
4 Hyperbolic Geometry

4.1 History: Saccheri, Lambert and Absolute Geometry

For 2000 years after Euclid, many mathematicians believed that his parallel postulate could not be
an independent axiom. Rigorous work on this problem was undertaken by Giovanni Saccheri (1667–
1733) & Johann Lambert (1728–1777); both attempted to force contradictions by assuming the nega-
tion of the parallel postulate. While this approach ultimately failed, their insights supplied the foun-
dation of a new non-Euclidean geometry. Before considering their work, we define some terms and
recall our earlier discussion of parallels (pages 10–13).

Definition 4.1. Absolute or neutral geometry is the axiomatic system comprising all of Hilbert’s
axioms except Playfair. Euclidean geometry is therefore a special case of neutral geometry.
A non-Euclidean geometry is (typically) a model satisfying most of Hilbert’s axioms but for which
parallels might not exist or are non-unique:

There exists a line ℓ and a point P ̸∈ ℓ through which there are no parallels or at least two.

For instance, spherical geometry is non-Euclidean since there are no parallel lines—Hilbert’s axioms
I-2 and O-3 are false, as is the exterior angle theorem.

Results in absolute geometry The conclusions of Euclid’s first 28 theorems are valid.

• Basic constructions: bisectors, perpendiculars, etc.

• Triangle congruence theorems: SAS, ASA, SAA, SSS.

• Exterior angle theorem and its consequences: ℓ

m
P

β

α

– Side/angle comparison and triangle inequality (Exercise 2.3.5).

– Existence of a parallel m to a line ℓ through a point P ̸∈ ℓ via congruent angles

α ∼= β =⇒ ℓ ∥ m

Arguments making use of unique parallels The following results were proved using Playfair’s
axiom or the parallel postulate, whence the arguments are false in absolute geometry:

• A line crossing parallel lines makes congruent angles: in the picture, ℓ ∥ m =⇒ α ∼= β. This is
the uniqueness claim in Playfair: the parallel m to ℓ through P is unique.

• Angles in a triangle sum to 180°.

• Constructions of squares/rectangles.

• Pythagoras’ Theorem.

While our arguments for the above are false in absolute geometry, we cannot instantly claim that the
results are false, for there might be alternative proofs! To show that these results truly require unique
parallels, we must exhibit a model in which they are false—such will be described in the next section.
The existence of this model explains why Saccheri and Lambert failed in their endeavors; the parallel
postulate (Playfair) is indeed independent of Euclid’s (Hilbert’s) other axioms.
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The Saccheri–Legendre Theorem

We work in absolute geometry, starting with an extension of
the exterior angle theorem based on Euclid’s proof.
Suppose△ABC has angle sum Σ△ and construct M and E fol-
lowing Euclid to the arrangement pictured. Observe:

M

A

B C

E

1. ∡ACB + ∡CAB = ∡ACB + ∡ACE < 180° is the exterior angle theorem. More generally, the
exterior angle theorem says that the sum of any two angles in a triangle is strictly less than 180°.

2. △ABC and△EBC have the same angle sum

Σ△ = •+•+•+•
Just look at the picture—remember that we do not know whether Σ△ = 180°!

3. △EBC has at least one angle (∡EBC or ∡BEC) measuring ≤ 1
2∡ABC.

Iterate this construction: if ∡EBC ≤ 1
2∡ABC, start by bisecting CE; otherwise bisect BC . . . The result

is an infinite sequence of triangles△1 = △EBC,△2,△3, . . . with two crucial properties:

(a) All triangles have same angle sum Σ△ = Σ△1 = Σ△2 = · · · .

(b) △n has at least one angle measuring αn ≤ 1
2n∡ABC.

Now suppose Σ△ = 180° + ϵ is strictly greater than 180°. Since lim 1
2n = 0, we may choose n large

enough to guarantee αn < ϵ. But then the sum of the other two angles in △n would be greater than
180°, contradicting the exterior angle theorem (observation 1)! We have proved a famous result.

Theorem 4.2 (Saccheri–Legendre). In absolute geometry, triangles have angle sum Σ△ ≤ 180°.

Saccheri’s failed hope was to prove equality without invoking the parallel postulate.

Saccheri and Lambert Quadrilaterals

Two families of quadrilaterals in absolute geometry are named in honor of these pioneers.

Definition 4.3. A Saccheri quadrilateral ABCD satisfies

AD ∼= BC and ∡DAB = ∡CBA = 90°

AB is the base and CD the summit.
The interior angles at C and D are the summit angles.

A Lambert quadrilateral has three right-angles; for instance AMND
in the picture.

BA M

N

CD

We draw these with curved sides to indicate that the summit angles need not be right-angles, though
we haven’t yet exhibited a model which shows they could be anything else. Regardless of how they
are drawn, AD, BC and CD are all segments!
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The apparent symmetry of a Saccheri quadrilateral is not an illusion.

Lemma 4.4. 1. If the base and summit of a Saccheri quadrilateral
are bisected, we obtain congruent Lambert quadrilaterals.

2. The summit angles of a Saccheri quadrilateral are congruent.

3. In Euclidean geometry, Saccheri and Lambert quadrilaterals
are rectangles (four right-angles). BA M

N
CD

Parts 1 and 2 are exercises. We could interpret part 3 as saying that Saccheri and Lambert quadrilat-
erals are as close as we can get to rectangles in absolute geometry.

Proof of 3. By part 1 we need only prove this for a Saccheri quadrilateral. Following the exterior angle
theorem,

←→
AB is a crossing line making congruent right-angles, whence AD ∥ BC.

However
←→
CD also crosses the same parallel lines. By the parallel postulate, the summit angles sum

to a straight edge. Since these are congruent, they are both right-angles.

We now show that drawing acute summit angles is justified by the Saccheri–Legendre Theorem.

Theorem 4.5. The summit angles of a Saccheri quadrilateral measure ≤ 90°.

Proof. Suppose ABCD is a Saccheri quadrilateral with base AB.

Extend CB to E (opposite side of AB to C) such that BE ∼= DA.
Let M be the midpoint of AB.
SAS implies ∠DAM ∼= △EBM; the vertical angles at M are con-
gruent, whence M lies on DE.

A B

CD

E

M

By Saccheri–Legendre, the (congruent) summit angles at C and D sum to

∡ADC +∡DCB = ∡ADM +∡EDC +∡DCE = ∡CED +∡EDC +∡DCE ≤ 180°

Exercises 4.1. Work in absolute geometry; you cannot use Playfair’s Axiom or the parallel postulate!

1. Use the first picture to prove parts 1 and 2 of Lemma 4.4.

2. Use the first picture to give an alternative proof of Theorem 4.5.

3. Suppose □ABCD has four right-angles (second picture). Show
that AC splits □ABCD into two congruent triangles, and con-
clude that the opposite sides are congruent.
Why is this question easier in Euclidean geometry?

4. Suppose two Saccheri quadrilaterals have congruent bases
(AB) and perpendicular sides (AD, BC). Prove that they are
congruent.

5. (Hard!) Suppose Saccheri quadrilaterals have congruent sum-
mits and perpendicular sides. Prove that the quadrilaterals are
congruent.

BA M

N
CD

A B

CD
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4.2 Models of Hyperbolic Geometry

In the 1820-30s, János Bolyai, Carl Friedrich Gauss and Nikolai Lobachevsky independently took the
next step, each describing versions of non-Euclidean geometry.20 Rather than attempting to establish
the parallel postulate as a theorem within Euclidean geometry, a new geometry was defined based on
the first four of Euclid’s postulates plus an alternative to the parallel postulate:

Axiom 4.6 (Bolyai–Lobachevsky/Hyperbolic Postulate). Given a line ℓ and a point P ̸∈ ℓ, there
exist at least two parallel lines to ℓ through P.

The resulting axiomatic system21 is called hyperbolic geometry. Consistency was proved in the late
1800s by Beltrami, Klein and Poincaré, each of whom created models by defining point, line, etc., in
novel ways. One of the simplest is named for Poincaré, though was first proposed by Beltrami.

Definition 4.7. The Poincaré disk is the interior of the unit circle{
(x, y) ∈ R2 : x2 + y2 < 1

}
or

{
z ∈ C : |z| < 1

}
A hyperbolic line is a diameter or a circular arc meeting the unit circle at
right-angles.
In the picture we have a hyperbolic line ℓ and a point P: also drawn
are several parallel hyperbolic lines to ℓ passing through P.
Points on the boundary circle are termed omega-points: these are not in
the Poincaré disk and are essentially ‘points at infinity.’

P

ℓ

Since it depends only on the incidence axioms, there exists a unique hyperbolic line joining any two
points in the Poincaré disk.
Hyperbolic lines may straightforwardly be described using equations in analytic geometry.

Lemma 4.8. Every hyperbolic line in the Poincaré disk model is
one of the following:

• A diameter passing through (c, d) ̸= (0, 0) with Euclidean
equation dx = cy.

• The arc of a (Euclidean) circle with equation

x2 + y2 − 2ax− 2by + 1 = 0 where a2 + b2 > 1

and (Euclidean) center and radius

C = (a, b) and r =
√

a2 + b2 − 1

1

r

O

P
Q

C = (a, b)

20Bolyai indeed is the source of the term ‘absolute geometry.’
21We assume all of Hilbert’s axioms, replacing Playfair axiom with the hyperbolic postulate.
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Example 4.9. We compute the hyperbolic line through P = (0, 1
2 ) and Q = ( 1

2 , 1
3 ) in the Poincaré

disk: this is the picture shown in Lemma 4.8.
Substitute into x2 + y2 − 2ax− 2by + 1 = 0 to obtain a system of equations for a, b:{

1
4 − b + 1 = 0
1
4 +

1
9 − a− 2

3 b + 1 = 0
=⇒ (a, b) =

(
19
36

,
5
4

)

The required hyperbolic line
←→
PQ therefore has equation

x2 + y2 − 19
18

x− 5
2

y + 1 = 0 or
(

x− 19
36

)2

+

(
y− 5

4

)2

=
545
648

The undefined terms point, line, on and between now make sense. To complete the model, we need to
define congruence of hyperbolic segments and angles.

Definition (4.7 continued). The hyperbolic distance between points P, Q in the Poincaré disk is22

d(P, Q) := cosh−1

(
1 +

2 |PQ|2

(1− |P|2)(1− |Q|2)

)

where |PQ| is the Euclidean distance and |P| , |Q| are the Euclidean
distances of P, Q from the origin.
Hyperbolic segments are congruent if they have the same length.
The angle between hyperbolic rays is that between their tangent lines:
angles are congruent if they have the same measure.

θ

Lemma 4.10. The hyperbolic distance of P from the origin is

d(O, P) = cosh−1 1 + |P|2

1− |P|2
= ln

1 + |P|
1− |P|

Example 4.11. We calculate the sides and angles in the isosceles right-triangle
with vertices O = (0, 0), P = ( 1

2 , 0) and Q = (0, 1
2 ).

|P| = 1
2 = |Q| , |PQ|2 = 1

4 +
1
4 = 1

2

d(O, P) = d(O, Q) = ln
1 + 1

2

1− 1
2

= ln 3 = cosh−1 5
3
≈ 1.099

d(P, Q) = cosh−1

(
1 +

2 · 1
2

(1− 1
4 )

2

)
= cosh−1 25

9
≈ 1.681

θP

Q

O

22It seems reasonable for hyperbolic functions to play some role in hyperbolic geometry! As a primer:

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
, tanh x =

sinh x
cosh x

=
ex − e−x

ex + e−x and cosh−1 x = ln(x +
√

x2 − 1)

54



To find the interior angle θ, implicitly differentiate the equation for the hyperbolic line
←→
PQ:

x2 + y2 − 5
2

x− 5
2

y + 1 = 0 =⇒ dy
dx

∣∣∣∣
P
=

4x− 5
5− 4y

∣∣∣∣
P
= −3

5
=⇒ θ = tan−1 3

5
≈ 30.96°

By symmetry, we have the same angle at Q. With a right-angle at O, we conclude that the angle sum
is approximately Σ△ = 151.93°!
As a sanity check, we compare data for△OPQ and the Euclidean triangle with the same vertices

Property Hyperbolic Triangle Euclidean Triangle
Edge lengths 1.099 : 1.099 : 1.681 0.5 : 0.5 : 0.707
Relative edge ratios 1 : 1 : 1.530 1 : 1 : 1.414
Angles 30.06°, 30.96°, 90° 45°, 45°, 90°

The hyperbolic triangle has longer sides and a relatively longer hypotenuse. Moreover, its side lengths
do not satisfy the Pythagorean relation a2 + b2 = c2 (though cosh a cosh b = cosh c . . .).

The next result is an exercise; it says that distance increases
smoothly as one moves along a hyperbolic line.

Lemma 4.12. Fix P and a hyperbolic line through P. Then the
distance function Q 7→ d(P, Q) maps the set of points on one side
of P differentiably and bijectively onto the interval (0, ∞).

The Lemma means that hyperbolic circles are well-defined and
look like one expects: the circle of hyperbolic radius δ centered at
P is the set of points Q such that d(P, Q) = δ.

In the picture are several hyperbolic circles and their centers; one has several of its radii drawn.
Observe how the centers are closer (in a Euclidean sense) to the boundary circle than one might
expect: this is since hyperbolic distances measure greater the further one is from the origin.
In fact (Exercise 4.2.5) hyperbolic circles in the Poincaré disk model are also Euclidean circles! Their
hyperbolic radii moreover intersect the circles at right-angles, as we’d expect.

Theorem 4.13. The Poincaré disk is a model of hyperbolic geometry.

Sketch Proof. A rigorous proof would require us to check the hyperbolic postulate and all Hilbert’s
axioms except Playfair. Instead we verify Euclid’s postulates 1–4 and the hyperbolic postulate 5.

1. Lemma 4.8 says we can join any given points in the Poincaré disk by a unique segment.

2. A hyperbolic segment joins two points inside the (open) Poincaré disk. The distance formula in-
creases (Lemma 4.12) unboundedly as P moves towards the boundary circle, so we can always
make a hyperbolic line longer.

3. Hyperbolic circles are defined above.

4. All right-angles are equal since the notion of angle is unchanged from Euclidean geometry.

5. The first picture on page 53 shows multiple parallels!

55



Other Models of Hyperbolic Space: non-examinable

There are several other models of hyperbolic space. Here are three of the most common.

Klein Disk Model This is similar to the Poincaré disk, though lines are chords of the unit circle
(‘Euclidean’ straight lines!) and the distance function is different:

dK(P, Q) =
1
2

∣∣∣∣ln |PΘ| |QΩ|
|PΩ| |QΘ|

∣∣∣∣
where Ω, Θ are where the chord

←→
PQ meets the boundary circle.

The cost is that the notion of angle is different. The picture shows
perpendicularity: Given a hyperbolic line find the tangents to where
it meets the boundary circle. Any chord whose extension passes
through the intersection of these tangents is perpendicular to the orig-
inal line. Measuring other angles is difficult!

Ω

Θ

P

Q

Gauss’ famous theorem egregium says that this problem is unavoidable; there is no model in which
lines and angles both have the same meaning as in Euclidean geometry.

Poincaré Half-plane Model Widely used in complex analysis, the
points comprise the upper half-plane (y > 0) in R2, while hyperbolic
lines are verticals or semicircles centered on the x-axis

x = constant or (x− a)2 + y2 = r2

and angles are the same as in Euclidean space. The expression for
hyperbolic distance remains horrific! The picture shows several hy-
perbolic lines and a hyperbolic triangle.

y

x

Hyperboloid Model Points comprise the upper sheet (z ≥ 1) of the hyperboloid x2 + y2 = z2 − 1.
A hyperbolic line is the intersection of the hyperboloid with a plane through the origin. Isometries
(congruence) can be described using matrix-multiplication and hyperbolic distance is relatively easy:
given P = (x, y, z) and Q = (a, b, c), hyperbolic distance is

d(P, Q) = cosh−1(cz− ax− by)

Difficulties include working in three dimensions and the fact
that angles are awkward.
The relationship to the Poincaré disk is via projection. Place
the disk in the x, y-plane centered at the origin and draw a
line through the disk and the point (0, 0,−1). The intersec-
tion of this line with the hyperboloid gives the correspon-
dence.
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Exercises 4.2. Answer all questions within the Poincaré disk model.

1. (a) Find the equation of the hyperbolic line joining P = ( 1
4 , 0) and Q = (0, 1

2 ).
(b) Find the side lengths of the hyperbolic triangle△OPQ where O = (0, 0) is the origin.
(c) The triangle in part (b) is right-angled at O. If o, p, q represent the hyperbolic lengths of

the sides opposite O, P, Q respectively, check that the Pythagorean theorem p2 + q2 = o2

is false. Now compute cosh p cosh q: what do you observe?

2. Let P =

(
1
2 ,
√

5
12

)
and Q =

(
1
2 ,−

√
5
12

)
(a) Compute the hyperbolic distances d(O, P), d(O, Q) and d(P, Q), where O is the origin.
(b) Compute the angle ∡POQ.

(c) Show that the hyperbolic line ℓ =
←→
PQ has equation

x2 − 10
3

x + y2 + 1 = 0

(d) Calculate dy
dx and hence show that a tangent vector to ℓ at P is

√
15i + 7j. Use this to

compute ∡OPQ.

3. We extend Example 4.11. Let c ∈ (0, 1) and label O = (0, 0), P = (c, 0) and Q = (0, c).

(a) Compute the hyperbolic side lengths of△OPQ.
(b) Find the equation of the hyperbolic line joining P = (c, 0) and Q = (0, c).

(c) Use implicit differentiation to prove that the interior angles at P and Q measure tan−1 1−c2

1+c2 .
What happens as c→ 0+ and as c→ 1−?

4. Let 0 < r < 1 and find the hyperbolic side lengths and interior angles of the equilateral triangle
with vertices (r, 0), (− r

2 ,
√

3r
2 ) and (− r

2 ,−
√

3r
2 ).What do you observe as r → 0+ and r → 1−?

5. (a) Use the cosh distance formula to prove that the hyperbolic circle of hyperbolic radius
ρ = ln 3 and center C = ( 1

2 , 0) in the Poincaré disk has Euclidean equation(
x− 2

5

)2

+ y2 =
4

25

(b) Prove that every hyperbolic circle in the Poincaré disk is in fact a Euclidean circle.

6. We sketch a proof of Lemma 4.12.

(a) Prove that f (x) = cosh−1 x = ln(x +
√

x2 − 1) is strictly increasing on the interval (1, ∞).

(b) By part (a), it is enough to show that |PQ|2
1−|Q|2 increases as Q moves away from P along a

hyperbolic line. Appealing to symmetry, let P = (0, c) lie on the hyperbolic line with
equation x2 + y2 − 2by + 1 = 0. Prove that

|PQ|2

1− |Q|2
=

(b− c)y + bc− 1
1− by

and hence show that this is an increasing function of y when c < y < 1
b .
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4.3 Parallels, Perpendiculars & Angle-Sums

From now on, all examples will be illustrated within the Poincaré
disk model. Recall (page 50) that we may use anything from ab-
solute geometry; as a sanity check, think through how the picture
illustrates the following result.

Lemma 4.14. Through a point P not on a line ℓ there exists a
unique perpendicular to ℓ.

We now consider a major departure from Euclidean geometry.

P

B

A

Q

R

M

ℓ

m

Theorem 4.15 (Fundamental Theorem of Parallels). Given P ̸∈ ℓ, drop
the perpendicular PQ. Then there exist precisely two parallel lines m, n to ℓ
through P with the following properties:

1. A ray based at P intersects ℓ if and only if it lies between m and n in
the same fashion as

−→
PQ.

2. m and n make congruent acute angles µ with
−→
PQ.

ℓ

R

Q

P

n

m

µ

Definition 4.16. The lines m, n are the limiting, or asymptotic, parallels to ℓ through P. Every other
parallel is an ultraparallel. The angle of parallelism at P relative to ℓ is the acute angle µ.

More generally, parallel lines ℓ, m are limiting if they ‘meet’ at an omega-point.
The proof depends crucially on ideas from analysis, particularly continuity & suprema. As you read
through, consider how everything except the last line is valid in Euclidean geometry!

Proof. Points R ∈ ℓ are in continuous bijective correspondence with the real numbers (Lemma 4.12).
It follows that we have a continuous increasing function

f : R→ (−90°, 90°) where f (r) = ∡QPR

By Saccheri–Legendre, ±90° ̸∈ range f . Since dom f = R is an interval, the intermediate value
theorem forces range f to be a subinterval I ⊆ (−90°, 90°).

Given R ∈ ℓ, transfer QR to the other side of Q to obtain S ∈ ℓ. By SAS,
∡QPS = −∡QPR whence I = range f is symmetric: θ ∈ I ⇐⇒ −θ ∈ I.
Define µ := sup I ∈ (0°, 90°] to be the least upper bound; by symmetry,
inf I = −µ. Let m and n be the lines making angles ±µ respectively.
Plainly every ray making angle θ ∈ (−µ, µ) intersects ℓ.
Suppose m intersected ℓ at M. Let M̃ ∈ ℓ lie on the other side of M from
Q. Since f is increasing, we see that ∡QPM̃ > µ, which contradicts
µ = sup I. It follows that m is parallel to ℓ. Similarly n ∥ ℓ and we have
part 1.

ℓ

R

S
Q

P

n

m? M
M̃

µ

Finally m = n ⇐⇒ µ = 90°. In such a case there would exist only one parallel to ℓ through P,
contradicting the hyperbolic postulate.
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The picture suggests a bijective relationship between µ and the perpendicular distance. Here it is; we
postpone a simplified argument to Exercise 4.3.3; the full result follows from a discussion of omega-
triangles in the next section.

Corollary 4.17. The perpendicular distance δ = d(P, Q) and the angle of parallelism are related via

cosh δ = csc µ or equivalently tan
µ

2
= e−δ

Examples 4.18. 1. Let ℓ be the hyperbolic line x2 + y2 − 4x + 1 = 0.

Intersect with x2 + y2 = 1 to find Ω =
(

1
2 ,
√

3
2

)
and Θ =

(
1
2 ,−

√
3

2

)
.

By symmetry, the perpendicular from P = (0, 0) to ℓ has equation
y = 0 and results in Q = (2−

√
3, 0).

The limiting parallels through P have equations y = ±
√

3x, from
which the angle of parallelism is µ = tan−1

√
3 = 60°.

In accordance with Corollary 4.17, we easily verify that

P

Ω

Θ

Q

δ = d(P, Q) = ln
1 + (2−

√
3)

1− (2−
√

3)
= ln

√
3 ↭ e−δ =

1√
3
= tan

µ

2

2. We find the limiting parallels and the angle of parallelism when

P =

(
− 3

10
,

4
10

)
and x2 + y2 + 2x + 4y + 1 = 0

First find the omega-points by intersecting with x2 + y2 = 1:

Ω = (−1, 0), Θ =

(
3
5

,−4
5

)
Plainly

←→
PΘ is the diameter y = − 4

3 x with slope − 4
3 .

P

Ω

Θ

Q

µ

For
←→
PΩ, substitute into the usual expression x2 + y2 − 2ax− 2by + 1 = 0 and implicitly differ-

entiate:

x2 + y2 + 2x− 13
8

y + 1 = 0 =⇒ dy
dx

∣∣∣∣
P
=

16(1 + x)
13− 16y

∣∣∣∣
P
=

16 · 7
10

13− 64
10

=
56
33

The angle of parallelism is half that between the tangent vectors
( −33
−56

)
and

( 3
−4
)
:

µ =
1
2

cos−1

( −33
−56

)
·
( 3
−4
)∣∣( −33

−56

)∣∣ ∣∣( 3
−4
)∣∣ = 1

2
cos−1 5

13
≈ 33.69°

Corollary 4.17 can now be used to find the perpendicular distance d(P, Q) = ln 3+
√

13
2 .

Without the development of later machinery, it is very tricky to compute Q. If you want a serious

challenge, see if you can convince yourself that Q =
(

93(−29+2
√

117)
1865 , 26(−29+2

√
117)

1865

)
.
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Angles in Triangles, Rectangles and the AAA Congruence

We finish this section three important differences between hyperbolic and Euclidean geometry.

Theorem 4.19. In hyperbolic geometry:

1. There are no rectangles (quadrilaterals with four right-angles). In particular, the summit angles
of a Saccheri quadrilateral are acute.

2. The angles in a triangle sum to strictly less than 180°.

3. (AAA congruence) If the angles of△ABC and△DEF are congruent in pairs, then the triangles
are congruent (△ABC ∼= △DEF).

Note that AAA is a congruence theorem in hyperbolic geometry, not a similarity theorem (compare
with Theorem 2.42). Also revisit the observations on page 50. These results largely show that Euclid’s
arguments making use of the parallel postulate actually require it!

Proof. Given a rectangle □ABCD, reflect across CD (Exercise 4.1.4) and repeat to obtain an infinite
family of congruent rectangles. Let P ∈ CD and drop perpendiculars to R ∈ AB and C1 as shown.
□PRBC is a rectangle: if not, then one of □ARPD or □PRBC would have angle sum exceeding 360°,
contradicting Saccheri–Legendre (Theorem 4.2). Similarly □DPC1D1 is a rectangle.

By Exercise 4.1.3,
−→
BP splits □PRBC into a pair of congruent triangles. In particular,

−→
BP crosses CD at

the same angle as it leaves B. We find ourselves in the original configuration: the ray
−→
BP emanates

from the upper-right vertex of □DPC1D1 at the same angle as it does for □ABCD!
Iterate the process to obtain the picture, each time dropping the perpendicular from Pk to CD to
produce the equidistant sequence Q1, Q2, Q3, . . . Since CD is finite, this eventually23 passes D: some
Qn lies on the opposite side of

←→
AD. It follows that Pn ∈

−→
BP does also, whence

−→
BP intersects

←→
AD.

A

BC

D

RP

P1

P2

P3

P4

Q1

Q2

Q3

Q4

C1

D1

C2

D2

C3

D3

Since P ∈ CD was generic, we see that any ray based at B on the same side as AD intersects
←→
AD. The

angle of parallelism of B with respect to
←→
AD is therefore 90°, contradicting the hyperbolic postulate.

Parts 2 and 3 are addressed in Exercises 4 and 5.

23This is the Archimedean property from analysis: a > b =⇒ ∃n ∈N such that nb > a.
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Exercises 4.3. 1. Prove the following in hyperbolic geometry (use Theorem 4.19).

(a) Two hyperbolic lines cannot have more than one common perpendicular.
(b) Saccheri quadrilaterals with congruent summits and summit angles are congruent.

2. Let ℓ be the line x2 + y2 − 4x + 2y + 1 = 0 and drop a perpendicular from O to Q ∈ ℓ.

(a) Explain why Q has co-ordinates ( 2√
5
t,− 1√

5
t) for some t ∈ (0, 1).

(b) Show that the hyperbolic distance δ = d(O, Q) of ℓ from the origin is ln 1+
√

5
2 .

(c) Ω = (0,−1) is an omega-point for ℓ. Compute the angle of parallelism µ = ∡QOΩ
explicitly and check that cosh δ = csc µ.

3. Suppose P = (0, 0) is the origin, let 0 < r < 1 and Q = (r, 0). Also let ℓ be the hyperbolic line
passing through Q at right-angles to PQ.

(a) Find the equation of ℓ and prove that its limiting parallels through P have equations

±2ry = (1− r2)x

(Hint: what does symmetry tell you about the location of the Euclidean center of ℓ?)
(b) Let µ be the angle of parallelism of P relative to ℓ and δ = d(P, Q) the hyperbolic distance.

Prove that cosh δ = csc µ.
(Hint: csc2µ = 1 + cot2µ = 1 + 1

tan2µ
= . . .)

(c) By differentiating, verify the claim that δ and µ are bijectively related.

4. We work in absolute geometry.

(a) Suppose A, B and P are non-collinear and drop the per-
pendicular from P to Q ∈ ←→AB.
If P lies between the perpendiculars ℓ, m to

←→
AB through A

and B, prove that Q is interior to AB.
(Hint: show that the other cases are impossible)

(b) Suppose there exists a triangle with angle sum 180°. Show
that there exists a right-triangle with angle sum 180° and
therefore a rectangle.

ℓ m

A B

P

Q

(Since rectangles are impossible in hyperbolic geometry, this proves part 2 of Theorem 4.19)

5. We prove the AAA congruence theorem (Theorem 4.19, part 3).

Suppose △ABC and △DEF are non-congruent but have angles congruent in pairs. WLOG as-
sume DE < AB. By uniqueness of angle/segment transfer, there exist unique points G ∈ AB
and H ∈ −→AC such that (SAS)△DEF ∼= △AGH.

The picture shows the three possible arrangements.

(a) H is interior to AC.

(b) H = C.

(c) C lies between A and H.

In each case, explain why we have a contradiction.

A

B

C = H?
G

H?

H?
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4.4 Omega-triangles

Recall that limiting parallels (Definition 4.16) ‘meet’ at an omega-point.

Definition 4.20. An omega-triangle or ideal-triangle is a ‘triangle’ one or
more of whose vertices is an omega-point. At least two of the sides of
an omega-triangle form a pair of limiting parallels.

The three types of omega-triangle depend on how many omega-points
they have. In the picture, △PQΩ has one omega-point, △PΩΘ has
two and△ΩΘΞ three!

P

Ω

Θ

Ξ

Q

Amazingly, many of the standard results of absolute geometry also apply to omega-triangles! The
first can be thought of as the AAA congruence theorem where one ‘angle’ is zero.

Theorem 4.21 (Angle-Angle Congruence for Omega-triangles). Suppose △ABΩ and △PQΘ are
omega-triangles, each with a single omega-point. If the angles are congruent in pairs

∠ABΩ ∼= ∠PQΘ ∠BAΩ ∼= ∠QPΘ

then the finite sides of each triangle are also congruent: AB ∼= PQ.

It doesn’t really make sense to speak of the ‘infinite’ sides, or the ‘angles’ at omega-points, being
congruent. However, if one defines congruence in terms of isometries (Section 4.6), then this idea is
more reasonable.

Proof. Let T ∈ −→AB be such that AT ∼= PQ. If T = B we are done.

Otherwise, WLOG and for contradiction, assume AB < AT. The hy-
pothesis asserts that the angles at B and T are congruent.

Let M be the midpoint of BT and drop the perpendicular to N ∈ ←→BΩ.

Let L ∈ ←→ΩT be on the opposite side of
←→
BT to N such that TL ∼= BN.

We now have Side-Angle-Side data, whence △NBM ∼= △LTM. The
vertical angles at M are congruent, whence M lies on LN and we have
a right-angle(!) at L.

The angle of parallelism of L relative to
←→
BΩ is now∠NLΩ = 90°, which

contradicts Theorem 4.15.

There are two other possible orientations:

• N could lie on the opposite side of B from Ω. In this case SAS is
applied to the same triangles but with respect to the congruent
magenta angles.

Ω

A

M

N

L

T

B

• In the special case that N = B, the cyan angles are right-angles and the same contradiction
appears: the angle of parallelism of T with respect to

←→
BΩ is 90°.
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Theorem 4.22 (Exterior Angle Theorem for Omega-Triangles). Suppose △PQΩ has a single
omega-point and let P ∗Q ∗ R. Then ∠RQΩ > ∠QPΩ.

Proof. We show that the two other cases are impossible.

(∠RQΩ ∼= ∠QPΩ) This is the contradictory arrangement described in
the previous proof: P = T, Q = B, R = A, and the magenta an-
gles cannot be congruent.

(∠RQΩ < ∠QPΩ) Transfer the latter to Q to produce a ray
−→
QX interior to

∠PQΩ with ∠RQX ∼= ∠QPΩ.

Since
←→
QΩ is a limiting parallel to

←→
PΩ, the Fundamental Theorem

says that
−→
QX intersects

←→
PΩ at some point Y.

We now have △PQY contradicting the standard exterior angle the-
orem (∠RQY ∼= ∠QPY).

Ω

Y

R

P

Q
X

The final congruence theorem is an exercise based on the previous picture.

Corollary 4.23 (Side-Angle Congruence for Omega-triangles). Suppose △PQΩ and △ABΘ have
a single omega-point. If ∠QPΩ ∼= ∠BAΘ and PQ ∼= AB then ∠PQΩ ∼= ∠ABΘ.

A triangle with one omega-point only has three pieces of data: two finite angles and one finite edge.
The AA and SA congruence theorems say that two of these determine the third.

Other observations

Pasch’s Axiom: Versions of this are theorems for omega-triangles.

• If a line crosses a side of an omega-triangle and does not pass through any vertex (including
Ω), then it must pass through exactly one of the other sides.

• (Omega Crossbar Thm) If a line passes through an interior point and exactly one vertex (includ-
ing Ω) of an omega-triangle, then it passes through the opposite side. This is partly embedded
in the proof of Theorem 4.22.

Perpendicular Distance and the Angle of Parallelism: Applied to right-angled omega-triangles, the AA
and SA theorems prove that the angle of parallelism is a bijective function of the perpendicular dis-
tance. Moreover, by transferring the right-angle to the positive x-axis and the other vertex to the
origin, we obtain the arrangement in Exercise 4.3.3, thus completing the proof of Corollary 4.17.

Exercises 4.4. 1. Let△PQΩ be an omega-triangle. Prove that ∡PQΩ +∡QPΩ < 180°

2. Let ℓ and m be limiting parallels. Explain why they cannot have a common perpendicular.

3. Prove the Side-Angle congruence theorem for omega-triangles with one omega-point.

4. What would an ‘omega-triangle’ look like in Euclidean geometry? Comment on the three re-
sults in this section: are they still true?
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4.5 Area and Angle-defect

In this section we consider one of the triumphs of Johann Lambert: the relationship between the
sum of the angles in a triangle and its area. We start with a loose axiomatization of area as a relative
measure. Until explicitly stated otherwise, we work in absolute geometry.

Axiom I Two geometric figures have the same area if and only if they may be sub-divided into
finitely many pairs of mutually congruent triangles.24

Axiom II The area of a triangle is positive.

Axiom III The area of a union of disjoint figures is the sum of the areas of the figures.

Definition 4.24 (Angle defect). Let Σ△ be the sum of the angles in a triangle. Measured in radians,
the angle-defect of△ is π − Σ△.

Since triangles in absolute geometry have Σ△ ≤ π (Theorem 4.2), it follows that

0 ≤ π − Σ△ ≤ π

In Euclidean geometry the defect is always zero, while in hyperbolic geometry the defect is strictly
positive (Theorem 4.19). A ‘triangle’ with three omega-points would have defect π.

Lemma 4.25. Angle-defect is additive: If a triangle is split into two sub-
triangles, then the defect of the whole is the sum of the defects of the parts.

This is immediate from the picture:

[π − (α + γ + ϵ)] + [π − (β + δ + ζ)] = π − (α + β + γ + δ)

since ϵ + ζ = π. Notice that angle-sum is not additive!

C

B

A
Q

γ

β

α

δ

ζ
ϵ

Theorem 4.26 (Area determines angle-sum in absolute geometry). If triangles have the same area,
then their angle-sums are identical.

Of course this trivial in Euclidean geometry where all triangles have the same angle-sum!

Proof. The lemma provides the induction step: if△1 and△2 have the same area, then their interiors
are disjoint unions of a finite collection of mutually congruent triangles:

△1 =
n⋃

k=1

△1,k and △2 =
n⋃

k=1

△2,k where △1,k
∼= △2,k

Each pair△1,k,△2,k has the same angle-defect, whence the angle-defects of△1 and△2 are equal:

defect(△1) =
n

∑
k=1

defect(△1,k) =
n

∑
k=1

defect(△2,k) = defect(△2)

24To allow infinitely many infinitesimal sub-triangles would require ideas from calculus and complicate our discussion.
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Angle-sum determines area in hyperbolic geometry

The converse in hyperbolic geometry relies on a beautiful and reversible construction relating tri-
angles and Saccheri quadrilaterals. The construction itself is valid in absolute geometry, though the
ultimate conclusion that angle-sum determines area is not. If the initial discussion seems difficult,
pretend you are in Euclidean geometry and think about rectangles.

Lemma 4.27. 1. Given △ABC, choose a side BC. Bisect the remaining sides at E, F and drop per-
pendiculars from A, B, C to

←→
EF. Then HICB is a Saccheri quadrilateral with base HI.

2. Conversely, given a Saccheri quadrilateral HICB with summit BC, let A be any point such that←→
HI bisects AB at E. Then the intersection F =

←→
HI ∩ AC is the midpoint of AC.

Both constructions yield the same picture and the following
conclusions:

• The triangle and quadrilateral have equal area.

• The sum of the summit angles of the quadrilateral
equals the angle sum of the triangle.

We chose BC to be the longest side of△ABC—this isn’t nec-
essary, though it helpfully forces E, F to lie between H, I.

A

B CD

E FG

H I

Proof. 1. Two applications of the SAA congruence (follow the arrows!) tell us that

△BEH ∼= △AEG and △CFI ∼= △AFG

We conclude that BH ∼= AG ∼= CI whence HICB is a Sac-
cheri quadrilateral. The area and angle-sum correspon-
dence is immediate from the picture.

2. Suppose the midpoint of AC were at J ̸= F. By part 1, we
may create a new Saccheri quadrilateral with summit BC
using the midpoints E, J.
The perpendicular bisector of BC bisects the bases of both
Saccheri quadrilaterals (Lemma 4.4), creating △EUV
with two right-angles: contradiction.

J

U

V

A

B CD

E
FGH I

We now prove a special case of the main result.

Lemma 4.28. Suppose hyperbolic triangles△ABC and△PQR have congruent sides BC ∼= QR and
the same angle-sum. Then the triangles have the same area.

Proof. Construct the quadrilaterals corresponding to △ABC and △PQR with summits BC ∼= QR.
These have congruent summits and summit angles: by Exercise 4.3.1b they are congruent.

The final observation is what makes this special to hyperbolic geometry. In the Euclidean case, Saccheri
quadrilaterals are rectangles, and congruent summits do not force congruence of the remaining sides.
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Theorem 4.29. In hyperbolic geometry, if △ABC and △PQR have the same angle-sum then they
have the same area.

Proof. If the triangles have a pair of congruent edges, the previous result says we are done. Other-
wise, we use Lemma 4.27 to create a new triangle△LBC which matching the same Saccheri quadri-
lateral as△ABC.
WLOG suppose |AB| < |PQ| and construct the Saccheri quadrilateral with summit BC. Select K on←→
EF such that |BK| = 1

2 |PQ| and extend such that K is the midpoint of BL.

• By Lemma 4.27,

Area(△LBC) = Area(HICB) = Area(△ABC)

• By Theorem 4.26, △LBC has the same angle-sum as
△ABC and thus△PQR.

• △LBC and △PQR share a congruent side (LB ∼= PQ)
and have the same angle-sum. Lemma 4.28 says their
areas are equal.

A

B CD

E F
G

H I

L

K

Since both area and angle-defect are additive, we immediately conclude:

Corollary 4.30. The angle-defect of a hyperbolic triangle is an additive function of its area. By
normalizing the definition of area,25 we may conclude that

π − Σ△ = Area△

Note finally how the AAA congruence (Theorem 4.19, part 3) is related to the corollary:

△ABC ∼= △DEF AAA⇐⇒ angles congruent in pairs

⇓ ⇓
equal area Cor 4.30⇐⇒ same angle-defect

25We have really only proved that π − Σ△ is proportional to Area△. However, it can be seen that these quantities are
equal if we use the area measure arising naturally from the hyperbolic distance function (see page 79).

Corollary 4.30 is a special case of the famous Gauss–Bonnet theorem from differential geometry: for any triangle on a
surface with Gauss curvature K, we have

Σ△ − π =
∫∫
△

K dA

We’ve now met all three special constant-curvature examples of this:

Euclidean space is flat (K = 0) so the angle-defect is always zero.

Hyperbolic space has constant negative curvature K = −1, whence
∫∫
△ dA = −(Σ△ − π) is the angle-defect.

Spherical geometry A sphere of radius 1 has constant positive curvature K = 1 and
∫∫
△ dA is the angle-excess Σ△ − π.
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Example (4.11, cont). The isosceles right-triangle with vertices O, P = ( 1
2 , 0) and Q = (0, 1

2 ) has
angle-sum and area

π

2
+ 2 tan−1 3

5
≈ 151.93° =⇒ area = π −

(
π

2
+ 2 tan−1 3

5

)
=

π

2
− 2 tan−1 3

5
≈ 0.490

A Euclidean triangle with the same vertices has area 1
2 · 1

2 · 1
2 = 1

8 = 0.125.

Generalizing this (Exercise 4.2.3), the triangle with vertices O, P =
(c, 0) and Q = (0, c) has area

π −
(

π

2
+ 2 tan−1 1− c2

1 + c2

)
=

π

2
− 2 tan−1 1− c2

1 + c2

As expected, lim
c→0+

area(c) = 0. In the other limit, the triangle becomes

an omega-triangle with two omega-points and lim
c→1−

area(c) = π
2 : an

infinite ‘triangle’ with finite ‘area’!
O

The limit c→ 1−

Our discussion in fact provides an explicit method for cutting a triangle into sub-triangles and rear-
ranging its pieces to create a triangle with equal area.

A

B C

L

K

S1

S3

△1

△3

P

R

Q

S2

△2

Suppose △1 and △2 have equal area and construct the quadrilaterals S1 and S2. Let L, K be chosen
so that BL ∼= QR and K is the midpoint of BL. We now have:

• △1,△2,△3,S1,S2,S3 have the same area.

• The summit angles of S1,S2,S3 are congruent (half the angle-sum of each triangle).

• S2,S3 are congruent since they have congruent summits and summit angles.

We can now follow the steps in Lemma 4.27 to transform△1 to△2:

△1 → S1 → △3 → S3 ∼= S2 → △2

where each arrow represents cutting off two triangles and moving them. Indeed this works even for
triangles in Euclidean geometry!
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Exercises 4.5. 1. Use Corollary 4.30 to find the area of the hyperbolic triangle with given vertices.
Your answers to exercises from Section 4.2 should supply the angles!

(a) O = (0, 0), P = ( 1
2 ,
√

5
12 ) and Q = ( 1

2 ,−
√

5
12 ).

(b) O = (0, 0), P = ( 1
4 , 0), Q = (0, 1

2 ).

(c) P = (r, 0), Q =
(
− r

2 ,
√

3r
2

)
, R =

(
− r

2 ,−
√

3r
2

)
where 0 < r < 1.

2. In the proof of Theorem 4.29, explain why we can find K such that |BK| = 1
2 |PQ|.

3. Show that there is no finite triangle in hyperbolic geometry that achieves the maximum area
bound π.

(Hard!) For a challenge, try to prove that omega-triangles also satisfy the angle-defect formula:
Area = π − Σ△, so that only triangles with three omega-points have maximum area.

4. Let Ω1, . . . , Ωn be n distinct omega-points arranged counter-clockwise around the boundary
circle of the Poincaré disk. A region is bounded by the n hyperbolic lines

←−→
Ω1Ω2,

←−→
Ω2Ω3, . . . ,

←−−→
ΩnΩ1

What is the area of the region? Hence argue that the ‘area’ of hyperbolic space is infinite.

5. An omega-triangle has vertices O = (0, 0), Ω = (1, 0) and P = (0, h) where h > 0.

(a) Prove that the hyperbolic segment PΩ is an arc of a circle with equation

(x− 1)2 + (y− k)2 = k2

for some k > 0.

(b) Prove that the area of△OPΩ is given by

A(h) = sin−1 2h
1 + h2

6. Suppose two Saccheri quadrilaterals in hyperbolic geometry have the same area and congruent
summits. Prove that the quadrilaterals are congruent.
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4.6 Isometries and Calculation

There are (at least!) two major issues in our approach to hyperbolic geometry.

Calculations are difficult In analytic (Euclidean) geometry we typically choose the origin and orient
axes to ease calculation. We’d like to do the same in hyperbolic geometry.

We assumed too much We defined distance, angle and line separately, but these concepts are not inde-
pendent! In Euclidean geometry, the distance function, or metric, defines angle measure via the
dot product,26and (with some calculus) the arc-length of any curve. One then proves that the
paths of shortest length (geodesics) are straight lines: the metric defines the notion of line!

Isometries provide a related remedy for these issues. To describe these it is helpful to use an alterna-
tive definition of the Poincaré disk and its distance function.

Definition 4.31. The Poincaré disk is the set D := {z ∈ C : |z| < 1}
equipped with the distance function

d(z, w) :=
∣∣∣∣ln |z−Ω| |w−Θ|
|z−Θ| |w−Ω|

∣∣∣∣
where Ω, Θ are the omega-points for the hyperbolic line through z, w
(defined as circular arcs intersecting the boundary perpendicularly).

z

w

Ω

Θ

We’ll see shortly (Corollary 4.38) that this is the same as the original cosh formula (page 54); it is
already easy to check that d(z, 0) = ln 1+|z|

1−|z| as in Lemma 4.10 (if w = 0, then Ω, Θ = ± z
|z| ).

For candidate isometries we need functions f : D → D for which d
(

f (z), f (w)
)
= d(z, w). These

follow from some standard results of complex analysis that we state without proof.

Theorem 4.32 (Möbius/fractional-linear transformations). If a, b, c, d ∈ C and ad− bc ̸= 0, then the
function f (z) = az+b

cz+d has the following properties:

1. (Invertibility) f : C∪ {∞} → C∪ {∞} is bijective, with inverse f−1(z) = dz−b
−cz+a .

2. (Conformality) If curves intersect, then their images under f intersect at the same angle.

3. (Line/circle preservation) Every line/circle27 is mapped by f to another line/circle.

4. (Cross-ratio preservation) Given distinct z1, z2, z3, z4, we have(
f (z1)− f (z2)

)(
f (z3)− f (z4)

)(
f (z2)− f (z3)

)(
f (z4)− f (z1)

) =
(z1 − z2)(z3 − z4)

(z2 − z3)(z4 − z1)

26Writing |u| = |PQ| for the length of a line segment, we see that for any u, v,

u · v =
1
2

(
|u + v|2 − |u|2 − |v|2

)
so that the metric defines the dot product. Now define angle measure via u · v = |u| |v| cos θ.

27In C∪ {∞} a line is just a circle containing ∞!
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The isometries of the Poincaré disk are a subset of the Möbius transformations.

Theorem 4.33. The orientation-preserving28 isometries of the Poincaré disk have the form

f (z) = eiθ α− z
αz− 1

where |α| < 1 and θ ∈ [0, 2π) (∗)

All isometries can be found by composing f with complex conjugation (reflection in the real axis).

Referring to the properties in Theorem 4.32:

1. The isometries are precisely the set of Möbius transformations which map D bijectively to itself;
omega-points are also mapped to omega-points.

2. Isometries preserve angles.

3. The class of hyperbolic lines is preserved: any circle or line intersecting the unit circle at right-
angles is mapped to another such (angle-preservation is used here).

4. If Ω, Θ are the omega-points on←→zw , then (by 2 and 3), f (Ω) and f (Θ) are the omega-points for
the hyperbolic line through f (z), f (w). Preservation of the cross-ratio says that f is an isometry:

d( f (z), f (w)) =

∣∣∣∣ln | f (z)− f (Ω)| | f (w)− f (Θ)|
| f (z)− f (Θ)| | f (w)− f (Ω)|

∣∣∣∣ = ∣∣∣∣ln |z−Ω| |w−Θ|
|z−Θ| |w−Ω|

∣∣∣∣ = d(z, w)

How does this help us compute? The isometry (∗) moves α to the origin, where calculating distances
and angles is easy!

Example 4.34. Let P = 1
2 and Q = 2

3 +
√

2
3 i. Move P to the origin using

an isometry29 with α = P:

f (z) =
α− z
αz− 1

=
1− 2z
z− 2

=⇒ f (P) = O

f (Q) =
1− 4

3 − 2
√

2
3 i

2
3 − 2 +

√
2

3 i
= − 1 + 2

√
2i

−4 +
√

2i
=

i√
2

Let us compare distances:

P

Q

O = f (P)

f (Q)
f

d
(

f (P), f (Q)
)
= ln

1 + | f (Q)|
1− | f (Q)| = ln

1 + 1√
2

1− 1√
2

= ln

√
2 + 1√
2− 1

= ln(3 + 2
√

2) (Definition 4.31)

d(P, Q) = cosh−1

(
1 +

2 |PQ|2

(1− |P|2)(1− |Q|2)

)
= cosh−1

(
1 +

2
4

(1− 1
4 )(1− 2

3 )

)
= cosh−1 3 = ln(3 +

√
32 − 1) = ln(3 + 2

√
2) = d

(
f (P), f (Q)

)
If we trust the original cosh-formula (page 54), then the points really are the same distance apart!
Indeed the hyperbolic segment PQ has been transformed by f to a segment f (P) f (Q) of the y-axis.

28If C is to the left of
−→
AB, then f (C) is to the left of

−−−−−−→
f (A) f (B). This is the usual ‘right-hand rule.’

29We could also include a rotation (eiθ = −i) to move f (Q) to the positive x-axis, but there is no real benefit.
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Recall (e.g., Example 4.11) how we previously computed angles. Isometries make this much easier.

Example 4.35. Given A = − i
2 , B = − i

5 and C = 1
5 (3− i), we find d(A, B), d(A, C) and ∡BAC.

Start by moving A to the origin and consider f (B), f (C):

f (z) =
− i

2 − z
i
2 z− 1

=
2z + i
2− iz

=⇒ f (B) =
− 2i

5 + i
2− 1

5

=
i
3

f (C) =
2
5 (3− i) + i
2− i

5 (3− i)
=

2(3− i) + 5i
10− i(3− i)

=
2 + i
3− i

=
(2 + i)(3 + i)

10
=

1 + i
2

By mapping A to the origin, two sides of the triangle are now Eu-
clidean straight lines and the computations are easy:

d(A, B) = d
(
O, f (B)

)
= ln

1 + 1
3

1− 1
3

= ln 2

d(A, C) = d
(
O, f (C)

)
= ln

1 + 1√
2

1− 1√
2

= 2 ln(
√

2 + 1)

∡BAC = ∡ f (B) f (A) f (C) = arg
i
3
− arg

1 + i
2

=
π

2
− π

4
=

π

4

To compute the final side and angles, isometries moving B and then
C to the origin could be used.

A

B C

O = f (A)

f (B)
f (C)

Interpretation of Isometries (non-examinable)

As in Euclidean geometry, isometries can be interpreted as rotations, reflections and translations.
Here is the dictionary in hyperbolic space.

Translations Move α to the origin via T−α(z) = α−z
αz−1

The picture shows repeated applications of T−α to seven initial points.

Compose these to translate α to β:

Tβ ◦ T−α(z) =
(αβ− 1)z + α− β

(α− β)z + αβ− 1

Rotations Rθ(z) = eiθz rotates counter-clockwise around the origin. To ro-
tate around α, one computes the composition

Tα ◦ Rθ ◦ T−α

The picture shows repeated rotation by 30° = π
6 around α.

Reflections Pθ(z) = e2iθz reflects across the line making angle θ with the real
axis. Composition permits more general reflections, e.g.,

Tα ◦ Pθ ◦ T−α

α
O

α
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Hyperbolic Trigonometry

By employing isometries in the abstract, we can develop formulas30 allowing us to solve triangles
without the explicit requirement to compute with isometries at all!
Given a right-triangle, we may suppose an isometry has already moved the right-angle to the origin
and the other sides to the positive axes as in the picture. The non-hypotenuse side-lengths are

a = ln
1 + p
1− p

= cosh−1 1 + p2

1− p2 , b = cosh−1 1 + q2

1− q2

To measure the hypotenuse, translate p to the origin via an isometry

f (z) =
p− z
pz− 1

=⇒ f (iq) =
p− iq

ipq− 1
=⇒ | f (iq)|2 =

p2 + q2

p2q2 + 1
a

b c

B

A

b

a

c

B
A

p

iq

0f (p)

f (iq)

We therefore see that

cosh c =
1 + | f (iq)|2

1− | f (iq)|2
=

1 + p2q2 + p2 + q2

1 + p2q2 − p2 − q2 =
1 + p2

1− p2 ·
1 + q2

1− q2 = cosh a cosh b

Moreover, applying the hyperbolic identity sinh2 b = cosh2 b− 1, we obtain

sinh b =
2q

1− q2 =⇒ tanh b =
sinh b
cosh b

=
2q

1 + q2

Writing f (iq) in real and imaginary parts allows us to find the slope

f (iq) =
p− iq

ipq− 1
=
−p(1 + q2) + iq(1− p2)

p2q2 + 1
=⇒ tan B =

q(1− p2)

p(1 + q2)
=

tanh b
sinh a

Applying trigonometric identities such as csc2 B = 1 + cot2 B, we eventually conclude:

Theorem 4.36. In a hyperbolic right-triangle with adjacent a, opposite b, and hypotenuse c,

sin B =
sinh b
sinh c

cos B =
tanh a
tanh c

tan B =
tanh b
sinh a

cosh c = cosh a cosh b

This last is Pythagoras’ Theorem for hyperbolic right-triangles.

Example 4.37. A right-triangle has non-hypotenuse sides a = cosh−1 3 ≈ 1.76, b = cosh−1 5 ≈ 2.29.

cosh c = cosh a cosh b = 15 =⇒ c = cosh−1 15 ≈ 3.40

sin A =
sinh a
sinh c

=

√
cosh2 a− 1
cosh2 c− 1

=

√
32 − 1

152 − 1
=

1
2
√

7
=⇒ A ≈ 10.9°

sin B =
sinh b
sinh c

=

√
cosh2 b− 1
cosh2 c− 1

=

√
52 − 1
152 − 1

=

√
3
28

=⇒ B ≈ 19.1°

You could use the other trig expressions to calculate: e.g., tan A = tanh a
sinh b = sinh a

cosh a sinh b =
√

8
3
√

24
= 1

3
√

3
. . .

30Treat the formulas of hyperbolic trigonometry as open-book—they are not worth memorizing!
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The goal of trigonometry is to ‘solve’ triangles: given minimal numerical data, to compute the re-
maining sides and angles. As in Euclidean geometry, you can attack general problems by dropping
perpendiculars and using the results of Theorem 4.36, though it is helpful to generalize this by de-
veloping the sine and cosine rules.

Corollary 4.38 (Sine/Cosine rules and the Cosh-distance formula). Label a general triangle with
angle-measures A, B, C opposite sides with (hyperbolic) lengths a, b, c.

Sine Rule Drop a perpendicular from C and observe that sin A = sinh h
sinh b and

sin B = sinh h
sinh a . Eliminate sinh h to obtain the first equality in

sinh a
sin A

=
sinh b
sin B

=
sinh c
sin C

Drop a different altitude for the other equality.

a
b

c

h

B
A

Cosine Rule I Repeat the argument of Theorem 4.36 for a triangle with vertices 0, p and qeiC to obtain

cosh c = cosh a cosh b− sinh a sinh b cos C

Expressing the right-hand side in terms of p, q (cosh a = 1+p2

1−p2 , etc.) and applying the Euclidean
cosine rule (cos C = · · · ) yields the original cosh-formula for distance (page 54).

Cosine Rule II Hyperbolic geometry admits a second version:

cos C = sin A sin B cosh c− cos A cos B

A proof is in Exercise 14.

In hyperbolic geometry, the triangle congruence theorems (SAS, ASA, SSS, SAA and AAA) pro-
vide suitable minimal data. The second version of the cosine rule has no analogue in Euclidean
geometry—it is particularly helpful for solving triangles given ASA or AAA data.31

Examples 4.39. 1. (SAS) An isosceles triangle has angle C = π
3 and sides a = b = cosh−1 2 ≈ 1.32.

We have sinh a = sinh b =
√

cosh2a− 1 =
√

3. By the cosine rule,

cosh c = 2 · 2−
√

3
√

3 · 1
2
=

5
2

=⇒ c = cosh−1 5
2
≈ 1.57

Apply the sine rule for the final angle:

sin B = sin A =
sin C sinh a

sinh c
=

√
3

2
·
√

3√
21/4

=
3√
21

=

√
3
7

=⇒ A = B ≈ 40.9°

The area of the triangle is therefore π − π
3 − 2 sin−1

√
3
7 ≈ 0.67

cosh−1 2

cosh−1 2

c

A

B
π
3

31Unlike in Euclidean geometry, knowing two angles doesn’t automatically give you the third! For SAS and SSS start
with the cosine rule. SAA data is best solved by dropping a perpendicular and using Theorem 4.36.
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2. (Equilateral AAA) An equilateral triangle has interior angles 30°. We compute its side-length
using the second version of the cosine rule:

cosh c =
cos A cos B + cos C

sin A sin B
=

√
3

2 ·
√

3
2 +

√
3

2
1
2 · 1

2

= 3
√

3

=⇒ a = b = c = cosh−1(3
√

3) ≈ 2.33

a
b

c30°

30°

30°

3. (Right-angled AAA) A triangle has angles π
6 , π

4 and π
2 : find its sides.

Rather than using the second version of the cosine rule, we instead
indicate part of its proof by employing the tan-formula twice,

1√
3
= tan

π

6
=

tanh a
sinh b

=
sinh a

cosh a sinh b

1 = tan
π

4
=

tanh b
sinh a

=
sinh b

sinh a cosh b

Multiply together and use hyperbolic Pythagoras, a

c
b

π
4

π
6

1√
3
=

1
cosh a cosh b

=
1

cosh c
=⇒ c = cosh−1

√
3 = ln(

√
3 +
√

2) ≈ 1.15

Since sinh c =
√

cosh2 c− 1 =
√

2, the sine-rule yields the other sides:

sinh b = sin
π

4
· sinh c

sin π
= 1 =⇒ b = sinh−1 1 = cosh−1

√
2 ≈ 0.88

=⇒ cosh a =
cosh c
cosh b

=

√
3
2

=⇒ a = cosh−1

√
3
2
≈ 0.66

4. (ASA) Solve a triangle with angles π
6 , π

3 and a distance cosh−1 3 between them.

Apply the second version of the cosine rule:

cos C = sin A sin B cosh c− cos A cos B

=
1
2
·
√

3
2
· 3−

√
3

2
· 1

2
=

√
3

2
=⇒ C =

π

6

The triangle is isosceles, whence a = cosh−1 3 ≈ 1.76 also.

a

b

cosh−1 3

π
3

C

π
6

The remaining side can be found using multiple methods: here is the cosine rule

cosh b = cosh a cosh c− sinh a sinh c cos B = 9−
(√

32 − 1
)2 1

2
= 5

=⇒ b = cosh−1 5 = ln(5 +
√

24) ≈ 2.29
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Hyperbolic Tilings (just for fun!)

Example 4.39.3 can be used to make a regular tiling of hyperbolic space.

Take eight congruent copies of the triangle and arrange
them around the origin as in the picture. Now reflect
the quadrilateral over each of its edges and repeat the
process in all directions. We obtain a regular tiling of
hyperbolic space comprising four-sided figures with six
meeting at every vertex!

In hyperbolic space, many different regular tilings are
possible. Suppose such is to be made using regular m-
sided polygons, n of which are to meet at each vertex:
each polygon comprises 2m copies of the fundamental
right-triangle, whose angles are therefore π

2 , π
m and π

n .
Since the angles sum to less than π radians, we see that
there exists a regular tiling of hyperbolic space when-
ever m, n satisfy

π

2
+

π

m
+

π

n
< π ⇐⇒ (m− 2)(n− 2) > 4

The first example is m = 4 and n = 6, where the fun-
damental triangle is clear. In the second example four
pentagons meet at each vertex and the interiors of the
polygons have been colored. This was produced using
the tools found here and here: have a play!

The multitude of possible tilings in hyperbolic geome-
try is in contrast to Euclidean geometry, where a regular
tiling requires equality

(m− 2)(n− 2) = 4

The three solutions (m, n) = (3, 6), (4, 4), (6, 3) cor-
respond to the only tilings of Euclidean geometry by
regular polygons (equilateral triangles, squares and
hexagons). However, all can be scaled to arbitrary side-
lengths. In hyperbolic geometry, there are infinitely
many distinct tilings, but each has a unique side-length.

For related fun, look up M.C. Escher’s Circle Limit art-
works, some of which are based on hyperbolic tilings.
If you want an excuse to play video games while pre-
tending to study geometry, have a look at Hyper Rogue,
which relies on (sometimes irregular) tilings.

π
m

π
n

The fundamental triangle

(m, n) = (4, 6)

(m, n) = (5, 4)
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Exercises 4.6. 1. Use Definition 4.31 to prove that d(z, 0) = ln 1+|z|
1−|z| .

2. (a) Use an isometry to find angle ∡ABC when A = 0, B = i
2 , and C = 1+i

2 .

(b) Now compute ∡ACB, and thus find the angle sum and area of the triangle.

3. Associate a Möbius transformation f (z) = az+b
cz+d with the matrix

(
a b
c d

)
in the obvious way. If g

is another Möbius transformation, prove that the composition f ◦ g is associated to the product
of the matrices associated to f , g. Verify32 that f−1(z) = dz−b

a−cz .

4. (a) A triangle has vertices A = 1
3 , B = 1

2 and C, where C lies in the upper half-plane (positive
imaginary part) such that ∡BAC = 45° and b = d(A, C) = cosh−1 3
Compute a = d(B, C) using the hyperbolic cosine rule.

(b) The isometry f (z) =
1
3−z

1
3 z−1

= 1−3z
z−3 moves A to the origin. What is f (B) and therefore f (C)?

(Hint: remember that f is orientation preserving)

(c) Use the inverse of the isometry f to compute the co-ordinates of C. As a sanity-check, use
the cosh distance formula to recover your answer to part (a).

5. Suppose f (z) = α−z
αz−1 for some constant α ∈ C with |α| ̸= 1. If |z| = 1, prove that | f (z)| = 1.

Argue that the functions f in Theorem 4.33 really do map the interior of the unit disk to itself.

6. Provided α ̸= β, show that the isometry Tβ ◦ T−α which translates α to β (page 71) is the trans-
lation T−γ where γ = β−α

αβ−1 followed by a rotation around the origin.

7. Use the power series cosh x = 1 + 1
2 x2 + 1

4! x
4 + · · · to expand the hyperbolic Pythagorean

theorem cosh c = cosh a cosh b to order 4 (a4, a2b2, etc.). What do you observe?

8. A hyperbolic right-triangle has non-hypotenuse sides a = cosh−1 2 and b = cosh−1 3. Find the
hypotenuse, the angles and the area of the triangle.

9. Given ASA data c = cosh−1(
√

2+
√

3), A = π
4 , B = π

6 , find the remaining data for the triangle.

10. An equilateral hyperbolic triangle has side-length a and angle A. Prove that cosh a = cos A
1−cos A .

If A = 45°, what is the side-length?

11. Find the interior angles and side-lengths for the quadrilateral and pentagonal tiles on page 75.

12. Use the hyperbolic cosine rule to prove that the cosh distance formula is valid.

13. Suppose you are given isosceles ASA data: angles A = B and side c between them. Prove that
c ≤ cosh−1(2 csc2 A− 1). What happens when this is equality?

14. (a) Prove the second cosine rule when C = π
2 (see the trick in Example 4.39.3).

(b) (Hard!) Prove the full version by dropping a perpendicular from B = B1 + B2 and observ-
ing that cos A

sin B1
= cos C

sin B2
= cos C

sin(B−B1)
. . .

32Since multiplying a, b, c, d by a non-zero scalar doesn’t change f , we see that the group of Möbius transformations is
isomorphic to the projective special linear group PSL2(R). The isometries of hyperbolic space form a proper subgroup.
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The Poincaré Disk for Differential Geometers (non-examinable)

Most of this last optional section should be accessible to anyone who’s taken basic vector-calculus.
All we really need is the Poincaré disk model with its distance function d(z, w) and a description of
the isometries (Theorems 4.32, 4.33).

Consider the infinitesimally separated points z and z + dz. Map z to
the origin via an isometry

f : ξ 7→ z− ξ

zξ − 1

Then z + dz is mapped to

P := f (z + dz) =
−dz

z(z + dz)− 1
=

dz
1− |z|2

z + dz

z + dw

z

0 P

Q

f

where we deleted z dz since it is infinitesimal compared to 1− |z|2.
Since isometries preserve length and angle, this construction has several consequences.

Infinitesimal distance, arc-length, and geodesics

The hyperbolic distance from z to z + dz is

d(z, z + dz) = d(O, P) = ln
1 + |P|
1− |P| = ln(1 + |P|)− ln(1− |P|) = 2 |P| = 2 |dz|

1− |z(t)|2
(∗)

where the approximation ln(1± |P|) = ± |P| is used since |P| is infinitesimal. If z(t) parametrizes a
curve in the disk, then the infinitesimal distance formula allows us to compute its arc-length∫ t1

t0

2 |z′(t)|
1− |z(t)|2

dt

Example 4.40 (Circles and ‘hyperbolic π’). Suppose that a circle has hyperbolic radius δ. By moving
its center to the origin via an isometry, we may parametrize in the usual manner:

z(t) = r
(

cos θ
sin θ

)
, θ ∈ [0, 2π) where δ = ln

1 + r
1− r

equivalently r =
eδ − 1
eδ + 1

Its circumference (hyperbolic arc-length) is then∫ 2π

0

2r
1− r2 dθ =

4πr
1− r2 = 2π sinh δ = 2π

(
δ +

1
3!

δ3 +
1
4!

δ5 + · · ·
)
> 2πδ

where we used the Maclaurin series to compare.
A hyperbolic circle has a larger circumference : diameter ratio than for a Euclidean circle (π). More-
over, this ratio is not constant: one might say that the hyperbolic version of π is a function ( π sinh δ

δ )!
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Our arc-length integral approach also allows us to show that hyperbolic lines are really what we
want them to be: lines of shortest distance between points.

Theorem 4.41. The geodesics—paths of minimal length between two points—in the Poincaré disk
are precisely the hyperbolic lines.

Following the comments on page 69, the distance function really does define the concept of hyper-
bolic line.

Proof. First suppose b lies on the positive x-axis. Parametrize a curve from 0 to b via

z(t) = x(t) + iy(t) where 0 ≤ t ≤ 1, z(0) = 0, z(1) = b

Its arc-length satisfies

∫ 1

0

2 |z′(t)|
1− |z(t)|2

dt =
∫ 1

0

2
√

x′2 + y′2

1− x2 − y2 dt ≥
∫ 1

0

2 |x′|
1− x2 dt ≥

∫ 1

0

2x′(t)
1− x(t)2 dt =

∫ b

0

2 dx
1− x2

= ln
1 + b
1− b

= d(0, b)

where we have equality if and only if y(t) ≡ 0 and x(t) is increasing. The length-minimizing path is
therefore along the x-axis.
More generally, given points A, B, apply an isometry f such that f (A) = 0 and f (B) = b lies on the
positive x-axis. The geodesic from A to B is therefore the image of the segment 0b under the inverse
isometry f−1. By the properties of Möbius transforms, this is an arc of a Euclidean circle through A, B
intersecting the unit circle at right-angles, our original definition of a hyperbolic line.

Area Computation

If dx and idy are infinitesimal horizontal and vertical changes in z = x + iy, then the area of the
infinitesimal rectangle spanned by z→ z + dx and z→ z + idy is the area element

dA =
2 dx

1− |z|2
2 dy

1− |z|2
=

4 dx dy
(1− x2 − y2)2

The area of a region R in the Poincaré disk is therefore given by the double integral∫∫
R

4 dxdy
(1− x2 − y2)2 =

∫∫
R

4r dr dθ

(1− r2)2 =
∫∫

R
sinh δ dδ dθ

where the last expression is written in polar co-ordinates using the hyperbolic distance δ. In this way
the measure of area also depends on the distance function.

Example (4.40, cont). The area of a hyperbolic circle with hyperbolic radius δ is∫ 2π

0

∫ δ

0
sinh δ dδ dθ = 2π(cosh δ− 1) = π

(
δ2 +

2
4!

δ4 +
2
6!

δ6 + · · ·
)
> πδ2

Again, this is larger than you’d expect in Euclidean geometry.
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Angle Measure and the First Fundamental Form

If we repeat the distance translation (∗, page 77) for a second infinitesimal segment z→ z+dw, it can
be checked that the angle between the original segments is precisely that between the infinitesimal
vectors dz and dw. This is precisely the conformality observation in Theorem 4.32 and moreover
shows how the distance function determines the angle measure.
If you’ve studied differential geometry, then a more formal way to think about this is to use the
first fundamental form or metric: essentially the dot product of infinitesimal tangent vectors. For the
Poincaré disk model, (∗) says that this is

I =
4(dx2 + dy2)

(1− x2 − y2)2 =
4(dr2 + r2 dθ2)

(1− r2)2

Since this is a scalar multiple of the standard Euclidean metric dx2 + dy2, angle measures are identi-
cal.33 It also gels with the fact that arc-length is the integral∫ √

I
(
z′(t), z′(t)

)
dt

Using this language, two of the major theorems of introductory differential geometry quickly put a
couple of remaining issues to bed.

Gauss’ Theorem Egregium The first fundamental form determines the Gaussian curvature K. In this
case K = −1 is constant and negative, as you should easily be able to verify if you’ve studied
differential geometry.

Gauss–Bonnet Theorem The angle-sum Σ△ of a geodesic triangle in a space with Gaussian curva-
ture K satisfies

Σ△ − π =
∫∫
△

K

This establishes our earlier assertion that Area△ = π − Σ△ (Corollary 4.30).

33Recall that the angle ψ between vectors u, v satisfies u · v = |u| |v| cos ψ. For infinitesimal vectors we use I = λ2(dx2 +

dy2) instead of the dot product, where λ = 2
1−r2 . The resulting angle is the same as if we use the Euclidean metric

dx2 + dy2, since factors of λ2 cancel on both sides.
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