
Matt Keti1, Daqing Wan1, and Guizhen Zhu2

1Department of Mathematics, University of California Irvine, CA 92697-3875, USA,

mketi@uci.edu, dwan@math.uci.edu

2Institute for Advanced Study, Tsinghua University, Beijing, 100084, P.R. China,

zhugz08@mails.tsinghua.edu.cn

1 Introduction

In many areas of consumer and scientific technology, a message must be relayed to some re-

mote receiver. Often times, the message is sent over a noisy channel, potentially introducing

errors for the receiver. To combat this, the concept of an error-correcting code is employed:

the message sender adds some redundant information to the message so that the receiver

can attempt to detect and correct errors in the transmission. One of the most popular codes

is called the Reed-Solomon code, which has enjoyed remarkable successes in compact disc

playback, satellite communications, QR code reading,. . . There are still open problems re-

garding the nature of the Reed-Solomon code, particularly in its error-correcting capability.

Because of the widespread usage of the code, these problems are very important; we would

like to study one of them here.

To set up a Reed-Solomon code, take a finite field Fq and fix a message block length k.

Associate a message string (m0,m1,m2, . . . ,mk−1) to the polynomial m(x) = m0 + m1x +

m2x
2+. . .+mk−1x

k−1. To add the redundant information, first choose n > k points from Fq to

form the set D = {x1, x2, . . . , xn}, the evaluation set. Then, pass the message m(x) through

the function φ, called the encoder, which outputs the string (m(x1),m(x2), . . . ,m(xn)), called

a codeword. (It is the codeword that is then sent across the channel.) The collection of all

codewords from all possible message strings is called the code (or codebook) and is denoted

by C. Typical choices for D are Fq and F∗q, which are called the standard and primitive

Reed-Solomon codes (respectively), and the former can be denoted by Cq. For a general

choice D ⊆ Fq , C is called a generalised Reed-Solomon code.

Next, to get an idea of the error-correcting capacity of the code, we need the concept

of the Hamming distance between two words: if a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn)

1

are two words, then the Hamming distance d(a, b) is the number of coordinates in which

they differ. For example, if a = (1, 2, 3) and b = (2, 2, 2), then d(a, b) = 2. Now for our

Reed-Solomon code C, we have the concept of minimum distance: it is the smallest distance

between any two distinct codewords and is denoted d(C). It is well-known and easily checked

that d(C) = n− k + 1.

The distance result has a very important consequence: if the number of errors in a received

word is less than d(C)/2 = (n − k + 1)/2 (i.e. half of the minimum distance), then it can

be corrected to a unique codeword and then decoded to recover the original message. There

are several fast algorithms that do this - the Berlekamp-Massey algorithm is one example

[1] [14]. A new question can then be raised: is it possible to decode efficiently past half of

the minimum distance? Guruswami and Sudan [7] [8] gave an algorithm that can decode a

word with up to n−
√
nk errors, at the cost of dropping uniqueness. Instead, the algorithm

outputs a list of possible decodings and the receiver can select the one that makes the most

sense.

At this point, it is unknown whether or not it is possible to quickly decode past n−
√
nk

errors. There are several ways to formulate this question. Define the quantity d(u, C) to be

the shortest distance between the received word u and each codeword in C. One problem is

the maximum-likelihood decoding: given a received word u, to find a closest codeword v to

u. Or in other words, to find an explict codeword v such that d(u, v) = d(u, C). Another

formulation is the bounded distance decoding: given a received word u and a bound B, to

find one codeword v such that d(u, v) ≤ B. Both problems are computationally difficult

in nature. Guruswami and Vardy in [9] showed that the maximum-likelihood decoding for

certain Reed-Solomon codes over F2s with small evaluation set D is NP-hard. Cheng and

Wan in [5] and [6] showed that maximum-likelihood and bounded distance decoding for

the standard and primitive Reed-Solomon codes are at least as hard as computing discrete

logarithm over large extensions of the finite field Fq, which is believed to be difficult in

cryptographic applications.

Studying these decoding problems brings up a new problem. It is well-known that for

any received word u, its distance to C satisfies d(u, C) ≤ maxu∈Fq d(u, C) = n− k. The latter

quantity is called the covering radius. Any word u for which d(u, C) = n− k is called a deep

hole. The deep hole problem states: given a received word u, to determine whether or not u

is a deep hole. Guruswami and Vardy also showed in [9] that making this determination for

their family of codes is NP-hard. However, they suggested that it might be easier when the

evaluation set is very large or even all of Fq.

2

To try to deal with the deep hole problem, we can start with a simple way to measure

d(u, C). We run Lagrange Interpolation on the word u = (u1, · · · , un) to get a fitted poly-

nomial u(x) satisfying u(xi) = ui for all 1 ≤ i ≤ n. Then, if deg u(x) ≤ k − 1, then u is a

codeword and d(u, C) = 0. Otherwise, k ≤ deg u(x) ≤ n− 1, and we have the bound [11]

n− deg u(x) ≤ d(u, C) ≤ n− k

We can see here that if deg u(x) = k, then u is automatically a deep hole.

1.1 Previous Results

1.1.1 Results on Standard Reed-Solomon Codes

Cheng and Murray in [4] searched for deep holes for standard Reed-Solomon codes, and

conjectured that the only deep holes were those satisfying deg u(x) = k. More precisely,

Conjecture (Cheng-Murray). All deep holes for standard Reed-Solomon codes are those

words satisfying deg u(x) = k. In other words, a received word u is a deep hole for Cq if and

only if deg u(x) = k.

Though they could not prove this, they were able to reduce the problem to finding a rational

point on an algebraic hypersurface and derive the following result:

Theorem 1 (Cheng-Murray). Let p be a prime and 1 < k < p1/4−ε be a positive integer.

Consider the standard Reed-Solomon code Cp, and let u be a received word and u(x) be its

interpolated polynomial. If the degree of u(x) satisfies

k < deg u(x) < k + p3/13−ε

then u is not a deep hole.

Roughly, if u can be represented by a polynomial whose degree is close to k but different

from k (i.e. a low-degree polynomial of degree greater than k), then it is not a deep hole.

Several other results in this direction have appeared. Li and Wan viewed the problem in

terms of finding solutions to polynomial congruences and used character sums to obtain the

following result for Cq:

Theorem 2. Let u be a received word and u(x) be its interpolated polynomial. Suppose

1 ≤ d := deg u(x)− k ≤ q − 1− k. If

q > max((k + 1)2, d2+ε) and k >

(
2

ε
+ 1

)
d+

8

ε
+ 2

3

for some constant ε > 0, then d(u, Cq) < q − k. In other words, u is not a deep hole.

Furthermore, if

q > max((k + 1)2, (d− 1)2+ε) and k >

(
4

ε
+ 1

)
d+

4

ε
+ 2

for some constant ε > 0, then d(u, Cq) = q − (k + d).

Not only do these statements give new explicit families of non deep holes; the second state-

ment shows that under the right conditions, the error distance of a received word can be

measured exactly.

Liao extended this result using similar techniques in [10] and came up with a bound on

the error distance under certain conditions.

Theorem 3. Let r ≥ 1 be an integer. Let u be a received word and u(x) be is interpolated

polynomial of degree m. If m ≥ k + r,

q > max

{
2

(
k + r

2

)
+ (m− k), (m− k)2+ε

}
and k >

1

1 + ε

(
r + (2 + ε)

(m
2

+ 1
))

for some constant ε > 0, then d(u, Cq) ≤ q − k − r.

Using some techniques from algebraic geometry, Cafure, Matera, and Privitelli in [3]

slightly improved on one of Li-Wan’s previous results with

Theorem 4. Let u be a received word and u(x) be is interpolated polynomial with 1 ≤ d :=

deg(u(x))− k ≤ q − 1− k. Assume that

q > max((k + 1)2, 14d2+ε) and k > d

(
2

ε
+ 1

)
for some constant ε > 0. Then u is not a deep hole.

Recently, Zhu and Wan [19] used the idea that some high degree polynomials could be

represented by low-degree rational functions and proved:

Theorem 5. Let r ≥ 1 be an integer and u a received word. Suppose we can write(
w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(xq)

h(xq)

)
= u

for some h(x) ∈ Fq[x], with gcd(h(x), xq − x) = 1, and deg h(x) + k ≤ degw(x) ≤ q − 1.

Let m be the smallest such degree of w(x), and set r ≤ d := m− k ≤ q − 1− k. There are

positive constants c1 and c2 such that if

d < c1q
1/2 ,

(
d+ r

2
+ 1

)
log2 q < k < c2q

then d(u, C) ≤ q − k − r.

4

The proof converted the distance problem to finding solutions to a polynomial congruence.

Sufficient conditions for when a solution exists were given by a combination of character

sums, Weil’s bound, and Li-Wan’s new sieve.

1.1.2 New Deep Holes on Primitive and Generalised Reed-Solomon Codes

There are many recent studies that search for deep holes for primitive or generalised codes.

Wu and Hong in [17] showed that words represented by certain polynomials of degree q − 2

are deep holes for primitive codes. Their method involved converting the code into a BCH

code by way of the Discrete Fourier Transform.

Theorem 6 (Wu-Hong). Consider the primitive Reed-Solomon code C over Fq with q ≥ 4

and 2 ≤ k ≤ q − 2. Then polynomials of the form u(x) = axq−2 + v(x) with a 6= 0, where

deg v(x) ≤ k − 1, represent deep holes for C.

In a new preprint, Zhang, Fu, and Liao in [18] extended this result for any evaluation set

D 6= Fq.

Theorem 7 (Zhang-Fu-Liao). Consider the generalised Reed-Solomon code C over Fq with

evaluation set D 6= Fq. Then for any a 6= 0, b 6∈ D, polynomials of the form u(x) =

a(x− b)q−2 + v(x), where deg v(x) ≤ k − 1, represent deep holes for C.

Adapting results from Li and Wan [11], they also found another class of deep holes for a

code with a specific message length k:

Theorem 8 (Zhang-Fu-Liao). Let q > 4 be a power of 2 and let C be the generalised Reed-

Solomon code over Fq with D = F∗q or D = F∗q/{1} and k = q−4. If a 6= 0, then polynomials

of the form u(x) = axq−3 + v(x), where deg v(x) ≤ k − 1, are deep holes for C.

Finally, they showed that for primitive codes over Fq for q > 5 and 2 ≤ k ≤ q−3, polynomials

of the form

u(x) = axk+2 + bxk+1 + cxk + v(x)

where a ∈ F∗q, b, c ∈ Fq, and deg v(x) ≤ k − 1, do not represent deep holes.

These results show that the Cheng-Murray conjecture adapted for primitive codes is false.

Wu and Hong tried to modify the conjecture in their paper, stating that the only deep holes

are certain polynomials of degree k and q − 2; however, the new counterexample by Zhang,

Fu, and Liao leaves the status of deep holes uncertain.

5

2 New Results

2.1 Main Theorems

Following [19], we will derive another class of words that are not deep holes for generalised

Reed-Solomon codes. First, fix an enumeration D = {x1, x2, . . . , x|D|}. All of our specific

results will hinge on

Theorem 9. Let C be the generalised Reed-Solomon code over Fq using the evaluation set

D. Let u be a received word. Suppose we can write(
w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(x|D|)

h(x|D|)

)
= u

for some h(x) ∈ Fq[x], with no roots in D ∪ 0, and deg h(x) + k ≤ degw(x) ≤ |D| − 1. Let

m be the smallest such degree of w(x). Let 1 ≤ r ≤ d := m− k ≤ |D| − k− 1. If the bound∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

is true over all nontrivial characters χ : (F[x]/(h̄(x)))∗ → C∗ with χ(F∗q) = 1 for some K ≥ d

and h̄(x) = xm−k+1h(1/x), there are positive constants c1 and c2 such that if

d ≤ K < c1
|D|
q1/2

,

(
d+ r

2
+ 1

)
log2 q < k < c2|D|

then d(u, C) ≤ |D| − k − r.

This statement is quite robust in that it can handle words that can either be represented

by low-degree polynomials or low-degree rational functions. (The next section will show

some examples.) In addition, it applies to code families with a positive information rate

k/|D|.
Setting h(x) = 1, the theorem reduces to the usual polynomial case, and we receive

Corollary 1. Let C be the generalised Reed-Solomon code over Fq using the evaluation set

D. Let r ≥ 1 be an integer and u a received word with interpolated polynomial u(x) such

that r ≤ d := deg(u(x))− k ≤ |D| − k − 1. If the bound∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

6

is true over all nontrivial characters χ : (F[x]/(xd+1))∗ → C∗ with χ(F∗q) = 1 for some K ≥ d,

then there are positive constants c1 and c2 such that if

d ≤ K < c1
|D|
q1/2

,

(
d+ r

2
+ 1

)
log2 q < k < c2|D|

then d(u, C) ≤ |D| − k − r.

We can specialise this result to a code that uses the evaluation set D = (F∗q)
q−1
` or D = Fq.

For these cases, we will be able to take K = d.

Corollary 2. Let C be the primitive Reed-Solomon code over Fq using the evaluation set

D = (F∗q)
q−1
` of size `. Let r ≥ 1 be an integer and u a received word with interpolated

polynomial u(x) such that r ≤ d := deg(u(x))− k ≤ q− 2− k. There are positive constants

c1 and c2 such that if

d < c1
`

q1/2
,

(
d+ r

2
+ 1

)
log2 q < k < c2`

then d(u, C) ≤ `− k − r.

Note that the first condition d < c1
`

q1/2
will implicitly put a minimum on the size of ` due to

the dependency between c1 and c2. This dependency can be seen in the upcoming example.

Corollary 3. Let C be the standard Reed-Solomon code over Fq using the evaluation set

D = Fq. Let r ≥ 1 be an integer and u a received word with interpolated polynomial u(x)

such that r ≤ d := deg(u(x)) − k ≤ q − k − 1. There are positive constants c1 and c2 such

that if

d < c1q
1/2 ,

(
d+ r

2
+ 1

)
log2 q < k < c2q

then d(u, C) ≤ q − k − r.

This corollary recovers what Zhu and Wan proved in [19].

2.2 Examples

To get a better idea of what these theorems mean, take C to be the primitive Reed-Solomon

code over F28 (i.e. D = F∗28). We will realise this field as F28 = F2[x]/(x8 +x4 +x3 +x2 + 1),

noting that this is formed using a primitive polynomial.

Now if r ≥ 1, and u is a codeword with r ≤ d ≤ 254− k, then we can find c1 and c2 such

that if

d <
255

16
c1 and 8

(
d+ r

2
+ 1

)
< k < 255c2

7

then d(u, C) ≤ 255 − k − r. To be even more concrete, consider d = r = 1; in other words,

we want to classify codewords whose polynomial (or rational) interpolations are degree k+1

(in the numerator). From the proof below, we can explicitly compute c1 and c2 using the

formulas

1 <
255

16
c1 , c1 + c2 = 256−

1
k+1 − 1

2
To obtain a wide range of k, fix c1 = .0628. Then we have the condition

16 < k < 255

(
256−

1
k+1 − 1

2
− .0628

)
A computer algebra system shows that this is satisfied when 17 ≤ k ≤ 97. Therefore, for

codes using this range of message lengths, received words u represented by a polynomial (or

rational function) of degree k + 1 (in the numerator) are not deep holes. More specifically,

we can give the estimate d(u,C) ≤ 254− k.

Along the same lines, for r = 1 and d = 2, polynomials (or rational functions) of degree

k + 2 (in the numerator) do not represent deep holes when the message length satisfies

21 ≤ k ≤ 86. Again, such words u satisfy the estimate d(u,C) ≤ 254 − k. Attempting to

increase r or d any more does not yield additional information.

Here is a table with a few examples of words covered by our bounds. We will denote α

to be a root of x8 + x4 + x3 + x2 + 1, so α will be a multiplicative generator for F∗28 .

d k Polynomial Interpolation Rational Interpolation

1 17 x18 + 3x2 + 1 N/A

1 97 x98 + x24 + x17 + 1 N/A

2 30 (α6 + α3 + 1)x254 + . . .+ (α6 + α5) x32/(x2 + αx+ α7)

2 86 (α6 + α5)x254 + . . .+ (α7 + α6 + α2) (x88 + 1)/(x2 + x+ α5)

2.3 Preliminaries

There are a few theorems that we will need to establish our results.

2.3.1 Weil’s Character Sum Bound

As stated in [15]:

Theorem 10 (Weil). Let h(x) be a polynomial of positive degree in the ring Fq[x], and let

χ : (F[x]/(h(x)))∗ → C∗ be a multiplicative character. If χ is not trivial, then∣∣∣∣∣∣
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

8

Furthermore, if χ is not trivial but χ(F∗q) = 1, then∣∣∣∣∣∣1 +
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (deg h(x)− 2)q1/2

Since we will be dealing with (F∗q)(q−1)/`, these bounds need to be slightly modified:

Lemma 1. Let h1(x) be a polynomial from Fq[x] not divisible by x, h(x) = xkh1(x) for

k ≥ 1, and χ : (F[x]/(h1(x)))∗ → C∗ with χ nontrivial and χ(F∗q) = 1. For a subgroup

(F∗q)
q−1
` of F∗q, we have ∣∣∣∣∣∣∣

∑
a∈(F∗q)

q−1
`

χ(x− a)

∣∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

Proof. Use the character sum∑
a∈(F∗q)

q−1
`

χ(x− a) =
∑
a∈Fq

`

q − 1

∑
(χ′)(q−1)/`=1

χ′(a)χ(x− a) =
`

q − 1

∑
(χ′)(q−1)/`=1

∑
a∈Fq

χ′(a)χ(x− a),

where χ′ : F∗q → C∗ denotes a multiplicative character. The two characters χ and χ′ can be

viewed as characters over the group

(Fq[x]/(h(x)))∗ ∼= (Fq[x]/(xk))∗ × (Fq[x]/(h1(x)))∗

This is true because we can define the natural reduction map

(Fq[x]/(xk))∗ × (Fq[x]/(h1(x)))∗ → (Fq[x]/(x))∗ × (Fq[x]/(h1(x)))∗

just by taking the terms in (Fq[x]/(xk))∗ modulo x. And since F∗q ∼= (Fq[x]/(x))∗, χ′ lifts to

a character over (Fq[x]/(xk))∗, which therefore extends to a character over (Fq[x]/(h(x)))∗.

Because of this, we also have χ′(a) = χ′(−x+ a) = χ′(−1)χ′(x− a). Then,∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(x− a)

∣∣∣∣∣∣∣ ≤
`

q − 1

∑
(χ′)(q−1)/`=1

∣∣∣∣∣∣
∑
a∈Fq

χ′(a)χ(x− a)

∣∣∣∣∣∣
=

`

q − 1

∑
(χ′)(q−1)/`=1

∣∣∣∣∣∣
∑
a∈Fq

(χ′χ)(x− a)

∣∣∣∣∣∣
≤ `

q − 1

∑
(χ)(q−1)/`=1

(deg h(x)− 1)q1/2

= (deg h(x)− 1)q1/2,

9

where we used the fact that the product χ′χ is a nontrivial character of (Fq[x]/(h(x)))∗. To

see this, note that the restriction of χ′χ to the second factor (Fq[x]/(h1(x)))∗ is precisely χ,

which is already nontrivial.

2.3.2 Li-Wan’s New Sieve

We also state Li-Wan’s new sieve (as in [12] and [19]): let D be a finite set and Dk =

D×D×· · ·×D be the Cartesian product of k copies of D. Let X be a subset of Dk. Denote

X̄ = {(x1, x2, . . . , xk) ∈ X | xi 6= xj, i 6= j}

Let f(x1, x2, . . . , xk) be a complex-valued function defined over X. Denote

F =
∑
x∈X̄

f(x1, x2, . . . , xk)

Let Sk be the symmetric group on {1, 2, . . . , k}. Each permutation τ ∈ Sk can be uniquely

factorised as a product of disjoint cycles and each fixed point is viewed as a trivial cycle of

length 1. Namely,

τ = (i1i2 . . . ia1)(j1j2 . . . ja2) · · · (l1l2 . . . las)

with ai ≥ 1 and 1 ≤ i ≤ s. Define

Xτ = {(x1, x2, . . . , xk) | xi1 = . . . = xia1 , xj1 = . . . = xja2 , · · · , xl1 = . . . = xlas}

Similarly define

Fτ =
∑
x∈Xτ

f(x1, x2, . . . , xk)

We say that τ is of the type (c1, c2, . . . , ck) if it has exactly ci cycles of length i. Let

N(c1, c2, . . . , ck) be the number of permutations of type (c1, c2, . . . , ck). Define

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)t
c1
1 t

c2
2 · · · t

ck
k

Now we have the following combinatorial result:

Lemma 2. Suppose q ≥ d. If ti = q for d|i and ti = s for d - i, then we have

Ck(s, . . . s, q, s, . . . , x, q, . . .) = k!

bk/dc∑
i=0

(q−s
d

+ i− 1

i

)(
s+ k − di− 1

k − di

)
≤
(
s+ k +

q − s
d
− 1

)
k

where (x)k = x(x− 1)(x− 2) · · · (x− k + 1).

10

Furthermore, we say that X is symmetric if for any x ∈ X and any g ∈ Sk, we have g◦x ∈ X.

Also, if a complex-valued function f is defined on X, we say that it is normal on X if X is

symmetric and for any two conjugate elements in Sk, τ and τ ′, we have∑
x∈Xτ

f(x1, x2, . . . , xk) =
∑
x∈Xτ ′

f(x1, x2, . . . , xk)

Then, we have the result:

Lemma 3. If f is normal on X, then

F =
∑

∑
ici=k

(−1)k−
∑
ciN(c1, c2, . . . , ck)Fτ

2.3.3 A Rephrasing of Error Distance

For our purposes, it is more convenient to state the error distance in this way:

Lemma 4. Let C be the generalised Reed-Solomon code over Fq using the evaluation set D.

Let u be a received word and u(x) its interpolated polynomial with deg u(x) = k+ d, where

k + 1 ≤ k + d ≤ q − 1. The error distance d(u, C) ≤ |D| − k − r for some 1 ≤ r ≤ d if and

only if there exists a subset {xi1 , xi2 , . . . , xik+r} ⊂ D and a polynomial g(x) ∈ Fq[x] of degree

d− r such that

u(x)− v(x) = (x− xi1)(x− xi2) · · · (x− xik+r)g(x)

for some v(x) with deg v(x) ≤ k − 1.

Proof. First suppose that d(u, C) ≤ |D| − k − r. Then, the coordinates of u differ from the

coordinates of some codeword v in |D| − k − r places (or less). Then, their interpolated

polynomials u(x) and v(x) have (at least) k + r roots in common in D. The result follows.

The converse has a very similar structure, roughly following the above in reverse.

2.4 The Proof

Suppose w(x) is the polynomial with degree m, and h(x) is the corresponding polynomial

with no roots in D. Possibly by shifting u by a constant codeword, we can assume that

w(0) 6= 0. Also let h̄(x) = xm−k+1h(1/x). This is a polynomial of degree m− k + 1 = d+ 1

and divisible by x since h(0) 6= 0 and deg(h(x)) ≤ m − k. Let A = (Fq[x]/(h̄(x)))∗ and Â

denote the group of all characters of A. Let B̂ be the set of characters χ in Â with χ(F∗q) = 1.

Note that B̂ is an abelian subgroup of order ≤ qd.

11

Now, by Lemma 4, d(u, C) ≤ |D|−k−r if and only if there is some polynomial f(x) ∈ Fq[x]

with deg f(x) ≤ k − 1 such that

w(x)

h(x)
+ f(x) =

w(x) + f(x)h(x)

h(x)

has at least k+r distinct roots in D. In other words, there are points {x1, x2, . . . , xk+r} ⊂ D

where

w(x) + f(x)h(x) = (x− x1)(x− x2) · · · (x− xk+r)v(x)

for some polynomial v(x) with deg v(x) = m − (k + r). Then replacing x with 1/x and

multiplying through by xm, it is enough to find such a subset for the equation

w̃(x) + f̃(x)h̄(x) = (1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

where w̃(x) = xmw(1/x), f̃(x) = xk−1f(1/x), and ṽ(x) = xm−(k+r)v(1/x). We can now

further assume that w̃(0) = 1 and ṽ(0) = 1. Then this equation is equivalent to

(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)
≡ 1 (mod h̄(x))

Let the number of solutions to this equation be denoted by Nu, noting that the xi ∈ D are

distinct, deg ṽ(x) = m− (k+ r) = d− r, and ṽ(0) = 1. In other words, Nu gives the number

of codewords f in C where d(u, f) ≤ |D|−k−r. If Nu is positive, then d(u, C) ≤ |D|−k−r.
By character sums,

Nu =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

∑
χ∈B̂

χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)

For ease of notation, define

Sχ(x1, x2, . . . , xk+r, x) = χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)
First we will handle the case where r < d. To do this, consider the weighted version

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂

Sχ(x1, x2, . . . , xk+r, x),

where Λ denotes the von Mangoldt function. Note that if N > 0, then Nu > 0. Separating

the trivial character from the sum gives

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ) +
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

Sχ(x1, x2, . . . , xk+r, x)

=
1

|B̂|
(|D|)k+r(q

d−r − 1) +
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

Sχ(x1, x2, . . . , xk+r, x)

12

Now we have to estimate

∣∣∣∣∣N − 1

|B̂|
(|D|)k+r(q

d−r − 1)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

|B̂|

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

∑
xi∈D

distinct

Sχ(x1, x2, . . . , xk+r, x)

∣∣∣∣∣∣∣∣
To do this, apply Li-Wan’s new sieve. Let X = Dk+r, X̄ = {(x1, x2, . . . , xk+r) ∈ Dk+r | xi 6=
xj, i 6= j}, f(x) = χ((1− x1x)(1− x2x) · · · (1− xk+rx)), and F =

∑
x∈X̄ f(x). We have that

X is symmetric and f is normal, so we can compute F . For our case, we take

Fτ =
∑

χ(1− x11x) · · ·χ(1− x1c1x) · · ·χk+r(1− x(k+r)1x) · · ·χk+r(1− x(k+r)ck+rx)

where the sum is over xsts ∈ D, 1 ≤ s ≤ k + r, and 1 ≤ ts ≤ cs. We will use the Li-Wan

sieve estimate and the bounds∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

over all nontrivial χ ∈ B̂ with χ(F∗q) = 1. We have that∣∣∣∣∣N − 1

|B̂|
(|D|)k+r(q

d−r − 1)

∣∣∣∣∣
≤ 1

|B̂|

∣∣∣∣∣∣∣∣
∑

ṽ(x),ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)χ(ṽ)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
χ∈B̂
χ 6=1

χ−1(w̃)
∑
xi∈D

distinct

χ ((1− x1x)(1− x2x) · · · (1− xk+rx))

∣∣∣∣∣∣∣∣
≤ 1

|B̂|
dq

d−r
2

∑
χ∈B̂
χ 6=1

∑
∑
ici=k+r

N(c1, c2, . . . , ck+r)|Fτ |

≤ 1

|B̂|
dq

3d−r
2 Ck+r(Kq

1/2, |D|, Kq1/2, |D|, . . .)

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k + r +

|D| −Kq1/2

2
− 1

)
k+r

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k + r − Kq1/2

2
+
|D|
2

)
k+r

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k +

|D|
2

)
k+r

Therefore, it is sufficient to prove that

(|D|)k+r(q
d−r − 1) > dq

3d−r
2

(
Kq1/2 + k +

|D|
2

)
k+r

13

And since d > r, we have another sufficient condition:

|D|
Kq1/2 + k + |D|

2

>

(
dq

3d−r
2

qd−r − 1

) 1
k+r

If we take K < c1
|D|
q1/2

and k < c2|D|, then it suffices to find c1 and c2 satisfying

c1 + c2 <

(
dq

3d−r
2

qd−r − 1

)− 1
k+r

− 1

2

which means that it is enough to find

1

2
<

(
dq

3d−r
2

qd−r − 1

)− 1
k+r

By some rearrangement and simplification, we have

k > log2 d+

(
d+ r + 1

2

)
log2 q − r

A simpler condition can be prescribed. Since r ≤ d ≤ K < q1/2, we can just replace log2 d−r
with 1

2
log2 q to receive:

k >

(
d+ r

2
+ 1

)
log2 q

For the case r = d, we use the unweighted counting function Nu, noting that ṽ(x) = 1.

Then we have

Nu =
1

|B̂|

∑
xi∈D

distinct

1 +
1

|B̂|

∑
xi∈D

distinct

∑
χ∈B̂
χ 6=1

χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)

w̃(x)

)

=
1

|B̂|
(|D|)k+d +

1

|B̂|

∑
xi∈D

distinct

∑
χ∈B̂
χ 6=1

χ

(
(1− x1x)(1− x2x) · · · (1− xk+dx)

w̃(x)

)

Applying the same method as the previous case gives the estimate∣∣∣∣∣Nu −
1

|B̂|
(|D|)k+d

∣∣∣∣∣ ≤ qd

|B̂|

(
Kq1/2 + k +

|D|
2

)
k+d

and then it is enough to have

1

|B̂|
(|D|)k+d >

qd

|B̂|

(
Kq1/2 + k +

|D|
2

)
k+d

which actually gives a better bound than before. This concludes the proof.

14

2.4.1 The Second Corollary

To prove the second corollary, we only need to find a number K satisfying the bounds∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(1− ax)

∣∣∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

over all characters χ from B̂ in the main proof. This is where we can use Lemma 1, noting

that deg h̄(x) = d+ 1:∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(1− ax)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(−a)χ(x− a−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(x− a−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(x− a)

∣∣∣∣∣∣∣
≤ dq1/2

So we have K = d, and the first bound is satisfied. The second bound K ≥ d is automatically

satisfied.

2.4.2 The Third Corollary

To prove the third corollary, we again need to find K satisfying∣∣∣∣∣∣
∑
a∈Fq

χ(1− ax)

∣∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

As before, deg h̄(x) = d+1. Using Theorem 10 (Weil) and the fact that χ(x) = 0, since h̄(x)

is divisible by x, we have∣∣∣∣∣∣
∑
a∈Fq

χ(1− ax)

∣∣∣∣∣∣ =

∣∣∣∣∣∣1 +
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (d− 1)q1/2 ≤ dq1/2

Therefore K = d is the suitable choice.

15

3 Summary and Further Problems

In Reed-Solomon codes with large evaluation sets D satisfying some character sum bounds,

we were able to measure the error distances for certain families of received words and show

that they were not deep holes. We then applied these results to common choices of D = Fq
or (large subgroups of) F∗q. These results raise some new problems.

1. In the primitive / generalised codes, we required the condition d < c1
`

q1/2
. If it were

possible to relax the condition to d < c1
`

q1/2−ε
, we would be able to choose much smaller

values of c1 to get better information rates on our codes.

2. In our codes, the set D = (F∗q)(q−1)/` can be thought of as the image of the polynomial

f(x) = x(q−1)/` whose domain is F∗q. Is it possible to make similar statements when

f(x) is replaced with an arbitrary polynomial?

It would be interesting to see the development of these problems, as they could advance the

search for deep holes.

References

[1] E.R. Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[2] V.K. Bhargava, S.B. Wicker, et al. Reed-Solomon Codes and Their Applications. IEEE

Press, Piscataway, NJ. 1994.

[3] A. Cafure, G. Matera, and M. Privitelli. Singularities of Symmetric Hypersurfaces and

Reed-Solomon Codes. Advances in Mathematics of Communications, Vol. 6(1), 2012,

pp.69-94.

[4] Q. Cheng and E. Murray. On deciding deep holes of Reed-Solomon codes. Proceedings

of TAMC 2007, LNCS 4484, pp. 296-305

[5] Q. Cheng and D. Wan. On the List and Bounded Distance Decodibility of Reed-Solomon

Codes. Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’04).

[6] Q. Cheng and D. Wan. Complexity of Decoding Positive-Rate Primitive Reed-Solomon

Codes. IEEE Transactions on Information Theory, Vol. 56, No. 10, October 2010: 5217-

5222.

16

[7] V. Guruswami. List Decoding of Error-Correcting Codes. Springer-Verlag Berlin Heidel-

berg, 2004.

[8] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-

geometry codes. IEEE Transactions on Information Theory, Vol. 45, No. 6, September

1999: 1757-1767.

[9] V. Guruswami and A. Vardy. Maximum-Likelihood Decoding of Reed-Solomon Codes is

NP-hard. SODA ’05 Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-

crete algorithms: 470-478. Society for Industrial and Applied Mathematics Philadelphia,

PA, USA, 2005.

[10] Q. Liao. On Reed-Solomon Codes. Chinese Annals of Mathematics, 32B(1), 89-98.

Springer-Verlag Berlin Heidelberg, 2011.

[11] J. Li and D. Wan. On the subset sum problem over finite fields. Finite Fields and Their

Applications, Volume 14, Issue 4, November 2008: 911-929

[12] J. Li and D. Wan. A new sieve for distinct coordinate counting. Science China Mathe-

matics, Vol. 53 No.9: 2351-2362. Science China Press and Springer-Verlag Berlin Heidel-

berg, 2010.

[13] Y. Li and D. Wan. On error distance of Reed-Solomon codes, Science China Math-

ematics, Vol. 51, No. 11, 1982-1988. Science China Press and Springer-Verlag Berlin

Heidelberg, 2008.

[14] J.L. Massey. Shift-Register Syntehsis and BCH Decoding. IEEE Transactions on Infor-

mation Theory, Vol. IT-15, No. 1, January 1969.

[15] D. Wan. Generators and irreducible polynomials over finite fields. Mathematics of Com-

putation, 66, 119-1212 (1997).

[16] A. Weil. Basic Number Theory. Springer-Verlag, 1973.

[17] R. Wu and S. Hong. On deep holes of generalized Reed-Solomon codes.

arXiv:1108.3524v2.

[18] J. Zhang, Fang-Wei Fu, and Qun-Ying Liao. New Deep Holes of Generalized Reed-

Solomon Codes. arXiv:1205.6593v1.

17

[19] G. Zhu and D. Wan. Computing Error Distance of Reed-Solomon Codes. TAMC 2012,

LNCS 7287, pp. 214-224, 2012. Springer-Verlag Berlin Heidelberg, 2012.

18

