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Humble Beginnings

A Simple Error-correcting Code

Repetition Codes

Fix the number N to be the number of times a symbol is to be
repeated.

Input: A message symbol B.
Output: The string BBB . . .B︸ ︷︷ ︸

N times

, to be transmitted.

If the message is damaged during transit, the receiver can recover
the original message by taking the most popular symbol.
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Humble Beginnings

The First ‘Nontrivial’ Code

Richard Hamming (1915-1998)
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Humble Beginnings

The First ‘Nontrivial’ Code

Hamming (7, 4) Encoding

Input: The message vector m = (m1,m2,m3,m4)T , where the mi

are elements of F2.
Output: The codeword vector c = Gm, to be transmitted, where

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


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Humble Beginnings

The First ‘Nontrivial’ Code

Hamming (7, 4) Decoding

Input: A received message vector r = (r1, r2, r3, r4, r5, r6, r7)T .
Computation:

Calculate the syndrome vector Hr , where

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


If the syndrome vector is not zero, treat it as a binary number.

In the received message, flip the bit in the position
corresponding to that number.

Output: The message vector (r3, r5, r6, r7)T .
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Reed-Solomon Error-correcting Codes

Humble Beginnings

The First ‘Nontrivial’ Code

Properties of a Code

In an error-correcting code, let k be the message length and n > k
be the block length.

Hamming distance: the number of coordinates in which two
words differ, denoted d(·, ·)
Minimum distance: the smallest distance between any two
distinct codewords

Information rate: the measure of the amount of data versus
redundant information, given by k/n
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Humble Beginnings

The First ‘Nontrivial’ Code

Properties of a Code

C1

C3C2

C4 C5

C6

d/2

r
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Humble Beginnings

The First ‘Nontrivial’ Code

Properties of Repetition Codes

In a three-time repetition code, k = 1 and n = 3.

Minimum distance: 3

Correctable errors: 1

Information rate: 1/3

In an odd N-time repetition code, k = 1 and n = N.

Minimum distance: N

Correctable errors: bN/2c
Information rate: 1/N
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Reed-Solomon Error-correcting Codes

Humble Beginnings

The First ‘Nontrivial’ Code

Properties of Hamming (7, 4)

In Hamming (7, 4), k = 4 and n = 7.

Minimum distance: 3

Correctable errors: 1

Information rate: 4/7
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Humble Beginnings

The First ‘Nontrivial’ Code

Goal for Error-correcting Codes

Goal: To find codes that have a high information rate as well as a
strong error-correcting capability.
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Reed-Solomon Codes

Irving Reed (1923-2012) and Gustave Solomon (1930-1996)
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Encoding (Original Formulation)

Idea: A polynomial of degree k − 1 is determined by k of its
points. If we have n > k of its points, we can still potentially
recover the polynomial even if some of those points are mixed-up.
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Encoding (Original Formulation)

Fix a finite field Fq, a message block size k , and a subset
D = {x1, x2, . . . , xn} ⊆ Fq so that n > k .

Input: The message m = (m0,m1,m2, . . . ,mk−1), represented by
the polynomial

m(x) = m0 + m1x + m2x
2 + . . .+ mk−1x

k−1

where the mi are elements of Fq.
Output: The codeword (m(x1),m(x2), . . . ,m(xn)), to be
transmitted.
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Encoding (Original Formulation)

Take the finite field F22 , α a root of x2 + x + 1 ∈ F2[x ], the
message block length 2, and D = F22 . Suppose m = (10, 11).
Then,

m(x) = 10 + 11x = α + (α + 1)x

and the transmitted codeword will be

(m(00),m(01),m(10),m(11)) = (10, 01, 11, 00)
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Encoding (Original Formulation)

In summary, we have

Message 1011

Codeword 10011100
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Decoding (Original Formulation)

Input: A received message r = (r1, r2, . . . , rn).
Computation:

Find the interpolated polynomials of all combinations of k
points from (x1, r1), (x2, r2), . . . , (xn, rn).

Output: The most popular polynomial.
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Decoding (Original Formulation)

Suppose there are t coordinate errors. This means that the correct
polynomial appears

(n−t
k

)
times, and any one incorrect polynomial

appears at most
(t+k−1

k

)
times. In order for the procedure to

output the original message, we must have(
t + k − 1

k

)
<

(
n − t

k

)
which implies the error-correcting capacity

t <

⌊
n − k + 1

2

⌋
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Decoding (Original Formulation)

Suppose the message r = 10101100 is received. Up to
b(4− 2 + 1)/2c = 1 error can be corrected.

(4
2

)
= 6 pairs of points

must be examined. The frequencies are

# of occurrences Polynomial

2 10 + 11x

1 11 + 11x

1 11 + 01x

1 00 + 10x

1 10 + 00x

The most popular polynomial is 10 + 11x , so the decoded message
is m = 1011.
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Encoding (BCH Formulation)

Idea: Suppose g(x) is a polynomial with roots {x1, x2, . . . , xn}.
Let m(x) be some other polynomial. Then take c(x) = m(x)g(x).
If we make no mistake about c(x), then

c(x1) = c(x2) = . . . = c(xn) = 0

If any of the terms is not zero, then some of the coefficients of c(x)
were mixed-up, and we can use those values to try to recover c(x).
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Encoding (BCH Formulation)

Fix a finite field Fq, a generator α of F∗q, and an error tolerance t.
Set

g(x) = (x − α)(x − α2) · · · (x − α2t)

Input: The message m = (m0,m1,m2, . . . ,mk−1), represented by
the polynomial

m(x) = m0 + m1x + m2x
2 + . . .+ mk−1x

k−1

where the mi are elements of Fq and k = q − 2t − 1.
Output: The codeword formed by the coefficients of m(x)g(x), to
be transmitted.
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Decoding (BCH Formulation)

Input: A received message r = (r0, r1, r2, . . . , rn−1), represented by

r(x) = r0 + r1x + r2x
2 + . . .+ rn−1x

n−1

Computation:

Calculate the syndromes

Sj = r(αj) =
t∑

k=1

eik (αj)ik

for j = 1, 2 . . . , n − k , where ei is the error value in the i-th
component of r , and t is the number of errors.

Find the error positions αik and error values eik , and make the
appropriate corrections in r(x).
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Reed-Solomon Codes

Encoding and Decoding

Reed-Solomon Decoding (BCH Formulation)

Output: The polynomial r(x)/g(x).

Note: The computational step can be handled by reformulating the
unknowns in the Sj as a system of linear equations (Peterson) and
then applying the famous Berlekamp-Massey algorithm, which can
uniquely decode with up to b(n − k + 1)/2c errors in polynomial
time.
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Reed-Solomon Codes

Code Properties

Properties of Reed-Solomon Codes

In a common (255, 223) Reed-Solomon code (over F∗28),

Minimum Distance: 33

Correctable Errors: 16

Information Rate: 223/255

In a general (n, k) Reed-Solomon code,

Minimum Distance: n − k + 1

Correctable Errors: b(n − k + 1)/2c
Information Rate: k/n
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Reed-Solomon Codes

Code Properties

Properties of Reed-Solomon Codes

Theorem (Singleton)

Given an (n, k) q-symbol code with minimum distance d , we must
have

d ≤ n − k + 1

Reed-Solomon codes match the Singleton bound, meaning that
they have the best possible minimum distance given their size.
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Reed-Solomon Codes

Code Properties

Properties of Reed-Solomon Codes

Reed-Solomon codes are particularly effective against burst errors.
In the example, the two red bits were flipped.

Transmitted 10011100

Received 10101100

Since the two bits correspond to the same symbol, this only counts
as a single error. This effect is more dramatic when there are more
bits per symbol. (For example, in a code over F28 .)
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Reed-Solomon Codes

Applications in Technology

Compact Discs

CDs make use of two cross-interleaved Reed-Solomon codes
(CIRC), the first is a (32, 28) code C1 and the second is a (28, 24)
code C2, both over F28 .

Interleaving of data symbols prevents burst errors from
overwhelming any one block.

If the C1 or C2 decoders fail to correct the errors in a block, the
symbols in the block are flagged as erasures so that the hardware
can attempt to conceal the corruption.

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Reed-Solomon Codes

Applications in Technology

Compact Discs

CDs make use of two cross-interleaved Reed-Solomon codes
(CIRC), the first is a (32, 28) code C1 and the second is a (28, 24)
code C2, both over F28 .

Interleaving of data symbols prevents burst errors from
overwhelming any one block.

If the C1 or C2 decoders fail to correct the errors in a block, the
symbols in the block are flagged as erasures so that the hardware
can attempt to conceal the corruption.

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Reed-Solomon Codes

Applications in Technology

Compact Discs

CDs make use of two cross-interleaved Reed-Solomon codes
(CIRC), the first is a (32, 28) code C1 and the second is a (28, 24)
code C2, both over F28 .

Interleaving of data symbols prevents burst errors from
overwhelming any one block.

If the C1 or C2 decoders fail to correct the errors in a block, the
symbols in the block are flagged as erasures so that the hardware
can attempt to conceal the corruption.

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Reed-Solomon Codes

Applications in Technology

Compact Discs

CDs make use of two cross-interleaved Reed-Solomon codes
(CIRC), the first is a (32, 28) code C1 and the second is a (28, 24)
code C2, both over F28 .

Interleaving of data symbols prevents burst errors from
overwhelming any one block.

If the C1 or C2 decoders fail to correct the errors in a block, the
symbols in the block are flagged as erasures so that the hardware
can attempt to conceal the corruption.

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Reed-Solomon Codes

Applications in Technology

Compact Discs

The CIRC setup can correct a burst error lasting about 4000 bits,
or 2.5mm in track length.

If the errors are too overwhelming, data blocks can be interpolated
or concealed for errors spanning around 12300 bits, or 7.7mm in
track length.
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Reed-Solomon Codes

Applications in Technology

QR Codes

QR codes were invented by the Toyota subsidiary Denso Wave
in 1994 and are freely available for use.

A 21× 21 QR code (‘Version 1’) contains 26 bytes of
information.

There are four levels of error-correction:

Level Check Symbols Data Bytes

L 7 19

M 10 16

Q 13 13

H 17 9

where the coding is done over F28 .
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Reed-Solomon Codes

Applications in Technology

QR Codes

A 21× 21 QR code with level M encoding uses the generator
polynomial

g(x) = (x − α)(x − α2) · · · (x − α10)

where α is a multiplicative generator of F∗28 .

It will be able to correct up to five errors.
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Reed-Solomon Codes

Applications in Technology

QR Codes

Error correction in QR codes allows them to be read even if
they are damaged or obstructed.

Some use this property for artistic purposes:
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Reed-Solomon Codes

Applications in Technology

Voyager Probes

Reed-Solomon codes were first used for space exploration in the
Voyager missions (1977).

The Voyager spacecraft were to transmit full-colour 800× 800
images at 8 bits per pixel.

Compressing the colour images made them vulnerable to bit errors,
so engineers employed a Reed-Solomon code composed with a
convolutional code to compensate.
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Reed-Solomon Codes

Applications in Technology

Voyager Probes

Voyager uses a (255, 223) code over F28 , which is represented by
the primitive polynomial f (x) = x8 + x4 + x3 + x2 + 1.

The generator polynomial is

g(x) = (x − α)(x − α2) · · · (x − α32)

where α is a root of f (x).
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List Decoding

Preview of Topics

3 List Decoding
The Problem
A Breakthrough Algorithm
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List Decoding

The Problem

Improving Error Tolerances

Question: Can the error-correcting limit be improved in an
efficient way?

Given an (n, k) Reed-Solomon code with minimum distance
d = n − k + 1, it is possible to efficiently decode a received
message to a unique codeword as long as there are less than bd/2c
errors. The situation could possibly be improved by dropping
uniqueness, which motivates the following concept:
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List Decoding

The Problem

Improving Error Tolerances

Problem (List Decoding)

Given a received message r and an error tolerance t, to find all
codewords c such that d(c , r) ≤ t.

Note that if t = bd/2c, this concept reduces to unique decoding.
It was unknown for many years whether or not it was possible to
do this efficiently for t > bd/2c.
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List Decoding

A Breakthrough Algorithm

Madhu Sudan (1966) Venkatesan Guruswami (1976)
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List Decoding

A Breakthrough Algorithm

Guruswami-Sudan List Decoding Algorithm (Sketch)

Input: A received message r = (r1, r2, . . . , rn) and an error
tolerance t.
Computation:

Find a two-variable polynomial Q(x , y) with suitably high
degree so that Q(xi , ri ) = 0 for 1 ≤ i ≤ n.

Find all factors of Q(x , y) of the form y − p(x), where
deg p(x) < k .

Output: Those polynomials y = p(x) such that ri = p(xi ) for at
least n − t of the (xi , ri ).
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List Decoding

A Breakthrough Algorithm

Guruswami-Sudan List Decoding Algorithm (Sketch)

The Guruswami-Sudan algorithm can correct up to n −
√
nk errors

in randomised polynomial time.
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4 Attempting to Further Improve Error-Correction Limits
New Problems
Hardness Results
The Deep Hole Problem
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New Problems

Two Problems

Definition (Distance to a Code)

For an error-correcting code C and a word r , denote d(r , C) to be
the shortest distance between r and each codeword from C.
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New Problems

Two Problems

Problem (Maximum-Likelihood Decoding)

Given a received word r , to find an explict codeword c such that
d(r , c) = d(r , C).

Problem (Bounded Distance Decoding)

Given a received word r and a bound B, to find just one codeword
c such that d(r , c) ≤ B.
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Hardness Results

Results by Guruswami-Vardy

Theorem (Guruswami-Vardy, 2005)

For an integer t ≥ 1, let m = 3t, k = t3 − t − 1, and n = t3.
There is a class of (n, k) Reed-Solomon codes over F2m with
evaluation set of size |D| = n such that maximum-likelihood
decoding is NP-complete.

The proof gives a polynomial-time reduction of the
maximum-likelihood decoding problem to the three-dimenisonal
matching problem, which has been shown to be NP-complete.
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Hardness Results

Results by Guruswami-Vardy

Note here that the evaluation set D is a tremendously small set
compared to Fq (i.e. t3 versus 23t). Guruswami and Vardy
suggested that the maximum-likelihood decoding might be easier if
D is much larger or has some algebraic structure.
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Hardness Results

Results by Cheng-Wan

Problem (Discrete Logarithm)

Given a finite field Fq, a generator g of F∗q, and a nonzero element
a, to find an integer i such that

g i = a

The value of i is denoted logg a.

This problem occurs in many cryptographic systems. Although no
general hardness results have been proved, it is still believed to be
very difficult.
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Results by Cheng-Wan
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Hardness Results

Results by Cheng-Wan

Cheng and Wan proved a variety of conditional hardness results by
converting Reed-Solomon decoding problems into discrete
logarithm problems and applying the index calculus algorithm.
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Hardness Results

Results by Cheng-Wan

In an (n, k) Reed-Solomon code over Fq, let ĝ(n, k, q) be the
smallest positive integer g such that

(n
g

)
/qg−k is less than 1.

Theorem (Cheng-Wan, 2004)

If there exists an algorithm solving the list decoding problem of
radius n − ĝ in time qO(1), then discrete logarithm over the finite
field Fqĝ−k can be computed in random time qO(1).
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Hardness Results

Results by Cheng-Wan

Theorem (Cheng-Wan, 2004)

Let h be a positive integer satisfying

q ≥ max(g2, (h − 1)2+ε) and g ≥ (4/ε+ 2)(h + 1)

for a constant ε > 0. If the bounded distance decoding problem of
radius B = q − g for the (q, g − h) Reed-Solomon code can be
solved in time qO(1), the discrete logarithm problem over Fqh can

be solved in random time qO(1).
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Hardness Results

Results by Cheng-Wan

Theorem (Cheng-Wan, 2010)

Let δ > 0 be a constant and m > 1 be an integer. Suppose h and
k are integers satisfying

h ≤ q
1

2+δ

m
+

1

m
, h ≤

√
q

m(4/δ + 2)
− 1

m
, q ≤ k ≤ qm − q

The discrete logarithm in F∗
qmh can be solved in randomized time

(qm)O(1) with oracle access to a maximum-likelihood decoder for a
(qm, k) Reed-Solomon code over Fqm .
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Hardness Results

Results by Cheng-Wan

Theorem (Cheng-Wan, 2010)

Let ε be a positive constant less than 1/3 and g = 2+3ε
1−3ε(h + 1). In

an (q, q − g − h) Reed-Solomon code over Fq for sufficiently large
q, there does not exist a randomized polynomial time bounded
distance decoder at distance (2/3 + ε)d , where d is the minimum
distance, unless the discrete logarithm problem over Fqh can be

solved in randomized time qO(1) for any h ≤ q0.8ε.
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Hardness Results

Applications to the Discrete Logarithm Problem

Augot and Morain (2012) built on the work by Cheng and Wan by
making the conversion to discrete logarithms effective.

The conversion can be set up in this way:

Let F = Fqh and K = Fq. Take a fixed monic Q(X ) from K [X ],
with degQ(X ) = h, and a set S ⊂ F with size n so that Q(a) 6= 0
for all a ∈ S . Let 1 ≤ µ ≤ n.
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Hardness Results

Applications to the Discrete Logarithm Problem

Theorem (Augot-Morain, 2012)

For any f (X ) in K [X ] with deg f (X ) < µ, there exists A ⊂ S
where |A| = µ such that∏

a∈A
(X − a) ≡ f (X ) (mod Q(x))

if and only if the word represented by the polynomial

y(X ) = −f (X )/Q(X )− X k

is exactly distance n − µ from the Reed-Solomon code with
k = µ− h and evaluation set D = S . All such sets A can be found
by decoding the word y(X ) up to radius n − µ.

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Attempting to Further Improve Error-Correction Limits

Hardness Results

Applications to the Discrete Logarithm Problem

Discrete logarithms can be computed using a procedure similar to
index calculus. If Q(X ) is a primitive polynomial, take f (X ) = X u

for random u. After finding all relations of the form∏
a∈A

(X − a) ≡ f (X ) (mod Q(x))

using Reed-Solomon decoding, we can try to set up a linear system
to solve for the values of log(X − a) for all a ∈ S .
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Hardness Results

Applications to the Discrete Logarithm Problem

Augot and Morain showed that computing discrete logarithms in
Fqh using their implementation takes Õ(h! q2) operations over Fq.
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The Deep Hole Problem

The Deep Hole Problem

For an (n, k) Reed-Solomon code, it can be shown that for any
received word r , we always have d(r , C) ≤ n − k . This number is
the so-called covering radius, the maximum value of d(r , C) over
all possible words r .

For r satisfying d(r , C) = n − k , Guruswami and Vardy called this
a deep hole. They observed that as a consequence of their results
in their family of codes, determining whether or not r is a deep
hole is actually NP-hard.

As before, the situation might be different for codes with
evaluation sets of larger size or some algebraic structure.
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The Deep Hole Problem

The Deep Hole Problem

Take an (n, k) Reed-Solomon code over Fq with some evaluation
set D (preferably with some algebraic structure, as in D = Fq or
D = F∗q).

Problem (Determining Deep Holes)

Given a received message r , to determine whether or not r is a
deep hole.
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5 Previous Results on Deep Holes
Results when D = Fq

Results when D = (Fq)∗
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Some Simple Bounds

Let u = (u1, u2, . . . , un) be a received message. Use Lagrange
Interpolation to find the associated polynomial u(x). If
deg u(x) ≤ k − 1, then u is a codeword. Otherwise, a short
argument shows that

n − deg u(x) ≤ d(u, C) ≤ n − k

Note that if deg u(x) = k , then u is automatically a deep hole.
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Results when D = Fq

Results by Cheng-Murray

Cheng and Murray considered the deep hole problem for codes over
Fq with evaluation set D = Fq. They came up with the following
conjecture:

Conjecture (Cheng-Murray, 2007)

The only deep holes are those words u such that deg u(x) = k.
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Results when D = Fq

Results by Cheng-Murray

They were unable to prove their conjecture completely, but they
reduced the problem to finding a rational point on an algebraic
hypersurface and were able to derive the following result only for
q = p:

Theorem (Cheng-Murray, 2007)

Let p be a prime and 1 < k < p1/4−ε be a positive integer. Let u
be a received word and u(x) be its interpolated polynomial. If the
degree of u(x) satisfies

k < deg u(x) < k + p3/13−ε

then u is not a deep hole.
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Results by Cheng-Murray

As an example, choose p = 929. Then in the (929, k)
Reed-Solomon code (for 1 < k < 5.25), if the degree of u(x)
satisfies

k < deg u(x) < k + 4.84

then u is not a deep hole.
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Results when D = Fq

Results by Li-Wan

Li and Wan studied the problem in terms of solving polynomial
congruences, using character sums combined with Weil’s character
sum bounds to count solutions. They were able to give some exact
distance measurements under the right conditions.

Theorem (Li-Wan, 2010)

Let u be a received word and u(x) be its interpolated polynomial.
Suppose 1 ≤ d := deg u(x)− k ≤ q − 1− k . If

q > max((k + 1)2, d2+ε) and k >

(
2

ε
+ 1

)
d +

8

ε
+ 2

for some constant ε > 0, then d(u, C) < q − k . In other words, u
is not a deep hole. Continued. . .

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Previous Results on Deep Holes

Results when D = Fq

Results by Li-Wan

Theorem, continued. . .

Furthermore, if

q > max((k + 1)2, (d − 1)2+ε) and k >

(
4

ε
+ 1

)
d +

4

ε
+ 2

for some constant ε > 0, then d(u, C) = q − (k + d).

Several other authors followed these techniques to get new bounds.
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Results by Liao

Theorem (Liao, 2011)

Let r ≥ 1 be an integer. Let u be a received word and u(x) be the
interpolated polynomial of degree m. If m ≥ k + r ,

q > max

{
2

(
k + r

2

)
+ (m − k), (m − k)2+ε

}
and

k >
1

1 + ε

(
r + (2 + ε)

(m
2

+ 1
))

for some constant ε > 0, then d(u, C) ≤ q − k − r .
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Results by Cafure-Matera-Privitelli

Using some techniques from algebraic geometry, Cafure, Matera,
and Privitelli slightly improved on one of Li-Wan’s previous results
with

Theorem (Cafure-Matera-Privitelli, 2012)

Let u be a received word and u(x) be is interpolated polynomial
with 1 ≤ d := deg(u(x))− k ≤ q − 1− k . Assume that

q > max((k + 1)2, 14d2+ε) and k > d

(
2

ε
+ 1

)
for some constant ε > 0. Then u is not a deep hole.
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Results by Zhu-Wan

In the previous results, many of the conditions required u(x) to be
a polynomial with degree only slightly larger than k . Zhu and Wan
improved upon this by observing that some high degree
polynomials can also be represented by low-degree rational
functions. They came up with the following:
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Results by Zhu-Wan

Theorem (Zhu-Wan, 2012)

Let r ≥ 1 be an integer. Suppose we can write(
w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(xq)

h(xq)

)
= u

for some h(x) ∈ Fq[x ], with gcd(h(x), xq − x) = 1, and
deg h(x) + k ≤ degw(x) ≤ q − 1. Let m be the smallest such
degree of w(x), and set r ≤ d := m− k ≤ q− 1− k . Continued. . .
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Results by Zhu-Wan

Theorem, continued. . .

There are positive constants c1 and c2 such that if

d < c1q
1/2 ,

(
d + r

2
+ 1

)
log2 q < k < c2q

then d(u, C) ≤ q − k − r .
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Results by Wu-Hong

Wu and Hong studied the deep hole problem when D = F∗q. Using
this evaluation set allowed them to use the BCH formulation of
Reed-Solomon codes.

Theorem (Wu-Hong, 2011)

Take a Reed-Solomon code over Fq with q ≥ 4 and 2 ≤ k ≤ q − 2.
Then polynomials of the form u(x) = axq−2 + v(x) with a 6= 0,
where deg v(x) ≤ k − 1, represent deep holes.
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Results by Wu-Hong

This work shows that the Cheng-Murray conjecture is false when
D = F∗q. Wu and Hong attempted to modify the conjecture to
include certain polynomials of degree q − 2. This would later be
disproved by Zhang, Fu, and Liao.
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Results by Zhang-Fu-Liao

Zhang, Fu, and Liao proved an extension of Wu-Hong that allows
D to be any evaluation set except Fq.

Theorem (Zhang-Fu-Liao, 2012)

Take a Reed-Solomon code over Fq with evaluation set D 6= Fq.
Then for any a 6= 0, b 6∈ D, polynomials of the form

u(x) = a(x − b)q−2 + v(x)

where deg v(x) ≤ k − 1, represent deep holes.
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Results by Zhang-Fu-Liao

They also adapted work from Li-Wan to find more deep holes for a
specific message length k .

Theorem (Zhang-Fu-Liao, 2012)

For q > 4, take a Reed-Solomon code over Fq with evaluation set
D = F∗q or D = F∗q/{1} and k = q − 4. If a 6= 0, then polynomials
of the form

u(x) = axq−3 + v(x)

where deg v(x) ≤ k − 1, represent deep holes.
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Results by Zhang-Fu-Liao

Finally, they found a class of received words that are not deep
holes.

Theorem (Zhang-Fu-Liao, 2012)

Take a Reed-Solomon code over Fq for q > 5, 2 ≤ k ≤ q − 3, and
D = F∗q. Polynomials of the form

u(x) = axk+2 + bxk+1 + cxk + v(x)

where a ∈ F∗q, b, c ∈ Fq, and deg v(x) ≤ k − 1, do not represent
deep holes.
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6 Our Results on Deep Holes
Extensions to Zhu-Wan
Prerequisites for a Proof
A (Very Rough) Sketch of the Proof
Summary and Further Work
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Extensions to Zhu-Wan

Zhu and Wan’s original work applied for Reed-Solomon codes over
Fq with evaluation set D = Fq.

In new work with Zhu and Wan, we were able to produce new
statements for codes with slightly smaller evaluation sets.
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Our Results

Theorem

Let C be a Reed-Solomon code over Fq using the evaluation set D
with |D| > q/2. Let u be a received word. Suppose we can write(

w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(x|D|)

h(x|D|)

)
= u

for some h(x) ∈ Fq[x ], with no roots in D, and
deg h(x) + k ≤ degw(x) ≤ |D| − 1. Let m be the smallest such
degree of w(x). Let 1 ≤ r ≤ d := m − k ≤ |D| − k − 1.
Continued. . .
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Our Results

Theorem, continued. . .

If the bound ∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

is true over all nontrivial characters χ : (F[x ]/(h̄(x)))∗ → C with
χ(F∗q) = 1 for some K ≥ d and h̄(x) = xm−k+1h(1/x), there are
positive constants c1 and c2 such that if

d ≤ K < c1q
1/2 ,

(d+r
2 + 1) log2 q

log2 |D|+ 1− log2 q
< k < c2q

then d(u, C) ≤ |D| − k − r .
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Extensions to Zhu-Wan

Our Results

We have a more familiar setting by taking D = F∗q and h(x) = 1.

Corollary

Take a Reed-Solomon code over Fq using the evaluation set
D = F∗q. Let r ≥ 1 be an integer and u a received word with
interpolated polynomial u(x) such that
r ≤ d := deg(u(x))− k ≤ q − 2− k. There are positive constants
c1 and c2 such that if

d < c1q
1/2 ,

(d+r
2 + 1) log2 q

log2 (q − 1) + 1− log2 q
< k < c2q

then d(u, C) ≤ q − 1− k − r .
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Examples

Take a Reed-Solomon code over F28 with evaluation set D = F∗28 .

If r ≥ 1, and u is a codeword with r ≤ d ≤ 254− k , then we can
find c1 and c2 such that if

d < 16c1 and 8.045

(
d + r

2
+ 1

)
< k < 256c2

then d(u, C) ≤ 255− k − r .

Consider d = r = 1. In other words, we want to classify codewords
whose polynomial (or rational) interpolations are degree k + 1 (in
the numerator).
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Examples

From the proof of the theorem, we can explicitly compute c1 and
c2 using the formulas

1 < 16c1 , c1 + c2 = 255 · 256−
k+2
k+1 − 1

2

To obtain a wide range of k , fix c1 = .0626. Then we have the
condition

16.09 < k < 256

(
255 · 256−

k+2
k+1 − 1

2
− .0626

)
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Examples

The inequality is satisfied when 17 ≤ k ≤ 96.

Therefore, for codes using this range of message lengths, received
words u represented by a polynomial (or rational function) of
degree k + 1 (in the numerator) are not deep holes.

More specifically, we can give the estimate d(u, C) ≤ 254− k .
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Similarly, for r = 1 and d = 2, polynomials (or rational functions)
of degree k + 2 (in the numerator) do not represent deep holes
when the message length satisfies 30 ≤ k ≤ 59.

Such words u satisfy the estimate d(u, C) ≤ 254− k .
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Examples

Here is a table with a few examples of words covered by our
bounds. We will denote α to be a multiplicative generator for F∗28 .

d k Polynomial Interpolation

1 17 x18 + 3x2 + 1

1 17 x254 + x17 + 1

2 30 x254 + x253 + x30

2 30 (α4 + 1)x254 + . . .+ (α6 + α3 + α2 + 1)

Rational Interpolation

1 17 N/A

1 17 (x18 + x + 1)/x

2 30 (x32 + x + 1)/x2

2 30 (x32 + x2 + α)/(x2 − α2x + α + 1)
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Multiplicative Characters

Definition (Multiplicative Character)

Let h(x) be a polynomial from Fq[x ]. We say that a
homomorphism χ : (Fq[x ]/(h(x)))∗ → C is a multiplicative
character of (Fq[x ]/(h(x)))∗.

It can be extended to the entire group Fq[x ]/(h(x)) by setting
χ(f (x)) = 0 if gcd(f (x), h(x)) 6= 1.
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Weil’s Character Sum Bound

Theorem (Weil)

Let h(x) be a polynomial of positive degree in the ring Fq[x ], and
let χ : (F[x ]/(h(x)))∗ → C be a multiplicative character. If χ is
not trivial, then∣∣∣∣∣∣

∑
a∈Fq

χ(x − a)

∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

Furthermore, if χ is not trivial but χ(F∗q) = 1, then∣∣∣∣∣∣1 +
∑
a∈Fq

χ(x − a)

∣∣∣∣∣∣ ≤ (deg h(x)− 2)q1/2
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Weil’s Character Sum Bound, modified

Lemma

Let h1(x) be a polynomial from Fq[x ] not divisible by x ,
h(x) = xkh1(x) for k ≥ 1, and χ : (F[x ]/(h1(x)))∗ → C∗ with χ

nontrivial and χ(F∗q) = 1. For a subgroup (F∗q)
q−1
` of F∗q, we have∣∣∣∣∣∣∣∣

∑
a∈(F∗q )

q−1
`

χ(x − a)

∣∣∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2
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Li-Wan’s New Sieve

Let D be a finite set and let X be a subset of Dk . Denote

X̄ = {(x1, x2, . . . , xk) ∈ X | xi 6= xj , i 6= j}

Let f (x1, x2, . . . , xk) be a complex-valued function defined over X .
Denote

F =
∑
x∈X̄

f (x1, x2, . . . , xk)
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Li-Wan’s New Sieve

Let Sk be the symmetric group on {1, 2, . . . , k}. Each permutation
τ ∈ Sk can be uniquely factorised as a product of disjoint cycles
and each fixed point is viewed as a trivial cycle of length 1.
Namely,

τ = (i1i2 . . . ia1)(j1j2 . . . ja2) · · · (l1l2 . . . las )

with ai ≥ 1 and 1 ≤ i ≤ s. Define

Xτ = {(x1, x2, . . . , xk) | xi1 = . . . = xia1
, · · · , xl1 = . . . = xlas }

Similarly define

Fτ =
∑
x∈Xτ

f (x1, x2, . . . , xk)

Matt Keti (Advisor: Professor Daqing Wan) Reed-Solomon Error-correcting Codes



Reed-Solomon Error-correcting Codes

Our Results on Deep Holes

Prerequisites for a Proof

Li-Wan’s New Sieve

We say that τ is of the type (c1, c2, . . . , ck) if it has exactly ci
cycles of length i . Let N(c1, c2, . . . , ck) be the number of
permutations of type (c1, c2, . . . , ck). Define

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)tc1
1 tc2

2 · · · t
ck
k
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Li-Wan’s New Sieve

Now we have the following combinatorial result:

Suppose q ≥ d . If ti = q for d |i and ti = s for d - i , then we have

Ck(s, . . . s, q, s, . . . , x , q, . . .) = k!

bk/dc∑
i=0

(q−s
d + i − 1

i

)(
s + k − di − 1

k − di

)
≤
(
s + k +

q − s

d
− 1

)
k

where (x)k = x(x − 1)(x − 2) · · · (x − k + 1).
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Li-Wan’s New Sieve

Furthermore, we say that X is symmetric if for any x ∈ X and any
g ∈ Sk , we have g ◦ x ∈ X . Also, if a complex-valued function f is
defined on X , we say that it is normal on X if X is symmetric and
for any two conjugate elements in Sk , τ and τ ′, we have∑

x∈Xτ

f (x1, x2, . . . , xk) =
∑
x∈Xτ ′

f (x1, x2, . . . , xk)

Then, we have the result:

If f is normal on X , then

F =
∑

∑
ici=k

(−1)k−
∑

ciN(c1, c2, . . . , ck)Fτ
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Rephrasing Error Distance

Lemma

Let C be a Reed-Solomon code over Fq using the evaluation set D.
Let u be a received word and u(x) its interpolated polynomial with
deg u(x) = k + d , where k + 1 ≤ k + d ≤ q − 1. The error
distance d(u, C) ≤ |D| − k − r for some 1 ≤ r ≤ d if and only if
there exists a subset {xi1 , xi2 , . . . , xik+r

} ⊂ D and a polynomial
g(x) ∈ Fq[x ] of degree d − r such that

u(x)− v(x) = (x − xi1)(x − xi2) · · · (x − xik+r
)g(x)

for some v(x) with deg v(x) ≤ k − 1.
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The Basic Idea

Our idea is to phrase the problem in terms of finding solutions to a
polynomial congruence. In particular, our results will be proved if
we can guarantee that there is at least one solution to our
congruence.

To do this, we will use a character sum argument combined with
estimations from Li-Wan’s new sieve.
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Sketch of Proof

Suppose we are given a received word u. We have assumed that u
can be interpolated by a rational function w(x)/h(x), where
degw(x) = m, deg h(x) ≤ m − k , and h(x) has no roots in D.

We may assume that w(0) = 1 by shifting by a constant codeword
and rescaling if necessary.

Let h̄(x) = xm−k+1h(1/x). This is a polynomial of degree
m − k + 1 = d + 1 and divisible by x since h(0) 6= 0 and
deg(h(x)) ≤ m − k .

Let A = (Fq[x ]/(h̄(x)))∗ and Â denote the group of all characters
of A. Let B̂ be the set of characters χ in Â with χ(F∗q) = 1.
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Sketch of Proof

Now d(u, C) ≤ |D| − k − r if and only if there is some polynomial
f (x) ∈ Fq[x ] with deg f (x) ≤ k − 1 such that

w(x)

h(x)
+ f (x) =

w(x) + f (x)h(x)

h(x)

has at least k + r distinct roots in D.

In other words, there are
points {x1, x2, . . . , xk+r} ⊂ D where

w(x) + f (x)h(x) = (x − x1)(x − x2) · · · (x − xk+r )v(x)

for some polynomial v(x) with deg v(x) = m − (k + r).
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Sketch of Proof

Then replacing x with 1/x and multiplying through by xm, it is
enough to find such a subset for the equation

w̃(x) + f̃ (x)h̄(x) = (1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

where w̃(x) = xmw(1/x), f̃ (x) = xk−1f (1/x), and
ṽ(x) = xm−(k+r)v(1/x).

Then this equation is equivalent to

(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)
≡ 1 (mod h̄(x))
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Sketch of Proof

Let the number of solutions to this equation be denoted by Nu,
noting that the xi ∈ D are distinct, ṽ(0) = 1 (since w̃(0) = 1), and
deg ṽ(x) = m − (k + r) = d − r .

In our terms, Nu gives the number of codewords f in C where
d(u, f ) ≤ |D| − k − r . If Nu is positive, then d(u, C) ≤ |D| − k − r .
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Sketch of Proof

By taking character sums of both sides of our congruence and then
counting, we have

Nu =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

∑
χ∈B̂

Sχ(x1, x2, . . . , xk+r , x)

where, for ease of notation, we define

Sχ(x1, x2, . . . , xk+r , x) = χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)
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Sketch of Proof

For the case where r < d , we can instead consider a weighted
version

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂

Sχ(x1, x2, . . . , xk+r , x),

where Λ denotes the von Mangoldt function.

Note that if N > 0, then Nu > 0.
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Sketch of Proof

Rearranging and evaluating parts of the previous expression gives
us

∣∣∣∣∣N − 1

|B̂|
(|D|)k+r (qd−r − 1)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1

|B̂|

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

∑
xi∈D

distinct

Sχ(x1, x2, . . . , xk+r , x)

∣∣∣∣∣∣∣∣∣
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Sketch of Proof

We can estimate the right hand side using Li-Wan’s new sieve as
well as the Weil bound. If we do this, we have∣∣∣∣∣N − 1

|B̂|
(|D|)k+r (qd−r − 1)

∣∣∣∣∣ ≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k +

q

2

)
k+r

where we recall that (x)k = x(x − 1)(x − 2) · · · (x − k + 1).
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Therefore, it is sufficient to prove that

(|D|)k+r (qd−r − 1) > dq
3d−r

2

(
Kq1/2 + k +

q

2

)
k+r

Solving the inequality for k gives the condition

k >
log2 d + (d+r+1

2 ) log2 q − r (log2 |D|+ 1− log2 q)

log2 |D|+ 1− log2 q

Here we require that |D| > q/2 in order for the term
log2 |D|+ 1− log2 q to be positive and preserve the inequality.
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Sketch of Proof

Since r ≤ d ≤ K < q1/2, we can just replace the term

log2 d − r (log2 |D|+ 1− log2 q)

with 1
2 log2 q to receive a simpler condition:

k >
(d+r

2 + 1) log2 q

log2 |D|+ 1− log2 q

Our theorem is proved.
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6 Our Results on Deep Holes
Extensions to Zhu-Wan
Prerequisites for a Proof
A (Very Rough) Sketch of the Proof
Summary and Further Work
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Summary

In certain Reed-Solomon codes with large evaluation sets satisfying
certain character sum bounds, we have found families of received
words that are not deep holes.

We can apply these results specifically for D = Fq or D = F∗q.
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Further Work (Short Term)

These results raise a few questions:

Our techniques only work when |D| > q/2, which prevents us
from making any statements when D is relatively small. Can
we come up with better estimates to allow for small D,
particularly when D is a subgroup of F∗q?

We were also required to assume d < c1q
1/2. If it were

possible to relax the condition to d < c1q
1/2+ε, we would be

able to choose much smaller values of c1 to get better
information rates on our codes. Is it possible to do this?
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Further Work (Long Term)

Researchers have approached the deep hole problem from two ways:

Find families of words that are not deep holes

Find families of words that are deep holes

Most current results only apply to families of very low degree
(slightly higher than k) or very high degree (slightly less than q).
Our goal is to try to fill up the gap and complete the classification
of deep holes.
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