earth!

Modern navigators use a slightly different, though equivalent, approach to minimize the error
in estimating cosine for small values: look up the haversine formula if you’re interested.
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Exercises 6.3. 1. A right-isosceles triangle on the surface of a unit sphere has equal legs of length
π
4 . Find the length of the hypotenuse and the sum of the angles in the triangle.

2. Explain the observation on page 62 that

0° < α − β < α + β < 90° =⇒ sin(α + β)− sin α < sin α − sin(α − β)

is the downwards concavity of the sine function.

3. Suppose we have a spherical triangle (sphere radius 1) as on page 65 with data

c = 30°, b = 60°, α = 60°

(a) Use the cosine rule to find a.
(b) Compute the remaining angles in the triangle. What do you observe about the sum of the

angles α + β + γ?

4. Determine the qibla for Rome (latitude 41°53’ N, longitude 12°30’ E).

5. Al-Bı̄rūnı̄ devised a method for determining the radius r of the
earth by sighting the horizon from the top of a mountain of known
height h. He would measure α, the angle of depression from the
horizontal to which one sights the apparent horizon. Show that

r =
h cos α

1 − cos α

In a particular case, al-Bı̄rūnı̄ measures α = 34′ from a mountain of
height 652; 3, 18 cubits. Assuming that a cubit equals 18′′, convert
your answer to miles and compare with the modern value. Discuss
the efficacy of this method.

r
r

h α

6. On a sphere of radius r, Pythagoras’ Theorem may be stated

cos
c
r
= cos

a
r

cos
b
r

(∗)

where c is the hypotenuse and a, b the other side-lengths. Use the

Maclaurin series cos x =
∞
∑

n=0

(−1)nx2n

(2n)! to expand (∗) to degree 4.

Suppose a, b are constant so that c is a function of r. Prove that
lim
r→∞

c2 = a2 + b2. Why does this make sense?

7. Construct a triangle on the surface of a sphere of radius r by taking
two lines of longitude making an angle θ from the north pole to the
equator. Prove that the area of the triangle is

A = r2θ

What does Pythagoras (∗) say for this triangle?
(Hint: What fraction of the sphere is covered by the triangle?)
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