
Reed-Solomon Error-correcting Codes

The Deep Hole Problem

Matt Keti
(Advisor: Professor Daqing Wan)

Department of Mathematics
University of California, Irvine

November 8, 2012

Abstract

In many types of modern communication, a message is transmitted over a noisy medium. This creates
a chance that the message will become corrupted. The purpose of an error-correcting code is to add some
redundant information to the message which allows the receiver to detect and correct those errors accrued
during the transmission. We will study the famous Reed-Solomon code (found in QR codes, compact
discs, deep space probes,. . .) and consider its error-correcting capacity. This will lead us to studying
the ”deep hole” problem, which is a question of determining when a received message has, in a sense,
incurred the worst possible corruption. It is a new and important problem that could give insight on
finding the upper bound for the error-correcting capacity of the Reed-Solomon code.

Contents

1 Introduction to Error-correcting Codes
1.1 A Simple Code
1.2 The First Nontrivial Code: Hamming (7, 4)

2 Reed-Solomon Codes
2.1 Encoding and Decoding
2.2 Code Properties
2.3 Applications in Technology

3 List Decoding

4 Further Improving Error-Correction Limits
4.1 New Problems
4.2 Hardness Results
4.3 The Deep Hole Problem

5 Previous Results on Deep Holes
5.1 Results when D = Fq
5.2 Results when D = F∗q

6 Our Results
6.1 Extensions to Zhu-Wan
6.2 Prerequisites for a Proof
6.3 The Proof
6.4 Summary and Further Work

1

1 Introduction to Error-correcting Codes

In many areas of modern communications, some data must be sent over a noisy medium. Action must be
taken in order for the receiver to correctly interpret the data. One way to do this is to use ”forward error
correction” (FEC), that is, to add additional redundant information to the data so that the receiver can
recover corrupted parts of a message. Some examples of where this may be necessary are:

QR codes Compact discs Deep space probes

1.1 A Simple Code

Before the theory of error-correcting codes was established, people employed very simple procedures, one
of which is now called a repetition code. To set up a repetition code, one declares a number N to be the
number of times a message is to be repeated. (This number depends on the amount of noise present in the
medium; a higher number is required for higher noise rates.) Then, the sender simply sends a given message
symbol N times. More formally,

Procedure (Repetition Code). Fix N to be the repetition value.

Input: A (binary) message symbol B.

Output: The string BBB . . . B︸ ︷︷ ︸
N times

, to be transmitted.

The receiver can recover a corrupted string by taking the symbol that occurs most frequently.

Repetition codes can be implemented easily due to their simplicity, but they are very inefficient, due to the
fact that their data output is very low. This would later motivate the search for better ways to protect data.

1.2 The First Nontrivial Code: Hamming (7, 4)

In 1950, Richard Hamming of Bell Labs published the first nontrivial error-correcting code, which was a
result of his attempts to mitigate read errors in binary punchcard readers. His idea was add redundancy
by relating associating 4 data bits with a system of 3 equations, creating a code of length 7. This is known
today as Hamming (7, 4).

Procedure (Hamming (7, 4) Encoding).

Input: The message vector m = (m1,m2,m3,m4)T , where the mi are elements of F2.

Output: The codeword vector c = Gm, to be transmitted, where

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1



2

Procedure (Hamming (7, 4) Decoding).

Input: A received message vector r = (r1, r2, r3, r4, r5, r6, r7)T .

Computation:

1. Calculate the syndrome vector Hr, where

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


2. If the syndrome vector is not zero, treat it as a binary number.

3. In the received message, flip the bit in the position corresponding to that number.

Output: The message vector (r3, r5, r6, r7)T .

In addition to developing this code, Hamming also introduced new concepts in the area of error-correction.

Definition.

• Message block size: the number of data symbols to be sent, denoted by k

• Code block size: the number of data symbols plus redundant symbols, denoted by n

• Hamming distance: the number of coordinates in which two words differ, denoted by d(·, ·)

• Minimum distance: the shortest distance between any two codewords

• Information rate: the measure of the amount of data sent versus total code block size, given by k/n

The minimum distance gives information on the error-correcting capacity of the code. The consequences can
be seen from the following figure:

C1

C3C2

C4 C5

C6

d/2

r

Figure 1: A geometric interpretation of minimum distance, where d is the minimum distance, Ci are code-
words, and r is a received word

The minimum distance tells us that any two codewords are separated at least by distance d. If a received
message r falls within Hamming distance d/2 of a codeword, then it can be unambiguously decoded to that
codeword. In other words, a code can always correct less than d/2 errors in a received word.

3

Example.

Code (odd) N -fold repetition Hamming (7, 4)

Message block size 1 4
Code block size N 7

Minimum distance N 3
Correctable Errors bN/2c 1
Information rate 1/N 4/7

Now with these concepts defined, the goal is to find better codes in terms of error-correcting capacity (i.e.
large minimum distance) and high information rates.

2 Reed-Solomon Codes

2.1 Encoding and Decoding

In 1960, Irving S. Reed and Gustave Solomon published a paper titled ‘Polynomial Codes Over Certain
Finite Fields’ [16]. Here they outlined a new error-correcting code that was based on sampling points on a
polynomial. They used the idea that a polynomial of degree k− 1 is determined by k of its points, and that
if we know n > k points, we can recover the original polynomial even if some of the points go missing or are
mixed-up. This was described in the following way:

Procedure (Reed-Solomon Encoding, Original Formulation). Fix a finite field Fq, a message block size k,
and a subset D = {x1, x2, . . . , xn} ⊆ Fq so that n > k.

Input: The message m = (m0,m1,m2, . . . ,mk−1), represented by the polynomial

m(x) = m0 +m1x+m2x
2 + . . .+mk−1x

k−1

where the mi are elements of Fq.

Output: The codeword (m(x1),m(x2), . . . ,m(xn)), to be transmitted.

Example. Take the finite field F22 , α a root of x2 +x+ 1 ∈ F2[x], the message block length 2, and D = F22 .
Suppose m = (10, 11). Then,

m(x) = 10 + 11x = α+ (α+ 1)x

and the transmitted codeword will be

(m(00),m(01),m(10),m(11)) = (10, 01, 11, 00)

In summary, our original message was 1011, and we will transmit the codeword 10011100.

Procedure (Reed-Solomon Decoding, Original Formulation).

Input: A received message r = (r1, r2, . . . , rn).

Computation: Find the interpolated polynomials of all combinations of k points from

(x1, r1), (x2, r2), . . . , (xn, rn)

Output: The most popular polynomial.

Reed and Solomon gave an analysis of this algorithm and used a combinatorial argument to find the
maximum number of correctable errors. To calculate this, suppose that there are t coordinate errors. The
correct polynomial will therefore appear

(
n−t
k

)
times, and any one incorrect polynomial will appear at most(

t+(k−1)
k

)
times. To recover the correct polynomial, we must have(

n− t
k

)
>

(
t+ (k − 1)

k

)
which is true if and only if n− t > t+ (k − 1). Rearranging this inequality shows that we can correct up to
(n− k + 1)/2 errors.

4

Example. Suppose the message r = 10101100 is received. Up to b(4− 2 + 1)/2c = 1 error can be corrected.(
4
2

)
= 6 pairs of points must be examined. The frequencies are

of occurrences Polynomial

2 10 + 11x
1 11 + 11x
1 11 + 01x
1 00 + 10x
1 10 + 00x

The most popular polynomial is 10 + 11x, so the decoded message is m = 1011.

Unfortunately, Reed and Solomon’s original decoding algorithm is infeasible except for very small codes.
In many practical applications, we need to use fields such as F28 . One popular setup is to use D = F∗28 and
message block size k = 223 (i.e. a (255, 223) Reed-Solomon code). Using this decoding procedure requires
that we examine

(
255
223

)
≈ 5.1 × 1040 subsets. Even if we could examine one million subsets per second, it

would take about 1.6×1027 years to complete. With this in mind, Reed-Solomon codes have been formulated
in another way to allow for efficient decoding.

The most popular method to phrase Reed-Solomon codes is in terms of BCH (Bose-Chadhuri-Hocquenghem)
codes. Here is the idea: suppose g(x) is a polynomial with roots {x1, x2, . . . , xn}. Let m(x) be some other
polynomial. Then take c(x) = m(x)g(x). If we make no mistake about c(x), then

c(x1) = c(x2) = . . . = c(xn) = 0

If any of the terms is not zero, then some of the coefficients of c(x) were mixed-up, and we can use those
values to try to recover c(x).

Procedure (Reed-Solomon Encoding, BCH Formulation). Fix a finite field Fq, a generator α of F∗q , and an
error tolerance t. Set

g(x) = (x− α)(x− α2) · · · (x− α2t)

Input: The message m = (m0,m1,m2, . . . ,mk−1), represented by the polynomial

m(x) = m0 +m1x+m2x
2 + . . .+mk−1x

k−1

where the mi are elements of Fq and k = q − 2t− 1.

Output: The codeword formed by the coefficients of c(x) = m(x)g(x), to be transmitted.

Here, the polynomial g(x) is referred to as the generator polynomial.

Decoding requires some sophistication. Suppose we receive a message r(x) = c(x) + e(x), where e(x) is
the error polynomial accumulated during transmission. We can evaluate r(x) at the αi. If we do this, we
have

r(αi) = c(αi) + e(αi) = g(αi)m(αi) + e(αi) = e(αi)

where the last equality holds because the roots of g(x) were αi by design. We call these values the message
syndromes and denote them by Si = r(αi) = e(αi). If all of the Si = 0, then there was no transmission
error. Otherwise, we have to use the values of Si to determine error locations and their values. This idea
can be thought of in terms of determining the error locator polynomial

Λ(x) =

t∏
i=1

(1− xαi) = 1 + Λ1x+ Λ2x
2 + . . .+ Λtx

t

noting that its roots give us information about the error positions. The error locator polynomial is related
to the syndrome values by a set of linear equations (due to W. Peterson). This system can be solved using
many famous algorithms, such as the one by Berelekamp-Massey, described in [2] [3] [15].

5

Procedure (Reed-Solomon Decoding, BCH Formulation).

Input: A received message r = (r0, r1, r2, . . . , rn−1), represented by

r(x) = r0 + r1x+ r2x
2 + . . .+ rn−1x

n−1

Computation:

1. Calculate the syndromes

Sj = r(αj) =

t∑
k=1

eik(αj)ik

for j = 1, 2 . . . , n− k, where ei is the error value in the i-th component of r, and t is the number
of errors.

2. Find the error positions αik and error values eik by finding the error locator polynomial, and
make the appropriate corrections in r(x).

Output: The polynomial r(x)/g(x).

2.2 Code Properties

Reed-Solomon codes have many excellent properties.

Code (255, 223) Reed-Solomon (n, k) Reed-Solomon

Message block size 223 k
Code block size 255 n

Minimum distance 33 n− k + 1
Correctable Errors 16 b(n− k + 1)/2c
Information rate 223/255 n/k

In 1964, R.C. Singleton published a very basic bound relating to the minimum distance of block codes.

Theorem (Singleton). Given a q-symbol (n, k) error-correcting code with minimum distance d, we must
have

d ≤ n− k + 1

Proof. Consider only the first k−1 coordinates of our codewords, noting that there are only qk−1 possibilities.
Since we have qk codewords, there must be a collision. Therefore, any two codewords can differ in at most
n− (k − 1) = n− k + 1 of the remaining coordinates. This is exactly d ≤ n− k + 1.

From the table above, we see that Reed-Solomon codes match the Singleton bound. We call this a maximum-
distance separable (MDS) code.

Reed-Solomon codes are highly resistant against burst errors. This can be seen in our small example,
where two bits were flipped in the transmission.

Transmitted 10011100
Received 10101100

Since the two flipped bits were part of the same symbol, this only counts as a single error. This effect is
certainly more dramatic when there are more bits per symbol (say, in a code over F28).

6

2.3 Applications in Technology

Compact Discs

• CDs make use of two concatenated cross-interleaved Reed-Solomon codes (CIRC), the first is a (32, 28)
code C1 and the second is a (28, 24) code C2, both over F28 .

• Interleaving of data symbols prevents burst errors from overwhelming any one block.

• If the C1 or C2 decoders fail to correct the errors in a block, the symbols in the block are flagged as
erasures so that the hardware can attempt to conceal the corruption.

• The CIRC setup can correct a burst error lasting about 4000 bits, or 2.5mm in track length.

• If the errors are too overwhelming, data blocks can be interpolated or concealed for errors spanning
around 12300 bits, or 7.7mm in track length.

QR Codes

• QR codes were invented by the Toyota subsidiary Denso Wave in 1994 and are freely available for use.

• A 21× 21 QR code (‘Version 1’) contains 26 bytes of information.

• There are four levels of error-correction:

Level Check Symbols Data Bytes

L 7 19
M 10 16
Q 13 13
H 17 9

where the coding is done over F28 .

• A 21× 21 QR code with level M encoding uses the generator polynomial

g(x) = (x− α)(x− α2) · · · (x− α10)

where α is a multiplicative generator of F∗28 . This allows for the correction of up to five errors.

• Error correction in QR codes allows them to be read even if they are damaged or obstructed. Some
use this property for artistic purposes:

Voyager Probes

• Reed-Solomon codes were first used for space exploration in the Voyager missions (1977). They were
to be used in the transmission of full-colour 800× 800 images at 8 bits per pixel.

7

• Compressing the colour images made them vulnerable to bit errors, so engineers employed a Reed-
Solomon code composed with a convolutional code to compensate. The system, however, was considered
too new and experimental, so it was used as a backup system for a more traditional setup. It was
finally put into action after the basic Jupiter and Saturn mission.

• Voyager uses a (255, 223) code over F28 , which is represented by the primitive polynomial f(x) =
x8 + x4 + x3 + x2 + 1. The generator polynomial is

g(x) = (x− α)(x− α2) · · · (x− α32)

where α is a root of f(x). This allows for the correction of up to 16 symbol errors.

3 List Decoding

Given the highly applied nature of Reed-Solomon codes, one major problem has cropped up over the years:
can the error-correcting limit be improved? We know that a received word can be decoded to a unique
codeword as long as the number of errors is less than d/2, where d is the minimum distance. If we want to
handle more errors, we have to drop unique decoding. This leads to the following concept:

Problem (List Decoding). Given a received word r and an error tolerance t, to find all codewords c such
that d(c, r) ≤ t.

For Reed-Solomon codes, it was unknown whether or not this could be done efficiently, even for t a little
larger than d/2. In 2001, Guruswami and Sudan published a random polynomial time algorithm that allowed
decoding in the presence of up to n−

√
nk errors [8] [9].

Procedure (Guruswami-Sudan List Decoding).

Input: A received message r = (r1, r2, . . . , rn) and an error tolerance t.

Computation:

1. Find a two-variable polynomial Q(x, y) with suitably high degree so that Q(xi, ri) = 0 for 1 ≤
i ≤ n.

2. Find all factors of Q(x, y) of the form y − p(x), where deg p(x) < k.

Output: Those polynomials y = p(x) such that ri = p(xi) for at least n− t of the (xi, ri).

A more detailed description and implementation of the algorithm can be found in [8].

4 Further Improving Error-Correction Limits

4.1 New Problems

For the same reasons as before, researchers are still interested in investigating the full error-correction
capacity of Reed-Solomon codes. We can formulate two new decoding questions.

Definition (Distance to a Code). For an error-correcting code C and a word r, denote d(r, C) to be the
shortest distance between r and each codeword from C.

Problem (Maximum Likelihood Decoding). Given a received word r, to find an explict codeword c such
that d(r, c) = d(r, C).

Problem (Bounded Distance Decoding). Given a received word r and a bound B, to find just one codeword
c such that d(r, c) ≤ B.

8

4.2 Hardness Results

Studying these problems has led to several hardness results. One major result comes from Guruswami and
Vardy [10].

Theorem (Guruswami-Vardy, 2005). For an integer t ≥ 1, let m = 3t, k = t3− t−1, and n = t3. There is a
class of (n, k) Reed-Solomon codes over F2m with evaluation set of size |D| = n such that maximum-likelihood
decoding is NP-complete.

The proof gives a polynomial-time reduction of the maximum-likelihood decoding problem to the three-
dimenisonal matching problem, which has been shown to be NP-complete. The main drawback is that this
code uses a tremendously small evaluation set D compared to Fq (i.e. t3 versus 23t), so in some sense, it
isn’t realistic for codes actually used in practise. Guruswami and Vardy noted this and suggested that the
maximum-likelihood decoding might be easier if D is much larger or has some algebraic structure.

Cheng and Wan also published hardness results on two occassions, both relying on the assumed hardness
of the discrete logarithm problem over finite fields [6] [7]. Their arguments hinged on giving a procedure to
interpret a decoding problem in terms of a discrete logarithm problem (similar to using an index calculus
algorithm).

Problem (Discrete Logarithm). Given a finite field Fq, a generator g of F∗q , and a nonzero element a, to
find an integer i such that

gi = a

The value of i is denoted logg a.

Theorem (Cheng-Wan, 2004). In an (n, k) Reed-Solomon code over Fq, let ĝ(n, k, q) be the smallest positive
integer g such that

(
n
g

)
/qg−k is less than 1. If there exists an algorithm solving the list decoding problem

of radius n− ĝ in time qO(1), then discrete logarithm over the finite field Fqĝ−k can be computed in random

time qO(1).

Theorem (Cheng-Wan, 2004). Let h be a positive integer satisfying

q ≥ max(g2, (h− 1)2+ε) and g ≥ (4/ε+ 2)(h+ 1)

for a constant ε > 0. If the bounded distance decoding problem of radius B = q − g for the (q, g − h)
Reed-Solomon code can be solved in time qO(1), the discrete logarithm problem over Fqh can be solved in

random time qO(1).

Theorem (Cheng-Wan, 2010). Let δ > 0 be a constant and m > 1 be an integer. Suppose h and k are
integers satisfying

h ≤ q
1

2+δ

m
+

1

m
, h ≤

√
q

m(4/δ + 2)
− 1

m
, q ≤ k ≤ qm − q

The discrete logarithm in F∗qmh can be solved in randomized time (qm)O(1) with oracle access to a maximum-

likelihood decoder for a (qm, k) Reed-Solomon code over Fqm .

Theorem (Cheng-Wan, 2010). Let ε be a positive constant less than 1/3 and g = 2+3ε
1−3ε (h + 1). In an

(q, q−g−h) Reed-Solomon code over Fq for sufficiently large q, there does not exist a randomized polynomial
time bounded distance decoder at distance (2/3 + ε)d, where d is the minimum distance, unless the discrete
logarithm problem over Fqh can be solved in randomized time qO(1) for any h ≤ q0.8ε.

Later, in 2012, Augot and Morain took Cheng and Wan’s conversion idea and made it effective [1]. This
allowed them to produce a new algorithm for computing discrete logarithms.

Theorem (Augot-Morain, 2012). Let F = Fqh and K = Fq. Take a fixed monic Q(X) from K[X], with
degQ(X) = h, and a set S ⊂ F with size n so that Q(a) 6= 0 for all a ∈ S. Let 1 ≤ µ ≤ n. For any f(X) in
K[X] with deg f(X) < µ, there exists A ⊂ S where |A| = µ such that∏

a∈A
(X − a) ≡ f(X) (mod Q(x))

9

if and only if the word represented by the polynomial

y(X) = −f(X)/Q(X)−Xk

is exactly distance n − µ from the Reed-Solomon code with k = µ − h and evaluation set D = S. All such
sets A can be found by decoding the word y(X) up to radius n− µ.

Using this conversion, discrete logarithms can be computed using a procedure similar to index calculus.
If Q(X) is a primitive polynomial, take f(X) = Xu for random u. After finding all relations of the form∏

a∈A
(X − a) ≡ f(X) (mod Q(x))

using Reed-Solomon decoding, we can try to set up a linear system to solve for the values of log(X − a) for
all a ∈ S. The authors showed that their implementation of this procedure requires Õ(h! q2) operations over
Fq.

4.3 The Deep Hole Problem

In an (n, k) Reed-Solomon code, it can be shown that for any received word r, we always have d(r, C) ≤ n−k.
This bound is the so-called covering radius, the maximum value of d(r, C) over all possible words r. For r
satisfying d(r, C) = n−k, Guruswami and Vardy called this a deep hole. They observed that as a consequence
of their results in their family of codes, determining whether or not r is a deep hole is actually NP-hard.
As before, the situation might be different for codes with evaluation sets of larger size or some algebraic
structure. This leads us to the following problem:

Problem (Determining Deep Holes). Take an (n, k) Reed-Solomon code over Fq with some evaluation set D,
preferably D = Fq, D = F∗q , or some set with algebraic structure. Given a received message r, to determine
whether or not r is a deep hole.

5 Previous Results on Deep Holes

Let u = (u1, u2, . . . , un) be a received message. Use Lagrange Interpolation to find the associated polynomial
u(x). If deg u(x) ≤ k− 1, then u is a codeword and d(u, C) = 0. Otherwise, we can put some simple bounds
on the value of d(u, C).

Theorem. If deg u(x) ≥ k, then
n− deg u(x) ≤ d(u, C) ≤ n− k

Proof. To prove the right-hand inequality, let {x1, x2, . . . , xk} a set of any k points from D. Let g(x) =∏k
i=1(x− xi). By the division algorithm, we can write

u(x) = g(x)q(x) + v(x)

where v(x) is a codeword, since deg v(x) ≤ k − 1. Then, u(x)− v(x) = g(x)q(x) has at least k roots by the
design of g(x), meaning that u and v have at least k coordinates in common. Therefore, u differs from a
codeword in no more than n− k coordinates, or d(u, C) ≤ n− k.

Let N(·) be the number of zeros of a polynomial. To prove the left-hand inequality, we measure the error
distance:

d(u, C) = min
v∈C

d(u, v)

= n−max
v(x)

N(u(x)− v(x))

≥ n− deg u(x)

The last inequality holds because u(x)− v(x) is a polynomial of degree deg u(x), so it has at most deg u(x)
roots. This completes the proof.

10

5.1 Results when D = Fq

Cheng and Murray in [5] considered the deep hole problem for codes with evaluation set D = Fq. They came
up with the following conjecture:

Conjecture (Cheng-Murray). The only deep holes are those words u such that deg u(x) = k.

Though they could not prove this, they were able to reduce the problem to finding a rational point on
an algebraic hypersurface and derived the following result, only for q = p:

Theorem (Cheng-Murray). Let p be a prime and 1 < k < p1/4−ε be a positive integer. Let u be a received
word and u(x) be its interpolated polynomial. If the degree of u(x) satisfies

k < deg u(x) < k + p3/13−ε

then u is not a deep hole.

Example. As an example, choose p = 929. Then in the (929, k) Reed-Solomon code (for 1 < k < 5.25), if
the degree of u(x) satisfies

k < deg u(x) < k + 4.84

then u is not a deep hole.

Li and Wan [12] studied the problem in terms of solving polynomial congruences, using character sums
combined with Weil’s character sum bounds to count solutions.. They were able to give some exact distance
measurements under the right conditions.

Theorem (Li-Wan, 2010). Let u be a received word and u(x) be its interpolated polynomial. Suppose
1 ≤ d := deg u(x)− k ≤ q − 1− k. If

q > max((k + 1)2, d2+ε) and k >

(
2

ε
+ 1

)
d+

8

ε
+ 2

for some constant ε > 0, then d(u, C) < q − k. In other words, u is not a deep hole. Furthermore, if

q > max((k + 1)2, (d− 1)2+ε) and k >

(
4

ε
+ 1

)
d+

4

ε
+ 2

for some constant ε > 0, then d(u, C) = q − (k + d).

Several other authors followed these techniques to get new bounds.

Theorem (Liao, 2011 [11]). Let r ≥ 1 be an integer. Let u be a received word and u(x) be the interpolated
polynomial of degree m. If m ≥ k + r,

q > max

{
2

(
k + r

2

)
+ (m− k), (m− k)2+ε

}
and

k >
1

1 + ε

(
r + (2 + ε)

(m
2

+ 1
))

for some constant ε > 0, then d(u, C) ≤ q − k − r.

Using some techniques from algebraic geometry, Cafure, Matera, and Privitelli in [4] slightly improved
on one of Li-Wan’s previous results with

Theorem (Cafure-Matera-Privitelli, 2012). Let u be a received word and u(x) be is interpolated polynomial
with 1 ≤ d := deg(u(x))− k ≤ q − 1− k. Assume that

q > max((k + 1)2, 14d2+ε) and k > d

(
2

ε
+ 1

)
for some constant ε > 0. Then u is not a deep hole.

11

In the previous results, many of the conditions required u(x) to be a polynomial with degree only slightly
larger than k. Zhu and Wan improved upon this by observing that some high degree polynomials can also
be represented by low-degree rational functions [21]. They came up with

Theorem (Zhu-Wan, 2012). Let r ≥ 1 be an integer. Suppose we can write(
w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(xq)

h(xq)

)
= u

for some h(x) ∈ Fq[x], with gcd(h(x), xq − x) = 1, and deg h(x) + k ≤ degw(x) ≤ q − 1. Let m be the
smallest such degree of w(x), and set r ≤ d := m − k ≤ q − 1 − k. There are positive constants c1 and c2
such that if

d < c1q
1/2 ,

(
d+ r

2
+ 1

)
log2 q < k < c2q

then d(u, C) ≤ q − k − r.

5.2 Results when D = F∗
q

Wu and Hong studied the deep hole problem when D = F∗q [19]. Using this evaluation set allowed them to
use the BCH formulation of Reed-Solomon codes.

Theorem (Wu-Hong, 2011). Take a Reed-Solomon code over Fq with q ≥ 4 and 2 ≤ k ≤ q − 2. Then
polynomials of the form u(x) = axq−2 + v(x) with a 6= 0, where deg v(x) ≤ k − 1, represent deep holes.

This work shows that the Cheng-Murray conjecture is false when D = F∗q . Wu and Hong attempted
to modify the conjecture to include certain polynomials of degree q − 2. This would later be disproved by
Zhang, Fu, and Liao.

Zhang, Fu, and Liao proved an extension of Wu-Hong that allows D to be any evaluation set except Fq
[20]. They also adapted work from Li-Wan to find more deep holes for a specific message length k. Finally,
they found a class of received words that are not deep holes.

Theorem (Zhang-Fu-Liao, 2012). Take a Reed-Solomon code over Fq with evaluation set D 6= Fq. Then
for any a 6= 0, b 6∈ D, polynomials of the form

u(x) = a(x− b)q−2 + v(x)

where deg v(x) ≤ k − 1, represent deep holes.

Theorem (Zhang-Fu-Liao, 2012). For q > 4, take a Reed-Solomon code over Fq with evaluation set D = F∗q
or D = F∗q/{1} and k = q − 4. If a 6= 0, then polynomials of the form

u(x) = axq−3 + v(x)

where deg v(x) ≤ k − 1, represent deep holes.

Theorem (Zhang-Fu-Liao, 2012). Take a Reed-Solomon code over Fq for q > 5, 2 ≤ k ≤ q−3, and D = F∗q .
Polynomials of the form

u(x) = axk+2 + bxk+1 + cxk + v(x)

where a ∈ F∗q , b, c ∈ Fq, and deg v(x) ≤ k − 1, do not represent deep holes.

The variety of these results makes the deep hole problem for D = F∗q very uncertain.

12

6 Our Results

6.1 Extensions to Zhu-Wan

Zhu and Wan’s original work applied for Reed-Solomon codes over Fq with evaluation set D = Fq. In new
work with Zhu and Wan, we were able to produce new statements for codes with slightly smaller evaluation
sets.

Theorem. Let C be a Reed-Solomon code over Fq using the evaluation set D with |D| > q/2. Let u be a
received word. Suppose we can write(

w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(x|D|)

h(x|D|)

)
= u

for some h(x) ∈ Fq[x], with no roots in D, and deg h(x) + k ≤ degw(x) ≤ |D| − 1. Let m be the smallest
such degree of w(x). Let 1 ≤ r ≤ d := m− k ≤ |D| − k − 1. If the bound∣∣∣∣∣∑

a∈D
χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

is true over all nontrivial characters χ : (F[x]/(h̄(x)))∗ → C with χ(F∗q) = 1 for some K ≥ d and h̄(x) =

xm−k+1h(1/x), there are positive constants c1 and c2 such that if

d ≤ K < c1q
1/2 ,

(d+r
2 + 1) log2 q

log2 |D|+ 1− log2 q
< k < c2q

then d(u, C) ≤ |D| − k − r.

We have a more familiar setting by taking D = F∗q and h(x) = 1.

Corollary. Take a Reed-Solomon code over Fq using the evaluation set D = F∗q . Let r ≥ 1 be an integer
and u a received word with interpolated polynomial u(x) such that r ≤ d := deg(u(x)) − k ≤ q − 2 − k.
There are positive constants c1 and c2 such that if

d < c1q
1/2 ,

(d+r
2 + 1) log2 q

log2 (q − 1) + 1− log2 q
< k < c2q

then d(u, C) ≤ q − 1− k − r.

To get an idea of what these statements mean, we can look at some examples.

Example. Take a Reed-Solomon code over F28 with evaluation set D = F∗28 . If r ≥ 1, and u is a codeword
with r ≤ d ≤ 254− k, then we can find c1 and c2 such that if

d < 16c1 and 8.045

(
d+ r

2
+ 1

)
< k < 256c2

then d(u, C) ≤ 255− k − r.
Consider d = r = 1. In other words, we want to classify codewords whose polynomial (or rational)

interpolations are degree k+1 (in the numerator). From the proof of the theorem, we can explicitly compute
c1 and c2 using the formulas

1 < 16c1 , c1 + c2 = 255 · 256−
k+2
k+1 − 1

2

To obtain a wide range of k, fix c1 = .0626. Then we have the condition

16.09 < k < 256

(
255 · 256−

k+2
k+1 − 1

2
− .0626

)

13

The inequality is satisfied when 17 ≤ k ≤ 96. Therefore, for codes using this range of message lengths,
received words u represented by a polynomial (or rational function) of degree k + 1 (in the numerator) are
not deep holes. More specifically, we can give the estimate d(u, C) ≤ 254− k.

Similarly, for r = 1 and d = 2, polynomials (or rational functions) of degree k + 2 (in the numerator) do
not represent deep holes when the message length satisfies 30 ≤ k ≤ 59. Such words u satisfy the estimate
d(u, C) ≤ 254− k.

Here is a table with a few examples of words covered by our bounds. We will denote α to be a multi-
plicative generator for F∗28 .

d k Polynomial Interpolation Rational Interpolation

1 17 x18 + 3x2 + 1 N/A
1 17 x254 + x17 + 1 (x18 + x+ 1)/x
2 30 x254 + x253 + x30 (x32 + x+ 1)/x2

2 30 (α4 + 1)x254 + . . .+ (α6 + α3 + α2 + 1) (x32 + x2 + α)/(x2 − α2x+ α+ 1)

6.2 Prerequisites for a Proof

Multiplicative Character

Definition (Multiplicative Character). Let h(x) be a polynomial from Fq[x]. We say that a homomorphism
χ : (Fq[x]/(h(x)))∗ → C is a multiplicative character of (Fq[x]/(h(x)))∗. It can be extended to the entire
group Fq[x]/(h(x)) by setting χ(f(x)) = 0 if gcd(f(x), h(x)) 6= 1.

Weil’s Character Sum Bound

As stated in [17]:

Theorem (Weil). Let h(x) be a polynomial of positive degree from Fq[x], and let χ : (F[x]/(h(x)))∗ → C
be a multiplicative character. If χ is not trivial, then∣∣∣∣∣∣

∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

Furthermore, if χ is not trivial but χ(F∗q) = 1, then∣∣∣∣∣∣1 +
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (deg h(x)− 2)q1/2

Since we will be dealing with F∗q , these bounds need to be slightly modified:

Lemma 1. Let h1(x) be a polynomial from Fq[x] not divisible by x, h(x) = xkh1(x) for k ≥ 1, and

χ : (F[x]/(h1(x)))∗ → C∗ with χ nontrivial and χ(F∗q) = 1. For a subgroup (F∗q)
q−1
` of F∗q , we have∣∣∣∣∣∣∣

∑
a∈(F∗q)

q−1
`

χ(x− a)

∣∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

Proof. Use the character sum∑
a∈(F∗q)

q−1
`

χ(x− a) =
∑
a∈Fq

`

q − 1

∑
(χ′)(q−1)/`=1

χ′(a)χ(x− a) =
`

q − 1

∑
(χ′)(q−1)/`=1

∑
a∈Fq

χ′(a)χ(x− a),

where χ′ : F∗q → C∗ denotes a multiplicative character. The two characters χ and χ′ can be viewed as
characters over the group

(Fq[x]/(h(x)))∗ ∼= (Fq[x]/(xk))∗ × (Fq[x]/(h1(x)))∗

14

This is true because we can define the natural reduction map

(Fq[x]/(xk))∗ × (Fq[x]/(h1(x)))∗ → (Fq[x]/(x))∗ × (Fq[x]/(h1(x)))∗

just by taking the terms in (Fq[x]/(xk))∗ modulo x. And since F∗q ∼= (Fq[x]/(x))∗, χ′ lifts to a character over

(Fq[x]/(xk))∗, which therefore extends to a character over (Fq[x]/(h(x)))∗. Because of this, we also have
χ′(a) = χ′(−x+ a) = χ′(−1)χ′(x− a). Then,∣∣∣∣∣∣∣

∑
a∈(F∗q)

q−1
`

χ(x− a)

∣∣∣∣∣∣∣ ≤
`

q − 1

∑
(χ′)(q−1)/`=1

∣∣∣∣∣∣
∑
a∈Fq

χ′(a)χ(x− a)

∣∣∣∣∣∣
=

`

q − 1

∑
(χ′)(q−1)/`=1

∣∣∣∣∣∣
∑
a∈Fq

(χ′χ)(x− a)

∣∣∣∣∣∣
≤ `

q − 1

∑
(χ)(q−1)/`=1

(deg h(x)− 1)q1/2

= (deg h(x)− 1)q1/2,

where we used the fact that the product χ′χ is a nontrivial character of (Fq[x]/(h(x)))∗. To see this, note
that the restriction of χ′χ to the second factor (Fq[x]/(h1(x)))∗ is precisely χ, which is already nontrivial.

Li-Wan’s New Sieve

We also state Li-Wan’s new sieve (as in [13] and [21]): let D be a finite set and Dk = D ×D × · · · ×D be
the Cartesian product of k copies of D. Let X be a subset of Dk. Denote

X̄ = {(x1, x2, . . . , xk) ∈ X | xi 6= xj , i 6= j}

Let f(x1, x2, . . . , xk) be a complex-valued function defined over X. Denote

F =
∑
x∈X̄

f(x1, x2, . . . , xk)

Let Sk be the symmetric group on {1, 2, . . . , k}. Each permutation τ ∈ Sk can be uniquely factorised as a
product of disjoint cycles and each fixed point is viewed as a trivial cycle of length 1. Namely,

τ = (i1i2 . . . ia1)(j1j2 . . . ja2) · · · (l1l2 . . . las)

with ai ≥ 1 and 1 ≤ i ≤ s. Define

Xτ = {(x1, x2, . . . , xk) | xi1 = . . . = xia1 , xj1 = . . . = xja2 , · · · , xl1 = . . . = xlas}

Similarly define

Fτ =
∑
x∈Xτ

f(x1, x2, . . . , xk)

We say that τ is of the type (c1, c2, . . . , ck) if it has exactly ci cycles of length i. Let N(c1, c2, . . . , ck) be the
number of permutations of type (c1, c2, . . . , ck). Define

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)tc11 t
c2
2 · · · t

ck
k

Now we have the following combinatorial result:

15

Lemma 2. Suppose q ≥ d. If ti = q for d|i and ti = s for d - i, then we have

Ck(s, . . . s, q, s, . . . , x, q, . . .) = k!

bk/dc∑
i=0

(q−s
d + i− 1

i

)(
s+ k − di− 1

k − di

)
≤
(
s+ k +

q − s
d
− 1

)
k

where (x)k = x(x− 1)(x− 2) · · · (x− k + 1).

Furthermore, we say that X is symmetric if for any x ∈ X and any g ∈ Sk, we have g ◦ x ∈ X. Also, if a
complex-valued function f is defined on X, we say that it is normal on X if X is symmetric and for any two
conjugate elements in Sk, τ and τ ′, we have∑

x∈Xτ

f(x1, x2, . . . , xk) =
∑
x∈Xτ′

f(x1, x2, . . . , xk)

Then, we have the result:

Lemma 3. If f is normal on X, then

F =
∑

∑
ici=k

(−1)k−
∑
ciN(c1, c2, . . . , ck)Fτ

A Rephrasing of Error Distance

For our purposes, it is more convenient to state the error distance in this way:

Lemma 4. Let C be a Reed-Solomon code over Fq using the evaluation set D. Let u be a received word
and u(x) its interpolated polynomial with deg u(x) = k+ d, where k+ 1 ≤ k+ d ≤ q− 1. The error distance
d(u, C) ≤ |D| − k − r for some 1 ≤ r ≤ d if and only if there exists a subset {xi1 , xi2 , . . . , xik+r} ⊂ D and a
polynomial g(x) ∈ Fq[x] of degree d− r such that

u(x)− v(x) = (x− xi1)(x− xi2) · · · (x− xik+r)g(x)

for some v(x) with deg v(x) ≤ k − 1.

Proof. First suppose that d(u, C) ≤ |D| − k − r. Then, the coordinates of u differ from the coordinates of
some codeword v in |D| − k − r places (or less). Then, their interpolated polynomials u(x) and v(x) have
(at least) k + r roots in common in D. The result follows.

The converse has a very similar structure, roughly following the above in reverse.

6.3 The Proof

Our idea is to phrase the problem in terms of finding solutions to a polynomial congruence. In particular,
our results will be proved if we can guarantee that there is at least one solution to our congruence. To do
this, we will use a character sum argument combined with estimations from Li-Wan’s new sieve.

Suppose w(x) is the polynomial with degree m, and h(x) is the corresponding polynomial with no
roots in D. Possibly by shifting u by a constant codeword, we can assume that w(0) 6= 0. Also let
h̄(x) = xm−k+1h(1/x). This is a polynomial of degree m − k + 1 = d + 1 and divisible by x since h(0) 6= 0
and deg(h(x)) ≤ m − k. Let A = (Fq[x]/(h̄(x)))∗ and Â denote the group of all characters of A. Let B̂ be

the set of characters χ in Â with χ(F∗q) = 1. Note that B̂ is an abelian subgroup of order ≤ qd.
Now, by Lemma 4, d(u, C) ≤ |D| − k − r if and only if there is some polynomial f(x) ∈ Fq[x] with

deg f(x) ≤ k − 1 such that
w(x)

h(x)
+ f(x) =

w(x) + f(x)h(x)

h(x)

16

has at least k + r distinct roots in D. In other words, there are points {x1, x2, . . . , xk+r} ⊂ D where

w(x) + f(x)h(x) = (x− x1)(x− x2) · · · (x− xk+r)v(x)

for some polynomial v(x) with deg v(x) = m− (k + r). Then replacing x with 1/x and multiplying through
by xm, it is enough to find such a subset for the equation

w̃(x) + f̃(x)h̄(x) = (1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

where w̃(x) = xmw(1/x), f̃(x) = xk−1f(1/x), and ṽ(x) = xm−(k+r)v(1/x). We can now further assume that
w̃(0) = 1 and ṽ(0) = 1. Then this equation is equivalent to

(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)
≡ 1 (mod h̄(x))

Let the number of solutions to this equation be denoted by Nu, noting that the xi ∈ D are distinct,
deg ṽ(x) = m − (k + r) = d − r, and ṽ(0) = 1. In other words, Nu gives the number of codewords f in C
where d(u, f) ≤ |D| − k − r. If Nu is positive, then d(u, C) ≤ |D| − k − r. By character sums,

Nu =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

∑
χ∈B̂

χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)

For ease of notation, define

Sχ(x1, x2, . . . , xk+r, x) = χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)
First we will handle the case where r < d. To do this, consider the weighted version

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂

Sχ(x1, x2, . . . , xk+r, x),

where Λ denotes the von Mangoldt function. Note that if N > 0, then Nu > 0. Separating the trivial
character from the sum gives

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ) +
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ6=1

Sχ(x1, x2, . . . , xk+r, x)

=
1

|B̂|
(|D|)k+r(q

d−r − 1) +
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

Sχ(x1, x2, . . . , xk+r, x)

Now we have to estimate

∣∣∣∣∣N − 1

|B̂|
(|D|)k+r(q

d−r − 1)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

|B̂|

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

∑
xi∈D

distinct

Sχ(x1, x2, . . . , xk+r, x)

∣∣∣∣∣∣∣∣
To do this, apply Li-Wan’s new sieve. Let X = Fk+r

q , X̄ = {(x1, x2, . . . , xk+r) ∈ Fk+r
q | xi 6= xj , i 6= j},

f(x) = χ((1− x1x)(1− x2x) · · · (1− xk+rx)), and F =
∑
x∈X̄ f(x). We have that X is symmetric and f is

normal, so we can compute F . For our case, we take

Fτ =
∑

χ(1− x11x) · · ·χ(1− x1c1x) · · ·χk+r(1− x(k+r)1x) · · ·χk+r(1− x(k+r)ck+rx)

17

where the sum is over xsts ∈ D, 1 ≤ s ≤ k + r, and 1 ≤ ts ≤ cs. We will use the Li-Wan sieve estimate and
the bounds ∣∣∣∣∣∑

a∈D
χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

over all nontrivial χ ∈ B̂ with χ(F∗q) = 1. We have that∣∣∣∣∣N − 1

|B̂|
(|D|)k+r(q

d−r − 1)

∣∣∣∣∣
≤ 1

|B̂|

∣∣∣∣∣∣∣∣
∑

ṽ(x),ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)χ(ṽ)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
χ∈B̂
χ6=1

χ−1(w̃)
∑
xi∈D

distinct

χ ((1− x1x)(1− x2x) · · · (1− xk+rx))

∣∣∣∣∣∣∣∣
≤ 1

|B̂|
dq

d−r
2

∑
χ∈B̂
χ 6=1

∑
∑
ici=k+r

N(c1, c2, . . . , ck+r)|Fτ |

≤ 1

|B̂|
dq

3d−r
2 Ck+r(Kq

1/2, q,Kq1/2, q, . . .)

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k + r +

q −Kq1/2

2
− 1

)
k+r

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k + r − Kq1/2

2
+
q

2

)
k+r

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k +

q

2

)
k+r

Therefore, it is sufficient to prove that

(|D|)k+r(q
d−r − 1) > dq

3d−r
2

(
Kq1/2 + k +

q

2

)
k+r

And since d > r, we have another sufficient condition:

|D|
Kq1/2 + k + q

2

>

(
dq

3d−r
2

qd−r − 1

) 1
k+r

If we take K < c1q
1/2 and k < c2q, then it suffices to find c1 and c2 satisfying

c1 + c2 <
|D|
q

(
dq

3d−r
2

qd−r − 1

)− 1
k+r

− 1

2

which means that it is enough to find

1

2
<
|D|
q

(
dq

3d−r
2

qd−r − 1

)− 1
k+r

By some rearrangement, we have the condition when |D| > q
2

k >
log2 d+ (d+r+1

2) log2 q − r (log2 |D|+ 1− log2 q)

log2 |D|+ 1− log2 q

A simpler condition can be prescribed. Since r ≤ d ≤ K < q1/2, we can just replace log2 d−r (log2 |D|+ 1− log2 q)
with 1

2 log2 q to receive:

k >
(d+r

2 + 1) log2 q

log2 |D|+ 1− log2 q

18

For the case r = d, we use the unweighted counting function Nu, noting that ṽ(x) = 1. Then we have

Nu =
1

|B̂|

∑
xi∈D

distinct

1 +
1

|B̂|

∑
xi∈D

distinct

∑
χ∈B̂
χ 6=1

χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)

w̃(x)

)

=
1

|B̂|
(|D|)k+d +

1

|B̂|

∑
xi∈D

distinct

∑
χ∈B̂
χ 6=1

χ

(
(1− x1x)(1− x2x) · · · (1− xk+dx)

w̃(x)

)

Applying the same method as the previous case gives the estimate∣∣∣∣∣Nu − 1

|B̂|
(|D|)k+d

∣∣∣∣∣ ≤ qd

|B̂|

(
Kq1/2 + k +

q

2

)
k+d

and then it is enough to have

1

|B̂|
(|D|)k+d >

qd

|B̂|

(
Kq1/2 + k +

q

2

)
k+d

which gives a similar estimate as the previous case. This concludes the proof.

The Corollary

To prove the corollary, we only need to find a number K satisfying the bounds∣∣∣∣∣∣
∑
a∈F∗q

χ(1− ax)

∣∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

over all characters χ from B̂ in the main proof. This is where we can use Lemma 1, noting that deg h̄(x) = d+1
and taking ` = q − 1:∣∣∣∣∣∣

∑
a∈F∗q

χ(1− ax)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈F∗q

χ(−a)χ(x− a−1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈F∗q

χ(x− a−1)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈F∗q

χ(x− a)

∣∣∣∣∣∣ ≤ dq1/2

So we have K = d, and the first bound is satisfied. The second bound K ≥ d is automatically satisfied.

6.4 Summary and Further Work

In certain Reed-Solomon codes with large evaluation sets satisfying certain character sum bounds, we have
found families of received words that are not deep holes. We can apply these results specifically for D = Fq
or D = F∗q . (In the former case, we recover Zhu-Wan’s original result.) These results raise a few questions:

1. Our techniques only work when |D| > q/2, which prevents us from making any statements when D is
relatively small. Can we come up with better estimates to allow for smaller D, particularly when D is
a subgroup of F∗q?

2. We were also required to assume d < c1q
1/2. If it were possible to relax the condition to d < c1q

1/2+ε,
we would be able to choose much smaller values of c1 to get better information rates on our codes. Is
it possible to do this?

In the general scope of deep holes, researchers have approached the problem from two ways:

1. Find families of words that are not deep holes.

2. Find families of words that are deep holes.

Most current results only apply to families of very low degree (slightly higher than k) or very high degree
(slightly less than q). Our goal is to try to fill up the gap and complete the classification of deep holes. Doing
this would help us gain further insight on the nature of the Reed-Solomon decoding problem.

19

References

[1] D. Augot and F. Morain. Discrete Logarithm Computations Over Finite Fields Using Reed-Solomon
Codes. arXiv:1202.4361v1. 2012.

[2] E.R. Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[3] V.K. Bhargava, S.B. Wicker, et al. Reed-Solomon Codes and Their Applications. IEEE Press, Piscataway,
NJ. 1994.

[4] A. Cafure, G. Matera, and M. Privitelli. Singularities of Symmetric Hypersurfaces and Reed-Solomon
Codes. Advances in Mathematics of Communications, Vol. 6(1), 2012, pp.69-94.

[5] Q. Cheng and E. Murray. On deciding deep holes of Reed-Solomon codes. Proceedings of TAMC 2007,
LNCS 4484, pp. 296-305

[6] Q. Cheng and D. Wan. On the List and Bounded Distance Decodibility of Reed-Solomon Codes. Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04).

[7] Q. Cheng and D. Wan. Complexity of Decoding Positive-Rate Primitive Reed-Solomon Codes. IEEE
Transactions on Information Theory, Vol. 56, No. 10, October 2010: 5217-5222.

[8] V. Guruswami. List Decoding of Error-Correcting Codes. Springer-Verlag Berlin Heidelberg, 2004.

[9] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE
Transactions on Information Theory, Vol. 45, No. 6, September 1999: 1757-1767.

[10] V. Guruswami and A. Vardy. Maximum-Likelihood Decoding of Reed-Solomon Codes is NP-hard. SODA
’05 Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms: 470-478. Society
for Industrial and Applied Mathematics Philadelphia, PA, USA, 2005.

[11] Q. Liao. On Reed-Solomon Codes. Chinese Annals of Mathematics, 32B(1), 8998. Springer-Verlag Berlin
Heidelberg, 2011.

[12] J. Li and D. Wan. On the subset sum problem over finite fields. Finite Fields and Their Applications,
Volume 14, Issue 4, November 2008: 911-929

[13] J. Li and D. Wan. A new sieve for distinct coordinate counting. Science China Mathematics, Vol. 53
No.9: 2351-2362. Science China Press and Springer-Verlag Berlin Heidelberg, 2010.

[14] Y. Li and D. Wan. On error distance of Reed-Solomon codes, Science China Mathematics, Vol. 51, No.
11, 1982-1988. Science China Press and Springer-Verlag Berlin Heidelberg, 2008.

[15] J.L. Massey. Shift-Register Syntehsis and BCH Decoding. IEEE Transactions on Information Theory,
Vol. IT-15, No. 1, January 1969.

[16] I.S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Society for Industrial and
Applied Mathematics, Vol. 8, No. 2, June 1960.

[17] D. Wan. Generators and irreducible polynomials over finite fields. Mathematics of Computation, 66,
119-1212 (1997).

[18] A. Weil. Basic Number Theory. Springer-Verlag, 1973.

[19] R. Wu and S. Hong. On deep holes of generalized Reed-Solomon codes. arXiv:1108.3524v2.

[20] J. Zhang, Fang-Wei Fu, and Qun-Ying Liao. New Deep Holes of Generalized Reed-Solomon Codes.
arXiv:1205.6593v1.

[21] G. Zhu and D. Wan. Computing Error Distance of Reed-Solomon Codes. TAMC 2012, LNCS 7287, pp.
214-224, 2012. Springer-Verlag

20

