
UNIVERSITY OF CALIFORNIA,
IRVINE

Reed-Solomon Codes and the Deep Hole
Problem (DRAFT)

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Matt Keti

Dissertation Committee:
Professor Daqing Wan, Chair

Professor Karl Rubin
Professor Alice Silverberg

2015

c© 2015 Matt Keti

Table of Contents

List of Figures iii

List of Tables iv

Acknowledgements v

Curriculum Vitae vi

Abstract of the Dissertation vii

1 Introduction 1
1.1 History and the Basics . 2

1.1.1 A Simple Code . 2
1.1.2 The First Nontrivial Code: Hamming (7, 4) 3

1.2 Reed-Solomon Codes . 5
1.2.1 Encoding and Decoding . 5
1.2.2 Code Properties . 10
1.2.3 Applications in Technology . 11

1.3 Further Improving Error-Correction Limits 13
1.3.1 List Decoding . 13
1.3.2 New Problems . 14
1.3.3 Hardness Results . 14

1.4 The Deep Hole Problem . 16
1.4.1 Results when D = Fq . 18
1.4.2 Results when D = F∗q . 21

2 A Schematic Approach to the Deep Hole Problem 23
2.1 Main Theorem . 24
2.2 Examples . 26
2.3 Preliminaries . 27

2.3.1 Weil’s Character Sum Bound . 27
2.3.2 Li-Wan’s New Sieve . 29
2.3.3 A Rephrasing of Error Distance . 30

2.4 The Proof . 31
2.4.1 The Second Corollary . 34
2.4.2 The Third Corollary . 35

i

3 Deep Holes in Reed-Solomon Codes Based on Dickson Polynomials 36
3.1 Main Theorem . 39

3.1.1 Examples . 39
3.2 Preliminaries . 39

3.2.1 Weil’s Character Sum Bound . 40
3.2.2 Li-Wan’s New Sieve . 43
3.2.3 A Rephrasing of Error Distance . 45

3.3 The Proof . 45

4 Conclusions 48
4.1 Summary and Future Work . 49

BIBLIOGRAPHY 51

ii

List of Figures

1.1 Geometric interpretation of minimum distance 4

iii

List of Tables

1.1 Properties of repetition and Hamming codes 5

1.2 Frequencies of interpolated words . 7

1.3 Properties of Reed-Solomon codes . 10

1.4 Comparison between transmitted and received words 11

1.5 Levels of error-correction in a 21× 21 QR code 12

2.1 Polynomial interpolation vs. rational interpolation 27

3.1 Dickson polynomials for the parameter a . 37

iv

Acknowledgments

My deepest gratitude to my advisor Professor Daqing Wan for his continued support and

mathematical guidance over the years, and for helping me make the final push toward the

completion of this dissertation. It has been a tremendous pleasure to have been his student.

I’d also like to thank Donna McConnell for her help navigating the bureaucracy of the

program and advocacy benefitting the graduate students here.

Finally, much appreciation to my office neighbours: Cynthia Northrup for our enlighten-

ing discussions on education; Luke Smith for our collaboration on number theory research

and logistical issues; Wei-Kuo Chen, Mustafa Said, and Ru-Fei Ren for sharing their personal

research ideas and giving me general assistance. And to all of my colleagues, thank you for

your friendship throughout the program. It’s been a lot of fun, and I wish you the very best.

v

Curriculum Vitae

Matt Keti

Education

Ph.D. in Mathematics, University of California, Irvine, 2015
M.S. in Mathematics, University of California, Irvine, 2011
B.S. in Mathematics, University of California, Irvine, 2009

Publications

Computing Error Distance of Reed-Solomon Codes (2012)
with Daqing Wan and Guizhen Zhu. Submitted for publication.

Deep Holes in Reed-Solomon Codes Based on Dickson Polynomials (2015)
with Daqing Wan. Preprint.

Teaching

As the instructor

Pre-Calculus
Single-variable Calculus
Multi-variable Calculus

As the teaching assistant

Single-variable Calculus
Multi-variable Calculus
Linear Algebra
Introduction to Abstract Mathematics
Number Theory

vi

Abstract of the Dissertation

Reed-Solomon Codes and the Deep Hole Problem (DRAFT)

By

Matt Keti

Doctor of Philosophy in Mathematics
University of California, Irvine, 2015

Professor Professor Daqing Wan, Chair

In many types of modern communication, a message is transmitted over a noisy medium.

When this is done, there is a chance that the message will be corrupted. An error-correcting

code adds redundant information to the message which allows the receiver to detect and

correct errors accrued during the transmission. We will study the famous Reed-Solomon code

(found in QR codes, compact discs, deep space probes,. . .) and investigate the limits of its

error-correcting capacity. It can be shown that understanding this is related to understanding

the “deep hole” problem, which is a question of determining when a received message has,

in a sense, incurred the worst possible corruption. We partially resolve this in its traditional

context, when the code is based on the finite field Fq or F∗q, as well as new contexts, when it is

based on a subgroup of F∗q or the image of a Dickson polynomial. This is a new and important

problem that could give insight on the true error-correcting potential of the Reed-Solomon

code.

vii

Chapter 1

Introduction

1

1.1 History and the Basics

In many areas of modern communications, some data must be sent over a noisy medium.

Action must be taken in order for the receiver to correctly interpret the data. One way

to do this is to use “forward error correction” (FEC), that is, to add additional redundant

information to the data so that the receiver can recover corrupted parts of a message. Some

examples of where this may be necessary are:

1. QR codes: to protect damaged or obstructed codes

2. Compact discs: to recover from scratches or dust on the surface

3. Deep space probes: to transmit data in the presence of cosmic or planetary noise

1.1.1 A Simple Code

Before the theory of error-correcting codes was established, people employed very simple

procedures, one of which is now called a repetition code. To set up a repetition code, one

declares a number N to be the number of times a message is to be repeated. This number

depends on the amount of noise present in the medium; a higher number is required for

higher noise rates. Then, the sender simply sends a given message symbol N times. More

formally,

Procedure (Repetition Code). Fix N to be the repetition value.

Input: A (binary) message symbol B.

Output: The string BBB . . . B︸ ︷︷ ︸
N times

, to be transmitted.

The receiver can recover a corrupted string by taking the symbol that occurs most frequently.

Repetition codes can be implemented easily due to their simplicity, but they are very inef-

ficient, due to the fact that their data output is very low. This would later motivate the

search for better ways to protect data.

2

1.1.2 The First Nontrivial Code: Hamming (7, 4)

In 1950, Richard Hamming of Bell Labs published the first nontrivial error-correcting code,

which was a result of his attempts to mitigate read errors in binary punchcard readers. His

idea was add redundancy by associating 4 data bits with a system of 3 equations, creating

a code of length 7. This is known today as Hamming (7, 4).

Procedure (Hamming (7, 4) Encoding).

Input: The message vector m = (m1,m2,m3,m4)T , where the mi are elements of F2.

Output: The codeword vector c = Gm, to be transmitted, where

G =

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

Procedure (Hamming (7, 4) Decoding).

Input: A received message vector r = (r1, r2, r3, r4, r5, r6, r7)T .

Computation:

1. Calculate the syndrome vector Hr, where

H =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

2. If the syndrome vector is not zero, treat it as a binary number.

3. In the received message, flip the bit in the position corresponding to that number.

Output: The message vector (r3, r5, r6, r7)T .

3

In addition to developing this code, Hamming also introduced new concepts in the area of

error-correction.

Definition.

• Message block size: the number of data symbols to be sent, denoted by k

• Code block size: the number of data symbols plus redundant symbols, denoted by n

• Hamming distance: the number of coordinates in which two words differ, denoted by

d(·, ·)

• Minimum distance: the shortest distance between any two codewords

• Information rate: the measure of the amount of data sent versus total code block size,

given by k/n

The minimum distance gives information on the error-correcting capacity of the code. The

consequences can be seen from the following figure, where d is the minimum distance, Ci are

codewords, and r is a received word:

C1

C3C2

C4 C5

C6

d/2

r

Figure 1.1: Geometric interpretation of minimum distance

The minimum distance tells us that any two codewords are separated at least by distance

d. If a received message r falls within Hamming distance d/2 of a codeword, then it can be

4

unambiguously decoded to that codeword. In other words, a code can always correct less

than d/2 errors in a received word.

Example.

Code (odd) N -fold repetition Hamming (7, 4)

Message block size 1 4

Code block size N 7

Minimum distance N 3

Correctable errors bN/2c 1

Information rate 1/N 4/7

Table 1.1: Properties of repetition and Hamming codes

Now with these concepts defined, the goal is to find better codes in terms of error-correcting

capacity (i.e. large minimum distance) and high information rates.

1.2 Reed-Solomon Codes

1.2.1 Encoding and Decoding

In 1960, Irving S. Reed and Gustave Solomon published a paper titled ‘Polynomial Codes

Over Certain Finite Fields’ [23]. Here they outlined a new error-correcting code that was

based on sampling points on a polynomial. They used the idea that a polynomial of degree

k − 1 is determined by k of its points, and that if we know n > k points, we can recover

the original polynomial even if some of the points go missing or are corrupted. This was

described in the following way:

Procedure (Reed-Solomon Encoding, Original Formulation). Fix a finite field Fq, a message

block size k, and a subset D = {x1, x2, . . . , xn} ⊆ Fq so that n > k.

Input: The message m = (m0,m1,m2, . . . ,mk−1), represented by the polynomial

m(x) = m0 +m1x+m2x
2 + . . .+mk−1x

k−1

5

where the mi are elements of Fq.

Output: The codeword (m(x1),m(x2), . . . ,m(xn)), to be transmitted.

Example. Take the finite field F22 , α a root of x2 + x+ 1 ∈ F2[x], the message block length

2, and D = F22 . Suppose m = (10, 11). Then,

m(x) = 10 + 11x = α + (α + 1)x

and the transmitted codeword will be

(m(00),m(01),m(10),m(11)) = (10, 01, 11, 00)

In summary, our original message was 1011, and we will transmit the codeword 10011100.

Procedure (Reed-Solomon Decoding, Original Formulation).

Input: A received message r = (r1, r2, . . . , rn).

Computation: Find the interpolated polynomials of all combinations of k points from

(x1, r1), (x2, r2), . . . , (xn, rn)

Output: The most popular polynomial.

Reed and Solomon gave an analysis of this algorithm and used a combinatorial argument to

find the maximum number of correctable errors. To calculate this, suppose that there are

t coordinate errors. The correct polynomial will therefore appear
(
n−t
k

)
times, and any one

incorrect polynomial will appear at most
(
t+(k−1)

k

)
times. To recover the correct polynomial,

we must have (
n− t
k

)
>

(
t+ (k − 1)

k

)
which is true if and only if n − t > t + (k − 1). Rearranging this inequality shows that we

can correct up to (n− k + 1)/2 errors.

6

Example. Suppose the message r = 10101100 is received. Up to b(4− 2 + 1)/2c = 1 error

can be corrected.
(

4
2

)
= 6 pairs of points must be examined. The frequencies are

of occurrences Polynomial

2 10 + 11x

1 11 + 11x

1 11 + 01x

1 00 + 10x

1 10 + 00x

Table 1.2: Frequencies of interpolated words

The most popular polynomial is 10 + 11x, so the decoded message is m = 1011.

Unfortunately, Reed and Solomon’s original decoding algorithm is infeasible except for

very small codes. In many practical applications, we need to use fields such as F28 . One

popular setup is to use D = F∗28 and message block size k = 223 (i.e. a (255, 223) Reed-

Solomon code). Using this decoding procedure requires that we examine
(

255
223

)
≈ 5.1× 1040

subsets. Even if we could examine one million subsets per second, it would take about

1.6× 1027 years to complete. With this in mind, Reed-Solomon codes have been formulated

in another way to allow for efficient decoding.

The most popular method to phrase Reed-Solomon codes is in terms of BCH (Bose-

Chadhuri-Hocquenghem) codes. Here is the idea: suppose g(x) is a polynomial with roots

{x1, x2, . . . , xn}. Let m(x) be some other polynomial. Then take c(x) = m(x)g(x). If we

make no mistake about c(x), then

c(x1) = c(x2) = . . . = c(xn) = 0

If any of the terms is not zero, then some of the coefficients of c(x) are in error, and we can

use those values to try to recover c(x).

Procedure (Reed-Solomon Encoding, BCH Formulation). Fix a finite field Fq, a generator

α of F∗q, and an error tolerance t. Set

g(x) = (x− α)(x− α2) · · · (x− α2t)

7

Input: The message m = (m0,m1,m2, . . . ,mk−1), represented by the polynomial

m(x) = m0 +m1x+m2x
2 + . . .+mk−1x

k−1

where the mi are elements of Fq and k = q − 2t− 1.

Output: The codeword formed by the coefficients of c(x) = m(x)g(x), to be trans-

mitted.

The polynomial g(x) is referred to as the generator polynomial.

Decoding requires some sophistication, following [3]. Suppose we receive a message r(x) =

c(x) + e(x), where e(x) is the error polynomial accumulated during transmission. We can

evaluate r(x) at the αj. If we do this, we have

r(αj) = c(αj) + e(αj) = g(αj)m(αj) + e(αj) = e(αj)

where the last equality holds because the roots of g(x) were αj by design. We call these

values the message syndromes and denote them by Sj = r(αj) = e(αj). If all of the Sj = 0,

then there was no transmission error. Otherwise, we have to use the values of Sj to determine

error locations and their values. If there are 0 ≤ ν ≤ t errors occuring in unknown locations

i1, i2, . . . , iν , we can write the error polynomial as

e(x) = ei1x
i1 + ei2x

i2 + . . .+ eiνx
iν

noting that i`, ei` , and ν are all unknown. In a change of notation, let Y` = ei` and X` = αi` .

The syndromes are then written

Sj = Y1X
j
1 + Y2X

j
2 + . . .+ YνX

j
ν =

ν∑
`=1

Y`X
j
`

for 1 ≤ j ≤ 2t. This gives a system of 2t equations in ν unknowns X` and ν unknowns

Y`, where ν itself is unknown. It can be shown that a solution always exists and is unique.

Solving this system is aided by defining the so-called error locator polynomial

Λ(x) =
ν∏
`=1

(1− xX`) = 1 + Λ1x+ Λ2x
2 + . . .+ Λtx

ν

8

whose inverted roots give us information about the error positions. The error locator poly-

nomial can be related to the syndromes by first setting x = X−1
` and multiplying both sides

by Y`X
j+ν
` , for each ` and j. This gives

0 = Y`X
j+ν
` Λ(X−1

`) = Y`(X
j+ν
` + Λ1X

j+ν−1
` + . . .+ ΛνX

j
`)

If we sum all of these equations over 1 ≤ ` ≤ ν,

ν∑
`=1

Y`X
j+ν
` + Λ1

ν∑
`=1

Y`X
j+ν−1
` + . . .+ Λν

ν∑
`=1

Y`X
j
` = 0

Observe that each one of these sums corresponds to a message syndrome. Making the

substitution produces the system of equations

Λ1Sj+ν−1 + Λ2Sj+ν−2 + . . .+ ΛνSj = −Sj+ν

over 1 ≤ j ≤ ν, or equivalently,
S1 S2 · · · Sν

S2 S3 · · · Sν+1

...
...

. . .
...

Sν Sν+1 · · · S2ν−1

Λν

Λν−1

...

Λ1

 =

−Sν+1

−Sν+2

...

−S2ν

This system can be solved efficiently using many famous algorithms, such as the one by

Berelekamp-Massey, described in [2, 3, 21].

Procedure (Reed-Solomon Decoding, BCH Formulation).

Input: A received message r = (r0, r1, r2, . . . , rn−1), represented by

r(x) = r0 + r1x+ r2x
2 + . . .+ rn−1x

n−1

Computation:

1. Calculate the syndromes

Sj = r(αj) =
ν∑
`=1

ei`(α
j)i`

for j = 1, 2 . . . , n−k, where ei` is the error value in the i`-th component of r, and

ν is the number of errors.

9

2. Find the error positions αi` and error values ei` by finding the error locator poly-

nomial and its roots, and make the appropriate corrections in r(x).

Output: The polynomial r(x)/g(x).

1.2.2 Code Properties

Reed-Solomon codes have many excellent properties.

Code (255, 223) Reed-Solomon (n, k) Reed-Solomon

Message block size 223 k

Code block size 255 n

Minimum distance 33 n− k + 1

Correctable errors 16 b(n− k + 1)/2c

Information rate 223/255 n/k

Table 1.3: Properties of Reed-Solomon codes

In 1964, R.C. Singleton published a very basic bound relating to the minimum distance of

block codes.

Theorem 1.1 (Singleton). Given a q-symbol (n, k) error-correcting code with minimum

distance d, we must have

d ≤ n− k + 1

Proof. Consider only the first k−1 coordinates of our codewords, noting that there are only

qk−1 possibilities. Since we have qk codewords, there must be a collision. Therefore, any two

codewords can differ in at most n− (k − 1) = n− k + 1 of the remaining coordinates. This

is exactly d ≤ n− k + 1.

From the table above, we see that Reed-Solomon codes match the Singleton bound. We call

this a maximum-distance separable (MDS) code.

Reed-Solomon codes are highly resistant against burst errors. This can be seen in our

small example, where two bits were flipped in the transmission.

10

Transmitted 10011100

Received 10101100

Table 1.4: Comparison between transmitted and received words

Since the two flipped bits were part of the same symbol, this only counts as a single error.

This effect is more dramatic when there are more bits per symbol (say, in a code over F28).

1.2.3 Applications in Technology

Compact Discs

• CDs make use of two concatenated cross-interleaved Reed-Solomon codes (CIRC), the

first is a (32, 28) code C1 and the second is a (28, 24) code C2, both over F28 .

• Interleaving of data symbols prevents burst errors from overwhelming any one block.

• If the C1 or C2 decoders fail to correct the errors in a block, the symbols in the block

are flagged as erasures so that the hardware can attempt to conceal the corruption.

• The CIRC setup can correct a burst error lasting about 4000 bits, or 2.5mm in track

length.

• If the errors are too overwhelming, data blocks can be interpolated or concealed for

errors spanning around 12300 bits, or 7.7mm in track length.

QR Codes

• QR codes were invented by the Toyota subsidiary Denso Wave in 1994 and are freely

available for use.

• A 21× 21 QR code (‘Version 1’) contains 26 bytes of information.

• There are four levels of error-correction:

11

Level Check Symbols Data Bytes

L 7 19

M 10 16

Q 13 13

H 17 9

Table 1.5: Levels of error-correction in a 21× 21 QR code

where the coding is done over F28 .

• A 21× 21 QR code with level M encoding uses the generator polynomial

g(x) = (x− α)(x− α2) · · · (x− α10)

where α is a multiplicative generator of F∗28 . This allows for the correction of up to

five errors.

• Error correction in QR codes allows them to be read even if they are damaged or

obstructed. Some use this property for artistic purposes by embedding images within

a standard code.

Voyager Probes

• Reed-Solomon codes were first used for space exploration in the Voyager missions

(1977). They were to be used in the transmission of full-colour 800× 800 images at 8

bits per pixel.

• Compressing the colour images made them vulnerable to bit errors, so engineers em-

ployed a Reed-Solomon code composed with a convolutional code to compensate. The

system, however, was considered too new and experimental, so it was used as a backup

system for a more traditional setup. It was finally put into action after the basic

Jupiter and Saturn mission.

12

• Voyager uses a (255, 223) code over F28 , which is represented by the primitive polyno-

mial f(x) = x8 + x4 + x3 + x2 + 1. The generator polynomial is

g(x) = (x− α)(x− α2) · · · (x− α32)

where α is a root of f(x). This allows for the correction of up to 16 symbol errors.

1.3 Further Improving Error-Correction Limits

1.3.1 List Decoding

Can the error-correcting limit in Reed-Solomon codes be improved? We know that a received

word can be decoded to a unique codeword as long as the number of errors is less than d/2,

where d is the minimum distance. If we want to handle more errors, we have to drop unique

decoding. This leads to the following concept:

Problem (List Decoding). Given a received word r and an error tolerance t, to find all

codewords c such that d(c, r) ≤ t.

For Reed-Solomon codes, it was unknown whether or not this could be done efficiently, even

for t a little larger than d/2. In 2001, Guruswami and Sudan published a random polynomial

time algorithm that allowed decoding in the presence of up to n−
√
nk errors [12, 13].

Procedure (Guruswami-Sudan List Decoding).

Input: A received message r = (r1, r2, . . . , rn) and an error tolerance t.

Computation:

1. Find a two-variable polynomial Q(x, y) with suitably high degree so that

Q(xi, ri) = 0 for 1 ≤ i ≤ n.

2. Find all factors of Q(x, y) of the form y − p(x), where deg p(x) < k.

Output: Those polynomials y = p(x) such that ri = p(xi) for at least n − t of the

(xi, ri).

A more detailed description and implementation of the algorithm can be found in [12].

13

1.3.2 New Problems

Given the breakthroughs given in the Guruswami-Sudan algorithm, we can formulate two

new questions to further investigate decoding limitations.

Definition (Distance to a Code). For an error-correcting code C and a word r, denote d(r, C)

to be the shortest distance between r and each codeword from C.

Problem (Maximum Likelihood Decoding). Given a received word r, to find an explict

codeword c such that d(r, c) = d(r, C).

Problem (Bounded Distance Decoding). Given a received word r and a bound B, to find

just one codeword c such that d(r, c) ≤ B.

1.3.3 Hardness Results

Studying these problems has led to several hardness results. One major result comes from

Guruswami and Vardy [14].

Theorem 1.2 (Guruswami-Vardy, 2005). For an integer t ≥ 1, let m = 3t, k = t3 − t − 1,

and n = t3. There is a class of (n, k) Reed-Solomon codes over F2m with evaluation set of

size |D| = n such that maximum-likelihood decoding is NP-complete.

The proof gives a polynomial-time reduction of the maximum-likelihood decoding prob-

lem to the three-dimenisonal matching problem, which has been shown to be NP-complete.

The main drawback is that this code uses a tremendously small evaluation set D compared

to Fq (i.e. t3 versus 23t), so in some sense, it isn’t realistic for codes actually used in practise.

Guruswami and Vardy noted this and suggested in passing that the maximum-likelihood

decoding might be easier if D is much larger or has some algebraic structure.

Cheng and Wan also published hardness results on two occassions for codes with large

evaluation sets, both relying on the assumed hardness of the discrete logarithm problem

over finite fields [7, 8]. Their arguments hinged on giving a procedure to interpret a decod-

ing problem in terms of a discrete logarithm problem (similar to using an index calculus

algorithm).

14

Problem (Discrete Logarithm). Given a finite field Fq, a generator g of F∗q, and a nonzero

element a, to find an integer i such that

gi = a

The value of i is denoted logg a.

Theorem 1.3 (Cheng-Wan, 2004). In an (n, k) Reed-Solomon code over Fq, let ĝ(n, k, q) be

the smallest positive integer g such that
(
n
g

)
/qg−k is less than 1. If there exists an algorithm

solving the list decoding problem of radius n− ĝ in time qO(1), then discrete logarithm over

the finite field Fqĝ−k can be computed in random time qO(1).

Theorem 1.4 (Cheng-Wan, 2004). Let h be a positive integer satisfying

q ≥ max(g2, (h− 1)2+ε) and g ≥ (4/ε+ 2)(h+ 1)

for a constant ε > 0. If the bounded distance decoding problem of radius B = q − g for the

(q, g − h) Reed-Solomon code can be solved in time qO(1), the discrete logarithm problem

over Fqh can be solved in random time qO(1).

Theorem 1.5 (Cheng-Wan, 2010). Let δ > 0 be a constant and m > 1 be an integer.

Suppose h and k are integers satisfying

h ≤ q
1

2+δ

m
+

1

m
, h ≤

√
q

m(4/δ + 2)
− 1

m
, q ≤ k ≤ qm − q

The discrete logarithm in F∗
qmh

can be solved in randomized time (qm)O(1) with oracle access

to a maximum-likelihood decoder for a (qm, k) Reed-Solomon code over Fqm .

Theorem 1.6 (Cheng-Wan, 2010). Let ε be a positive constant less than 1/3 and g =

2+3ε
1−3ε

(h+1). In an (q, q−g−h) Reed-Solomon code over Fq for sufficiently large q, there does

not exist a randomized polynomial time bounded distance decoder at distance (2/3 + ε)d,

where d is the minimum distance, unless the discrete logarithm problem over Fqh can be

solved in randomized time qO(1) for any h ≤ q0.8ε.

Later, in 2012, Augot and Morain took Cheng and Wan’s conversion idea and made it

effective [1]. This allowed them to produce a new algorithm for computing discrete loga-

rithms.

15

Theorem 1.7 (Augot-Morain, 2012). Let F = Fqh and K = Fq. Take a fixed monic Q(X)

from K[X], with degQ(X) = h, and a set S ⊂ F with size n so that Q(a) 6= 0 for all a ∈ S.

Let 1 ≤ µ ≤ n. For any f(X) in K[X] with deg f(X) < µ, there exists A ⊂ S where |A| = µ

such that ∏
a∈A

(X − a) ≡ f(X) (mod Q(x))

if and only if the word represented by the polynomial

y(X) = −f(X)/Q(X)−Xk

is exactly distance n − µ from the Reed-Solomon code with k = µ − h and evaluation set

D = S. All such sets A can be found by decoding the word y(X) up to radius n− µ.

Using this conversion, discrete logarithms can be computed using a procedure similar to

index calculus. If Q(X) is a primitive polynomial, take f(X) = Xu for random u. After

finding all relations of the form∏
a∈A

(X − a) ≡ f(X) (mod Q(x))

using Reed-Solomon decoding, we can try to set up a linear system to solve for the values of

log(X − a) for all a ∈ S. The authors showed that their implementation of this procedure

requires Õ(h! q2) operations over Fq.

1.4 The Deep Hole Problem

In an (n, k) Reed-Solomon code, it can be shown that for any received word r, we always

have d(r, C) ≤ n − k. This bound is the so-called covering radius, the maximum value of

d(r, C) over all possible words r. For r satisfying d(r, C) = n − k, Guruswami and Vardy

called this a deep hole. They observed that as a consequence of their results in their family

of codes, determining whether or not r is a deep hole is actually NP-hard. As before, the

situation might be different for codes with evaluation sets of larger size or some algebraic

structure. This leads us to the following problem:

16

Problem (Determining Deep Holes). Take an (n, k) Reed-Solomon code over Fq with some

evaluation set D, preferably D = Fq, D = F∗q, or some large or structured set. Given a

received message r, to determine whether or not r is a deep hole.

One way to measure d(u, C) is to run Lagrange Interpolation on the word u = (u1, · · · , un) to

get a fitted polynomial u(x) satisfying u(xi) = ui for all 1 ≤ i ≤ n. Then, if deg u(x) ≤ k−1,

then u is a codeword and d(u, C) = 0. Otherwise, k ≤ deg u(x) ≤ n− 1, and Li and Wan in

[16] gave the bound

Theorem 1.8. If deg u(x) ≥ k, then

n− deg u(x) ≤ d(u, C) ≤ n− k

Proof. To prove the right-hand inequality, let {x1, x2, . . . , xk} a set of any k points from D.

Let g(x) =
∏k

i=1(x− xi). By the division algorithm, we can write

u(x) = g(x)q(x) + v(x)

where v(x) is a codeword, since deg v(x) ≤ k− 1. Then, u(x)− v(x) = g(x)q(x) has at least

k roots by the design of g(x), meaning that u and v have at least k coordinates in common.

Therefore, u differs from a codeword in no more than n− k coordinates, or d(u, C) ≤ n− k.

Let N(·) denote the number of zeros of a polynomial. To prove the left-hand inequality,

we measure the error distance:

d(u, C) = min
v∈C

d(u, v)

= n−max
v(x)

N(u(x)− v(x))

≥ n− deg u(x)

The last inequality holds because u(x) − v(x) is a polynomial of degree deg u(x), so it has

at most deg u(x) roots. This completes the proof.

This simple bound shows that if deg u(x) = k, then u is automatically a deep hole. Many of

the results toward the deep hole problem are geared toward examining families of words by

degree.

17

1.4.1 Results when D = Fq

Cheng and Murray in [6] searched for deep holes when D = Fq (referred to as a stan-

dard Reed-Solomon code), and conjectured that the only deep holes were those satisfying

deg u(x) = k. More precisely,

Conjecture (Cheng-Murray). All deep holes for standard Reed-Solomon codes are those

words u satisfying deg u(x) = k.

They weren’t able to prove this, but they were able to reduce the problem to finding a rational

point on an algebraic hypersurface to derive the first result on deep holes for Reed-Solomon

codes over the prime field Fp:

Theorem 1.9 (Cheng-Murray, 2007). Let p be a prime and 1 < k < p1/4−ε be a positive

integer. Let u be a received word and u(x) be its interpolated polynomial. If the degree of

u(x) satisfies

k < deg u(x) < k + p3/13−ε

then u is not a deep hole.

Example. Choose p = 929. Then in the (929, k) Reed-Solomon code (for 1 < k < 5.25), if

the degree of u(x) satisfies

k < deg u(x) < k + 4.84

then u is not a deep hole.

In one of the newest papers, Cheng, Li, and Zhuang [4] were able to resolve in some cases

the conjecture over Fp using the concept of deep hole trees.

Definition (Equivalent Functions). Let f(x) and g(x) be functions over a finite field Fq, and

take an (n, k) Reed-Solomon code. f and g are said to be equivalent if there exists a ∈ F∗q
and a polynomial h(x) with degree less than k such that

f(x) = ag(x) + h(x)

We refer to the set of functions equivalent to f as a class.

18

Theorem 1.10 (Cheng-Li-Zhuang, 2013). Let p > 2 be a prime number, k ≥ p−1
2

, D =

{α1, α2, . . . , αn} with k < n ≤ p. The only deep holes of Cp are generated by functions which

are equivalent to the following:

f(x) = xk, fδ(x) =
1

x− δ

where δ ∈ Fp\D.

Over Fq, they also showed

Theorem 1.11. Given a finite field Fq with characteristic p > 2, if k + 1 ≤ p or 3 ≤

q − p+ 1 ≤ k + 1 ≤ q − 2, then the Cheng-Murray conjecture is true.

There is further evidence in favour of the conjecture. Li and Wan [16] studied the problem

in terms of solving polynomial congruences, using character sums combined with Weil’s

character sum bounds to count solutions. They were able to give some exact distance

measurements under the right conditions.

Theorem 1.12 (Li-Wan, 2010). Let u be a received word and u(x) be its interpolated

polynomial. Suppose 1 ≤ d := deg u(x)− k ≤ q − 1− k. If

q > max((k + 1)2, d2+ε) and k >

(
2

ε
+ 1

)
d+

8

ε
+ 2

for some constant ε > 0, then d(u, C) < q − k. In other words, u is not a deep hole.

Furthermore, if

q > max((k + 1)2, (d− 1)2+ε) and k >

(
4

ε
+ 1

)
d+

4

ε
+ 2

for some constant ε > 0, then d(u, C) = q − (k + d).

Several other authors followed these techniques to get new bounds.

Theorem 1.13 (Liao, 2011 [20]). Let r ≥ 1 be an integer. Let u be a received word and

u(x) be the interpolated polynomial of degree m. If m ≥ k + r,

q > max

{
2

(
k + r

2

)
+ (m− k), (m− k)2+ε

}

19

and

k >
1

1 + ε

(
r + (2 + ε)

(m
2

+ 1
))

for some constant ε > 0, then d(u, C) ≤ q − k − r.

Using some techniques from algebraic geometry, Cafure, Matera, and Privitelli in [5] slightly

improved on one of Li-Wan’s previous results with

Theorem 1.14 (Cafure-Matera-Privitelli, 2012). Let u be a received word and u(x) be is

interpolated polynomial with 1 ≤ d := deg(u(x))− k ≤ q − 1− k. Assume that

q > max((k + 1)2, 14d2+ε) and k > d

(
2

ε
+ 1

)
for some constant ε > 0. Then u is not a deep hole.

In the previous results, many of the conditions required u(x) to be a polynomial with degree

only slightly larger than k. Zhu and Wan improved upon this by observing that some high

degree polynomials can also be represented by low-degree rational functions [28]. They came

up with

Theorem 1.15 (Zhu-Wan, 2012). Let r ≥ 1 be an integer. Suppose we can write(
w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(xq)

h(xq)

)
= u

for some h(x) ∈ Fq[x], with gcd(h(x), xq − x) = 1, and deg h(x) + k ≤ degw(x) ≤ q − 1.

Let m be the smallest such degree of w(x), and set r ≤ d := m− k ≤ q − 1− k. There are

positive constants c1 and c2 such that if

d < c1q
1/2 ,

(
d+ r

2
+ 1

)
log2 q < k < c2q

then d(u, C) ≤ q − k − r.

Li and Zhu in [19] recently related the deep hole problem to explicitly counting solutions to

certain polynomial equations to exactly calculate error distances.

Theorem 1.16 (Li-Zhu, 2015). Let u be a received word represented by the class u(x) =

xk+1 − bxk. Then

d(u, C) =

 q − k b = 0, p = 2, k = 1 or q − 3

q − k − 1 otherwise

20

They also proved a similar distance formula for words in the class u(x) = xk+1− bxk+1 + cxk,

showing that such words are not deep holes either.

1.4.2 Results when D = F∗q

Wu and Hong studied the deep hole problem when D = F∗q (referred to as a primitive Reed-

Solomon code) [26]. Using this evaluation set allowed them to use the BCH formulation of

Reed-Solomon codes.

Theorem 1.17 (Wu-Hong, 2011). Take a Reed-Solomon code over Fq with q ≥ 4 and

2 ≤ k ≤ q − 2. Then polynomials in the class u(x) = xq−2, represent deep holes.

This new family of deep holes shows that the Cheng-Murray conjecture is false when D = F∗q.

They gave a revision to the conjecture:

Conjecture (Wu-Hong). All deep holes for primitive Reed-Solomon codes are those words

u represented by the class u(x) = xk or xq−2.

Cheng, Li, and Zhuang in the previously referenced [4] were able to resolve this under some

conditions.

Theorem 1.18 (Cheng-Li-Zhuang, 2013). Given a finite field Fq with characteristic p > 2,

if 3 ≤ k <
√
q+1

4
or 3 ≤ k < p

45
when q = p is prime, then the Wu-Hong conjecture is true.

Zhang, Fu, and Liao proved an extension of Wu-Hong that allows D to be any evaluation set

except Fq [27]. They also adapted work from Li-Wan to find more deep holes for a specific

message length k. Finally, they found a class of received words that are not deep holes.

Theorem 1.19 (Zhang-Fu-Liao, 2012). Take a Reed-Solomon code over Fq with evaluation

set D 6= Fq. Then for any a 6= 0, b 6∈ D, polynomials in the class

u(x) = (x− b)q−2

represent deep holes.

21

Theorem 1.20 (Zhang-Fu-Liao, 2012). Take a Reed-Solomon code over Fq for q > 5,

2 ≤ k ≤ q − 3, and D = F∗q. Polynomials in the class

u(x) = axk+2 + bxk+1 + cxk

where a ∈ F∗q, b, c ∈ Fq, do not represent deep holes.

Theorem 1.21 (Zhang-Fu-Liao, 2012). Let q > 4 be a power of 2 and take a Reed-Solomon

code over Fq with evaluation set D = F∗q or D = F∗q/{1} and k = q − 4. If a 6= 0, then

polynomials in the class

u(x) = xq−3

represent deep holes.

This last result shows that the deep hole problem in characteristic two, the most important

setting for applications, may be very complicated.

Li and Zhu from [19] also exactly calculated error distances for polynomials of degree

k + 1 and k + 2 in this setting. One sample from their work:

Theorem 1.22 (Li-Zhu, 2015). Take a Reed-Solomon code over Fq with evaluation set

D = F∗q, and let u be a received word represented by the class u(x) = xk+2 − bxk+1 + cxk.

Then

d(u, C) =

 q − k − 2 b2 = c

q − k − 1 b2 6= c

22

Chapter 2

A Schematic Approach to the Deep

Hole Problem

23

Our first result is joint with Zhu and Wan, following [28]. We take a schematic approach

to the deep hole in generalised Reed-Solomon codes. We can find a class of words that are

not deep holes as long as a character sum over the evaluation set D can be estimated. An

important special case will be derived by choosing D to be a subgroup of F∗q, which can be

a substantially small portion of Fq.

2.1 Main Theorem

Fix an enumeration D = {x1, x2, . . . , x|D|}. All of our specific results will hinge on

Theorem 2.1. Let C be the generalised Reed-Solomon code over Fq using the evaluation

set D. Let u be a received word. Suppose we can write(
w(x1)

h(x1)
,
w(x2)

h(x2)
, . . . ,

w(x|D|)

h(x|D|)

)
= u

for some h(x) ∈ Fq[x], with no roots in D ∪ 0, and deg h(x) + k ≤ degw(x) ≤ |D| − 1. Let

m be the smallest such degree of w(x). Let 1 ≤ r ≤ d := m− k ≤ |D| − k− 1. If the bound∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

is true over all nontrivial characters χ : (F[x]/(h̄(x)))∗ → C∗ with χ(F∗q) = 1 for some K ≥ d

and h̄(x) = xm−k+1h(1/x), there are positive constants c1 and c2 such that if

d ≤ K < c1
|D|
q1/2

,

(
d+ r

2
+ 1

)
log2 q < k < c2|D|

then d(u, C) ≤ |D| − k − r.

This statement is quite robust in that it can handle words that can either be represented by

low-degree polynomials or low-degree rational functions. (The next section will show some

examples.) In addition, it applies to code families with a positive information rate k/|D|.

Setting h(x) = 1, the theorem reduces to the usual polynomial case, and we receive

Corollary 2.1. Let C be the generalised Reed-Solomon code over Fq using the evaluation

set D. Let r ≥ 1 be an integer and u a received word with interpolated polynomial u(x)

24

such that r ≤ d := deg(u(x))− k ≤ |D| − k − 1. If the bound∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

is true over all nontrivial characters χ : (F[x]/(xd+1))∗ → C∗ with χ(F∗q) = 1 for some K ≥ d,

then there are positive constants c1 and c2 such that if

d ≤ K < c1
|D|
q1/2

,

(
d+ r

2
+ 1

)
log2 q < k < c2|D|

then d(u, C) ≤ |D| − k − r.

We can specialise this result to a code that uses the evaluation set D = (F∗q)
q−1
` or D = Fq.

For these cases, we will be able to take K = d.

Corollary 2.2. Let C be the generalised Reed-Solomon code over Fq using the evaluation

set D = (F∗q)
q−1
` of size `. Let r ≥ 1 be an integer and u a received word with interpolated

polynomial u(x) such that r ≤ d := deg(u(x))− k ≤ q− 2− k. There are positive constants

c1 and c2 such that if

d < c1
`

q1/2
,

(
d+ r

2
+ 1

)
log2 q < k < c2`

then d(u, C) ≤ `− k − r.

Note that the first condition d < c1
`

q1/2
will implicitly put a minimum on the size of ` due to

the dependency between c1 and c2. This dependency can be seen in the upcoming example.

Corollary 2.3. Let C be the standard Reed-Solomon code over Fq using the evaluation set

D = Fq. Let r ≥ 1 be an integer and u a received word with interpolated polynomial u(x)

such that r ≤ d := deg(u(x)) − k ≤ q − k − 1. There are positive constants c1 and c2 such

that if

d < c1q
1/2 ,

(
d+ r

2
+ 1

)
log2 q < k < c2q

then d(u, C) ≤ q − k − r.

This corollary recovers what Zhu and Wan proved in [28].

25

2.2 Examples

To get a better idea of what these theorems mean, take C to be the primitive Reed-Solomon

code over F28 (i.e. D = F∗28). We will realise this field as F28 = F2[x]/(x8 +x4 +x3 +x2 + 1),

noting that this is formed using a primitive polynomial.

Now if r ≥ 1, and u is a codeword with r ≤ d ≤ 254− k, then we can find c1 and c2 such

that if

d <
255

16
c1 and 8

(
d+ r

2
+ 1

)
< k < 255c2

then d(u, C) ≤ 255 − k − r. To be even more concrete, consider d = r = 1; in other words,

we want to classify codewords whose polynomial (or rational) interpolations are degree k+1

(in the numerator). From the proof below, we can explicitly compute c1 and c2 using the

formulas

1 <
255

16
c1 , c1 + c2 = 256−

1
k+1 − 1

2

To obtain a wide range of k, fix c1 = .0628. Then we have the condition

16 < k < 255

(
256−

1
k+1 − 1

2
− .0628

)
A computer algebra system shows that this is satisfied when 17 ≤ k ≤ 97. Therefore, for

codes using this range of message lengths, received words u represented by a polynomial (or

rational function) of degree k + 1 (in the numerator) are not deep holes. More specifically,

we can give the estimate d(u,C) ≤ 254− k.

Along the same lines, for r = 1 and d = 2, polynomials (or rational functions) of degree

k + 2 (in the numerator) do not represent deep holes when the message length satisfies

21 ≤ k ≤ 86. Again, such words u satisfy the estimate d(u,C) ≤ 254 − k. Attempting to

increase r or d any more does not yield additional information.

Here is a table with a few examples of words covered by our bounds. We will denote α

to be a root of x8 + x4 + x3 + x2 + 1, so α will be a multiplicative generator for F∗28 .

26

d k Polynomial Interpolation Rational Interpolation

1 17 x18 + 3x2 + 1 N/A

1 97 x98 + x24 + x17 + 1 N/A

2 30 (α6 + α3 + 1)x254 + . . .+ (α6 + α5) x32/(x2 + αx+ α7)

2 86 (α6 + α5)x254 + . . .+ (α7 + α6 + α2) (x88 + 1)/(x2 + x+ α5)

Table 2.1: Polynomial interpolation vs. rational interpolation

2.3 Preliminaries

There are a few theorems that we will need to establish our results.

2.3.1 Weil’s Character Sum Bound

Definition (Multiplicative Character). Let h(x) be a polynomial from Fq[x]. We say that

a homomorphism χ : (Fq[x]/(h(x)))∗ → C∗ is a multiplicative character of (Fq[x]/(h(x)))∗.

This can be extended to the entire group Fq[x]/(h(x)) by setting χ(f(x)) = 0 when

gcd(f(x), h(x)) 6= 1.

We will take advantage of the Weil bounds to estimate the number of solutions to certain

polynomial equations. Let Λ denote the polynomial von Mangoldt function, defined as

Λ(f) =

 deg g if f = gk for some irreducible g

0 otherwise

As stated in [24]:

Theorem 2.2 (Weil). Let h(x) be a polynomial of positive degree in the ring Fq[x], and let

χ : (F[x]/(h(x)))∗ → C∗ be a multiplicative character. If χ is not trivial, then∣∣∣∣∣∣
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

In general, for a sum over polynomials of degree k,∣∣∣∣∣ ∑
deg g=k

Λ(g)χ(g)

∣∣∣∣∣ ≤ (deg h(x)− 1)qk/2

27

Furthermore, if χ is not trivial but χ(F∗q) = 1, then∣∣∣∣∣∣1 +
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (deg h(x)− 2)q1/2

Since we will be dealing with (F∗q)(q−1)/`, these bounds need to be slightly modified:

Lemma 2.1. Let h1(x) be a polynomial from Fq[x] not divisible by x, h(x) = xkh1(x) for

k ≥ 1, and χ : (Fq[x]/(h1(x)))∗ → C∗ with χ nontrivial and χ(F∗q) = 1. For a subgroup

(F∗q)
q−1
` of F∗q, we have ∣∣∣∣∣∣∣

∑
a∈(F∗q)

q−1
`

χ(x− a)

∣∣∣∣∣∣∣ ≤ (deg h(x)− 1)q1/2

Proof. Use the character sum∑
a∈(F∗q)

q−1
`

χ(x− a) =
∑
a∈Fq

`

q − 1

∑
(χ′)(q−1)/`=1

χ′(a)χ(x− a) =
`

q − 1

∑
(χ′)(q−1)/`=1

∑
a∈Fq

χ′(a)χ(x− a),

where χ′ : F∗q → C∗ denotes a multiplicative character. The two characters χ and χ′ can be

viewed as characters over the group

(Fq[x]/(h(x)))∗ ∼= (Fq[x]/(xk))∗ × (Fq[x]/(h1(x)))∗

This is true because we can define the natural reduction map

(Fq[x]/(xk))∗ × (Fq[x]/(h1(x)))∗ → (Fq[x]/(x))∗ × (Fq[x]/(h1(x)))∗

just by taking the terms in (Fq[x]/(xk))∗ modulo x. And since F∗q ∼= (Fq[x]/(x))∗, χ′ lifts to

a character over (Fq[x]/(xk))∗, which therefore extends to a character over (Fq[x]/(h(x)))∗.

Because of this, we also have χ′(a) = χ′(−x+ a) = χ′(−1)χ′(x− a). Then,∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(x− a)

∣∣∣∣∣∣∣ ≤
`

q − 1

∑
(χ′)(q−1)/`=1

∣∣∣∣∣∣
∑
a∈Fq

χ′(a)χ(x− a)

∣∣∣∣∣∣
=

`

q − 1

∑
(χ′)(q−1)/`=1

∣∣∣∣∣∣
∑
a∈Fq

(χ′χ)(x− a)

∣∣∣∣∣∣
≤ `

q − 1

∑
(χ)(q−1)/`=1

(deg h(x)− 1)q1/2

= (deg h(x)− 1)q1/2,

28

where we used the fact that the product χ′χ is a nontrivial character of (Fq[x]/(h(x)))∗. To

see this, note that the restriction of χ′χ to the second factor (Fq[x]/(h1(x)))∗ is precisely χ,

which is already nontrivial.

2.3.2 Li-Wan’s New Sieve

We also state Li-Wan’s new sieve (as in [17, 28]): letD be a finite set andDk = D×D×· · ·×D

be the Cartesian product of k copies of D. Let X be a subset of Dk. Denote

X̄ = {(x1, x2, . . . , xk) ∈ X | xi 6= xj, i 6= j}

Let f(x1, x2, . . . , xk) be a complex-valued function defined over X. Denote

F =
∑
x∈X̄

f(x1, x2, . . . , xk)

Let Sk be the symmetric group on {1, 2, . . . , k}. Each permutation τ ∈ Sk can be uniquely

factorised as a product of disjoint cycles and each fixed point is viewed as a trivial cycle of

length 1. Namely,

τ = (i1i2 . . . ia1)(j1j2 . . . ja2) · · · (l1l2 . . . las)

with ai ≥ 1 and 1 ≤ i ≤ s. Define

Xτ = {(x1, x2, . . . , xk) | xi1 = . . . = xia1 , xj1 = . . . = xja2 , · · · , xl1 = . . . = xlas}

Similarly define

Fτ =
∑
x∈Xτ

f(x1, x2, . . . , xk)

We say that τ is of the type (c1, c2, . . . , ck) if it has exactly ci cycles of length i. Let

N(c1, c2, . . . , ck) be the number of permutations of type (c1, c2, . . . , ck). Define

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)t
c1
1 t

c2
2 · · · t

ck
k

Now we have the following combinatorial result:

29

Lemma 2.2. Suppose q ≥ d. If ti = q for d|i and ti = s for d - i, then we have

Ck(s, . . . s, q, s, . . . , s, q, . . .) = k!

bk/dc∑
i=0

(q−s
d

+ i− 1

i

)(
s+ k − di− 1

k − di

)
≤
(
s+ k +

q − s
d
− 1

)
k

where (x)k = x(x− 1)(x− 2) · · · (x− k + 1).

Furthermore, we say that X is symmetric if for any x ∈ X and any g ∈ Sk, we have g◦x ∈ X.

Also, if a complex-valued function f is defined on X, we say that it is normal on X if X is

symmetric and for any two conjugate elements in Sk, τ and τ ′, we have∑
x∈Xτ

f(x1, x2, . . . , xk) =
∑
x∈Xτ ′

f(x1, x2, . . . , xk)

Then, we have the result:

Lemma 2.3. If f is normal on X, then

F =
∑

∑
ici=k

(−1)k−
∑
ciN(c1, c2, . . . , ck)Fτ

2.3.3 A Rephrasing of Error Distance

For our purposes, it is more convenient to state the error distance in this way:

Lemma 2.4. Let C be the generalised Reed-Solomon code over Fq using the evaluation set

D. Let u be a received word and u(x) its interpolated polynomial with deg u(x) = k + d,

where k + 1 ≤ k + d ≤ q − 1. The error distance satisfies d(u, C) ≤ |D| − k − r for some

1 ≤ r ≤ d if and only if there exists a subset {xi1 , xi2 , . . . , xik+r} ⊂ D and a polynomial

g(x) ∈ Fq[x] of degree d− r such that

u(x)− v(x) = (x− xi1)(x− xi2) · · · (x− xik+r)g(x)

for some v(x) with deg v(x) ≤ k − 1.

Proof. First suppose that d(u, C) ≤ |D| − k − r. Then, the coordinates of u differ from the

coordinates of some codeword v in |D| − k − r places (or less). Then, their interpolated

polynomials u(x) and v(x) have (at least) k + r roots in common in D.

The converse has a very similar structure, roughly following the above in reverse. There-

fore, the result follows.

30

2.4 The Proof

Suppose w(x) is the polynomial with degree m, and h(x) is the corresponding polynomial

with no roots in D. Possibly by shifting u by a constant codeword, we can assume that

w(0) 6= 0. Also let h̄(x) = xm−k+1h(1/x). This is a polynomial of degree m− k + 1 = d+ 1

and divisible by x since h(0) 6= 0 and deg(h(x)) ≤ m − k. Let A = (Fq[x]/(h̄(x)))∗ and Â

denote the group of all characters of A. Let B̂ be the set of characters χ in Â with χ(F∗q) = 1.

Note that B̂ is an abelian subgroup of order ≤ qd.

Now, by Lemma 2.4, d(u, C) ≤ |D| − k − r if and only if there is some polynomial

f(x) ∈ Fq[x] with deg f(x) ≤ k − 1 such that

w(x)

h(x)
+ f(x) =

w(x) + f(x)h(x)

h(x)

has at least k+r distinct roots in D. In other words, there are points {x1, x2, . . . , xk+r} ⊂ D

where

w(x) + f(x)h(x) = (x− x1)(x− x2) · · · (x− xk+r)v(x)

for some polynomial v(x) with deg v(x) = m − (k + r). Then replacing x with 1/x and

multiplying through by xm, it is enough to find such a subset for the equation

w̃(x) + f̃(x)h̄(x) = (1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

where w̃(x) = xmw(1/x), f̃(x) = xk−1f(1/x), and ṽ(x) = xm−(k+r)v(1/x). We can now

further assume that w̃(0) = 1 and ṽ(0) = 1. Then this equation is equivalent to

(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)
≡ 1 (mod h̄(x))

Let the number of solutions to this equation be denoted by Nu, noting that the xi ∈ D are

distinct, deg ṽ(x) = m− (k+ r) = d− r, and ṽ(0) = 1. In other words, Nu gives the number

of codewords f in C where d(u, f) ≤ |D|−k−r. If Nu is positive, then d(u, C) ≤ |D|−k−r.

By character sums,

Nu =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

∑
χ∈B̂

χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)

31

For ease of notation, define

Sχ(x1, x2, . . . , xk+r, x) = χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)ṽ(x)

w̃(x)

)
First we will handle the case where r < d. To do this, consider the weighted version

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂

Sχ(x1, x2, . . . , xk+r, x)

Note that if N > 0, then Nu > 0. Separating the trivial character from the sum gives

N =
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ) +
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

Sχ(x1, x2, . . . , xk+r, x)

=
1

|B̂|
(|D|)k+r(q

d−r − 1) +
1

|B̂|

∑
xi∈D

distinct

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

Sχ(x1, x2, . . . , xk+r, x)

Now we have to estimate

∣∣∣∣∣N − 1

|B̂|
(|D|)k+r(q

d−r − 1)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

|B̂|

∑
ṽ(x),ṽ(0)=1

deg ṽ(x)=d−r

Λ(ṽ)
∑
χ∈B̂
χ 6=1

∑
xi∈D

distinct

Sχ(x1, x2, . . . , xk+r, x)

∣∣∣∣∣∣∣∣
To do this, apply Li-Wan’s new sieve. Let X = Dk+r, X̄ = {(x1, x2, . . . , xk+r) ∈ Dk+r | xi 6=

xj, i 6= j}, f(x) = χ((1− x1x)(1− x2x) · · · (1− xk+rx)), and F =
∑

x∈X̄ f(x). We have that

X is symmetric and f is normal, so we can compute F . For our case, we take

Fτ =
∑

χ(1− x11x) · · ·χ(1− x1c1x) · · ·χk+r(1− x(k+r)1x) · · ·χk+r(1− x(k+r)ck+rx)

where the sum is over xsts ∈ D, 1 ≤ s ≤ k + r, and 1 ≤ ts ≤ cs. We will use the Li-Wan

sieve estimate and the bounds∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

over all nontrivial χ ∈ B̂ with χ(F∗q) = 1. We have that

32

∣∣∣∣∣N − 1

|B̂|
(|D|)k+r(q

d−r − 1)

∣∣∣∣∣
≤ 1

|B̂|

∣∣∣∣∣∣∣∣
∑

ṽ(x),ṽ(0)=1
deg ṽ(x)=d−r

Λ(ṽ)χ(ṽ)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑
χ∈B̂
χ 6=1

χ−1(w̃)
∑
xi∈D

distinct

χ ((1− x1x)(1− x2x) · · · (1− xk+rx))

∣∣∣∣∣∣∣∣
≤ 1

|B̂|
dq

d−r
2

∑
χ∈B̂
χ 6=1

∑
∑
ici=k+r

N(c1, c2, . . . , ck+r)|Fτ |

≤ 1

|B̂|
dq

3d−r
2 Ck+r(Kq

1/2, |D|, Kq1/2, |D|, . . .)

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k + r +

|D| −Kq1/2

2
− 1

)
k+r

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k + r − Kq1/2

2
+
|D|
2

)
k+r

≤ 1

|B̂|
dq

3d−r
2

(
Kq1/2 + k +

|D|
2

)
k+r

Therefore, it is sufficient to prove that

(|D|)k+r(q
d−r − 1) > dq

3d−r
2

(
Kq1/2 + k +

|D|
2

)
k+r

And since d > r, we have another sufficient condition:

|D|
Kq1/2 + k + |D|

2

>

(
dq

3d−r
2

qd−r − 1

) 1
k+r

If we take K < c1
|D|
q1/2

and k < c2|D|, then it suffices to find c1 and c2 satisfying

c1 + c2 <

(
dq

3d−r
2

qd−r − 1

)− 1
k+r

− 1

2

which means that it is enough to find

1

2
<

(
dq

3d−r
2

qd−r − 1

)− 1
k+r

By some rearrangement and simplification, we have

k > log2 d+

(
d+ r + 1

2

)
log2 q − r

33

A simpler condition can be prescribed. Since r ≤ d ≤ K < q1/2, we can just replace log2 d−r

with 1
2

log2 q to receive:

k >

(
d+ r

2
+ 1

)
log2 q

For the case r = d, we use the unweighted counting function Nu, noting that ṽ(x) = 1.

Then we have

Nu =
1

|B̂|

∑
xi∈D

distinct

1 +
1

|B̂|

∑
xi∈D

distinct

∑
χ∈B̂
χ 6=1

χ

(
(1− x1x)(1− x2x) · · · (1− xk+rx)

w̃(x)

)

=
1

|B̂|
(|D|)k+d +

1

|B̂|

∑
xi∈D

distinct

∑
χ∈B̂
χ 6=1

χ

(
(1− x1x)(1− x2x) · · · (1− xk+dx)

w̃(x)

)

Applying the same method as the previous case gives the estimate∣∣∣∣∣Nu −
1

|B̂|
(|D|)k+d

∣∣∣∣∣ ≤ qd

|B̂|

(
Kq1/2 + k +

|D|
2

)
k+d

and then it is enough to have

1

|B̂|
(|D|)k+d >

qd

|B̂|

(
Kq1/2 + k +

|D|
2

)
k+d

which actually gives a better bound than before. This concludes the proof.

2.4.1 The Second Corollary

To prove the second corollary, we only need to find a number K satisfying the bounds∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(1− ax)

∣∣∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

over all characters χ from B̂ in the main proof. This is where we can use Lemma 2.1, noting

34

that deg h̄(x) = d+ 1 and χ(F∗q) = 1:∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(1− ax)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(−a)χ(x− a−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(x− a−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a∈(F∗q)
q−1
`

χ(x− a)

∣∣∣∣∣∣∣
≤ dq1/2

So we have K = d, and the first bound is satisfied. The second bound K ≥ d is automatically

satisfied.

2.4.2 The Third Corollary

To prove the third corollary, we again need to find K satisfying∣∣∣∣∣∣
∑
a∈Fq

χ(1− ax)

∣∣∣∣∣∣ ≤ Kq1/2 and K ≥ d

As before, deg h̄(x) = d + 1. Using Theorem 2.2 (Weil) and the fact that χ(x) = 0, since

h̄(x) is divisible by x, we have∣∣∣∣∣∣
∑
a∈Fq

χ(1− ax)

∣∣∣∣∣∣ =

∣∣∣∣∣∣1 +
∑
a∈Fq

χ(x− a)

∣∣∣∣∣∣ ≤ (d− 1)q1/2 ≤ dq1/2

Therefore K = d is the suitable choice.

35

Chapter 3

Deep Holes in Reed-Solomon Codes

Based on Dickson Polynomials

36

Much of the previous work took Reed-Solomon codes with D = Fq, F∗q, a subgroup of

F∗q, or else a very large subset of Fq. In joint work with Wan, we study the case where D is

slightly more general - it will be the image of a Dickson polynomial over Fq, which is defined

as follows:

Definition (Dickson Polynomial). Let n be a positive integer and a ∈ Fq. The Dickson

polynomial of degree n is defined as

Dn(x, a) =

bn/2c∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i

A few examples of such polynomials:

n Dn(x, a)

1 x

2 x2 − 2a

3 x3 − 3ax

4 x4 − 4ax2 + 2a2

Table 3.1: Dickson polynomials for the parameter a

Note that when a = 0, Dn(x, 0) = xn, so Dickson polynomials are a sort of generalisation of

monomials. Of particular use to us is the size of the image of these polynomials, also known

as the value set. A simple fact for the monomial Dn(x, 0) = xn is that the image of the map

Dn : F∗q → F∗q has size q − 1 if gcd(n, q − 1) = 1 and size (q − 1)/` if gcd(n, q − 1) = `. In

the first case, the map is 1-1; in the latter case, the map is `-1. It turns out an analogous

preimage-counting statement holds when a 6= 0. Chou, Mullen, and Wassermann in [9]

studied this by using the functional form of Dn(x, a). If x = y + a/y, then it can be shown

that

Dn(y + a/y, a) = yn +
a

yn

They used this to associate the size of a preimage of a point to the number of solutions to a

certain equation. Using a character sum argument to count, they showed

37

Theorem 3.1. Let n ≥ 2 and a ∈ F∗q. If q is even, then |D−1
n (Dn(x0, a))| =

gcd(n, q − 1) if condition A holds

gcd(n, q + 1) if condition B holds

gcd(n, q − 1) + gcd(n, q + 1)

2
Dn(x0, a) = 0

where ‘condition A’ holds if x2 +x0x+a is reducible over Fq and Dn(x0, a) 6= ±0; ‘condition

B’ holds if x2 + x0x + a is irreducible over Fq and Dn(x0, a) 6= ±0. If q is odd, let η be the

quadratic character of Fq. If 2r||(q2 − 1) then |D−1
n (Dn(x0, a))| =

gcd(n, q − 1) if η(x2
0 − 4a) = 1 and Dn(x0, a) 6= ±2an/2

gcd(n, q + 1) if η(x2
0 − 4a) = −1 and Dn(x0, a) 6= ±2an/2

gcd(n, q − 1)

2
if η(x2

0 − 4a) = 1 and condition C holds

gcd(n, q + 1)

2
if η(x2

0 − 4a) = −1 and condition C holds

gcd(n, q − 1) + gcd(n, q + 1)

2
otherwise

where ‘condition C’ holds if

2t||n with 1 ≤ t ≤ r − 1, η(a) = −1, and Dn(x0, a) = ±2an/2

or

2t||n with 1 ≤ t ≤ r − 2, η(a) = −1, and Dn(x0, a) = −2an/2

They also derived an explicit formula for the size of the value set of Dn(x, a), denoted

|VDn(x,a)|.

Theorem 3.2. Let a ∈ F∗q. If 2r||(q2 − 1) and η is the quadratic character on Fq when q is

odd, then

|VDn(x,a)| =
q − 1

2 gcd(n, q − 1)
+

q + 1

2 gcd(n, q + 1)
+ δ

where

δ =

1 if q is odd, 2r−1||n and η(a) = −1
1

2
if q is odd, 2t||n with 1 ≤ t ≤ r − 2

0 otherwise

These results lead us to our main theorem.

38

3.1 Main Theorem

Theorem 3.3. Let C be the Reed-Solomon code over Fq with message length k, using the

evaluation set D = {Dn(x, a) | x ∈ Fq}, for a ∈ F∗q. Let u be a received word and u(x) its

interpolated polynomial with deg u(x) = k + 1. If the condition

q − 1

4 gcd(n, q − 1)
+

q + 1

4 gcd(n, q + 1)
−

(n+ 2)
√
q

2
> k

is satisfied, then u is not a deep hole. It is also sufficient to take the more concrete (but less

precise) condition

q > 2nk +

(
n3/2 +

n5/2

2

)√
8k + 4n+ 4n2 + n3 + 2n2 + 2n3 +

n4

2

Theorem 3.2 shows that D takes on a variety of sizes, large and small, depending on the

parameters. This implies that progress is possible toward the deep hole problem for some

small evaluation sets without any obvious algebraic structure to rely on.

3.1.1 Examples

Take q = 28 to consider a Reed-Solomon code over F28 .

When n = 2, the Dickson polynomial is D2(x, a) = x2 − 2a = x2. By Theorem 3.2,

|VD2(x,a)| = |D| = 28, which indicates that D2 actually permutes the elements of F28 , giving

the evaluation set D = F28 . Our theorem shows that if the message size satisfies k < 96,

then a received word of degree k + 1 is not a deep hole.

When n = 3, the Dickson polynomial family is D3(x, a) = x3−3ax = x3 +ax. This time,

Theorem 3.2 gives |D| = 171. Our theorem holds if the message size satisfies k < 91/2.

When n = 5, the Dickson polynomial family is D5(x, a) = x5 + ax3 + a2x. Theorem 3.2

gives |D| = 154. Our theorem holds if the message size satisfies k < 21.

3.2 Preliminaries

We will prove a few prerequisite results need to prove this theorem. For convenience, a few

theorems seen in the previous chapter will be stated.

39

3.2.1 Weil’s Character Sum Bound

Our results rely on the following generalisation of Weil’s classical character sum bound proved

by Fu and Wan in [10]:

Theorem 3.4. Let fi(t) (1 ≤ i ≤ n) be polynomials in Fq[t], let fn+1(t) be a rational

function in Fq(t), let D1 be the degree of the highest square free divisor of
∏n

i=1 fi(t), let

D2 = 0 if deg(fn+1) ≤ 0 and D2 = deg(fn+1) if deg(fn+1) > 0, let D3 be the degree of

the denominator of fn+1, and let D4 be the degree of the highest square free divisor of the

denominator of fn+1(t) which is relatively prime to
∏n

i=1 fi(t). Let χi : F∗q → C∗ (1 ≤ i ≤ n)

be multiplicative characters of Fq, and let ψ = ψp◦TrFq/Fp for a non-trivial additive character

ψp : Fp → C∗ of Fp. Extend χi to Fq by setting χi(0) = 0. Suppose that fn+1(t) is not of the

form r(t)p − r(t) + c in Fq(t). Then for any m ≥ 1, we have∣∣∣∣∣∣
∑

a∈Fqm ,fn+1(a) 6=∞

χ1(NFqm/Fq(f1(a))) · · ·χn(NFqm/Fq(fn(a)))ψ(TrFqm/Fq(fn+1(a)))

∣∣∣∣∣∣
≤ (D1 +D2 +D3 +D4 − 1)qm/2

where the sum is taken over those a ∈ Fqm such that fn+1(a) is well-defined.

We specify the parameters to obtain various character sum bounds.

Corollary 3.1. Let ψTr = ψp ◦ TrFq/Fp be as above, ψ : Fq → C∗ a non-trivial additive

character, and η : F∗q → C∗ the quadratic character if q is odd. Set m = 1.

1. If f1(x) = Dn(x, a) with a 6= 0:∣∣∣∣∣∣
∑
a∈Fq

ψ(Dn(x, a))

∣∣∣∣∣∣ ≤ (n− 1)
√
q

2. If q is odd, f1(x) = x2 − 4a, and f2(x) = Dn(x, a) with a 6= 0:∣∣∣∣∣∣
∑
a∈Fq

η(x2 − 4a)ψ(Dn(x, a))

∣∣∣∣∣∣ ≤ (n+ 1)
√
q

40

3. If q is even and f1(x) = bDn(x, a) + a/x2 with a, b 6= 0:∣∣∣∣∣∣
∑
a∈F∗q

ψTr

(
bDn(x, a) + a/x2

)∣∣∣∣∣∣ ≤ (n+ 2)
√
q

Note that none of the polynomials in place of fn+1(x) are of the form r(t)2 − r(t) + c. For

instance, in part 3, such an r would have to take the form r(t) = d/x + f(x), where f(x)

is a polynomial. Expanding this shows that d2/x2 + d/x = a/x2, or d = 0, which is a

contradiction.

Lemma 3.1. Let q be even and D = {Dn(x, a) | x ∈ Fq}, for a ∈ F∗q. If ψ : Fq → C∗ is a

non-trivial additive character, then the following estimates hold:

1. If q is even: ∣∣∣∣∣∑
x∈D

ψ(x)

∣∣∣∣∣ ≤ (n+ 2)
√
q

2. If q is odd: ∣∣∣∣∣∑
x∈D

ψ(x)

∣∣∣∣∣ ≤ (n+ 1)
√
q

Proof. The sum can be rewritten in the following way:∑
y∈D

ψ(y) =
∑
x∈Fq

ψ(Dn(x, a))
1

Nx

where Nx = |D−1
n (Dn(x, a))| is size of the preimage of the value Dn(x, a).

When q is even:

By Theorem 3.1, Nx can be quantified. Let Tr : Fq → F2 denote the absolute trace. Using

the fact that z2 + xz + a is reducible over Fq if and only if Tr(a/x2) = 0,

=
∑
x∈F∗q

Tr(a/x2)=0

1

gcd(n, q − 1)
ψ(Dn(x, a)) +

∑
x∈F∗q

Tr(a/x2)=1

1

gcd(n, q + 1)
ψ(Dn(x, a))

+
1

gcd(n, q − 1)
ψ(Dn(0, a)) +O(1)

where O(1) is a constant of size at most 1, which we accept by dropping the Dn(x, 0) = 0

case. Denote ψ1 : F2 → C∗ as the order two additive character and ψTr = ψ1 ◦ Tr, which is

an additive character from Fq → C∗. Simplifying and rearranging gives

41

=
1

2 gcd(n, q − 1)

∑
x∈F∗q

ψ(Dn(x, a))(1 + ψTr(a/x
2))

+
1

2 gcd(n, q + 1)

∑
x∈F∗q

ψ(Dn(x, a))(1− ψTr(a/x
2)) +

1

gcd(n, q − 1)
ψ(Dn(0, a)) +O(1)

=

(
1

2 gcd(n, q − 1)
+

1

2 gcd(n, q + 1)

)∑
x∈F∗q

ψ(Dn(x, a))

+

(
1

2 gcd(n, q − 1)
− 1

2 gcd(n, q + 1)

)∑
x∈F∗q

ψ(Dn(x, a))ψTr(a/x
2)

+
1

gcd(n, q − 1)
ψ(Dn(0, a)) +O(1)

We add and subtract
(

1
2 gcd(n,q−1)

+ 1
2 gcd(n,q+1)

)
ψ(Dn(0, a)) to complete the first sum:

=

(
1

2 gcd(n, q − 1)
+

1

2 gcd(n, q + 1)

)∑
x∈Fq

ψ(Dn(x, a))

+

(
1

2 gcd(n, q − 1)
− 1

2 gcd(n, q + 1)

)∑
x∈F∗q

ψ(Dn(x, a))ψTr(a/x
2)

−
(

1

2 gcd(n, q − 1)
− 1

2 gcd(n, q + 1)

)
ψ(Dn(0, a)) +O(1)

In order to estimate the sum in second term, take b ∈ Fq so that ψ(x) = ψTr(bx). Then,∑
x∈F∗q

ψ(Dn(x, a))ψTr(a/x
2) =

∑
x∈F∗q

ψTr(bDn(x, a) + a/x2)

Applying the bounds in Corollary 3.1,∣∣∣∣∣∑
y∈D

ψ(y)

∣∣∣∣∣ ≤
(

1

2 gcd(n, q − 1)
+

1

2 gcd(n, q + 1)

)
(n− 1)

√
q

+

∣∣∣∣ 1

2 gcd(n, q − 1)
− 1

2 gcd(n, q + 1)

∣∣∣∣ (n+ 2)
√
q + 2

≤ (n+ 2)
√
q

When q is odd:

We use Theorem 3.1 again to calculate Nx. Let η be the quadratic character of Fq.

=
∑
x∈Fq

η(x2−4a)=1

1

gcd(n, q − 1)
ψ(Dn(x, a)) +

∑
x∈Fq

η(x2−4a)=−1

1

gcd(n, q + 1)
ψ(Dn(x, a)) +O(1)

42

The term O(1) is a constant of size at most 2, which we accept by dropping the complicated

‘condition C’ and ‘otherwise’ cases. Simplifying and rearranging gives

=
1

2 gcd(n, q − 1)

∑
x∈Fq

ψ(Dn(x, a))(1 + η(x2 − 4a))

+
1

2 gcd(n, q + 1)

∑
x∈Fq

ψ(Dn(x, a))(1− η(x2 − 4a)) +O(1)

=

(
1

2 gcd(n, q − 1)
+

1

2 gcd(n, q + 1)

)∑
x∈Fq

ψ(Dn(x, a))

+

(
1

2 gcd(n, q − 1)
− 1

2 gcd(n, q + 1)

)∑
x∈Fq

ψ(Dn(x, a))η(x2 − 4a) +O(1)

Again applying the bounds in Corollary 3.1,∣∣∣∣∣∑
x∈D

ψ(x)

∣∣∣∣∣ ≤
(

1

2 gcd(n, q − 1)
+

1

2 gcd(n, q + 1)

)
(n− 1)

√
q

+

∣∣∣∣ 1

2 gcd(n, q − 1)
− 1

2 gcd(n, q + 1)

∣∣∣∣ (n+ 1)
√
q + 2

≤ (n+ 1)
√
q

which was to be shown.

3.2.2 Li-Wan’s New Sieve

Let D be a finite set and Dk = D×D× · · · ×D be the Cartesian product of k copies of D.

Let X be a subset of Dk. Denote

X = {(x1, x2, . . . , xk) ∈ X | xi 6= xj, i 6= j}

Let f(x1, x2, . . . , xk) be a complex-valued function defined over X. Denote

F =
∑
x∈X

f(x1, x2, . . . , xk)

Let Sk be the symmetric group on {1, 2, . . . , k}. Each permutation τ ∈ Sk can be uniquely

factorised as a product of disjoint cycles and each fixed point is viewed as a trivial cycle of

length 1. Namely,

τ = (i1i2 . . . ia1)(j1j2 . . . ja2) · · · (l1l2 . . . las)

43

with ai ≥ 1 and 1 ≤ i ≤ s. Define

Xτ = {(x1, x2, . . . , xk) | xi1 = . . . = xia1 , xj1 = . . . = xja2 , · · · , xl1 = . . . = xlas}

Similarly define

Fτ =
∑
x∈Xτ

f(x1, x2, . . . , xk)

We say that τ is of the type (c1, c2, . . . , ck) if it has exactly ci cycles of length i. Let

N(c1, c2, . . . , ck) be the number of permutations of type (c1, c2, . . . , ck). Define

Ck(t1, t2, . . . , tk) =
∑

∑
ici=k

N(c1, c2, . . . , ck)t
c1
1 t

c2
2 · · · t

ck
k

Now we have the following combinatorial result:

Lemma 3.2. Suppose q ≥ d. If ti = q for d|i and ti = s for d - i, then we have

Ck(s, . . . s, q, s, . . . , s, q, . . .) = k!

bk/dc∑
i=0

(q−s
d

+ i− 1

i

)(
s+ k − di− 1

k − di

)
≤
(
s+ k +

q − s
d
− 1

)
k

where (x)k = x(x− 1)(x− 2) · · · (x− k + 1).

Furthermore, we say that X is symmetric if for any x ∈ X and any g ∈ Sk, we have g◦x ∈ X.

Also, if a complex-valued function f is defined on X, we say that it is normal on X if X is

symmetric and for any two conjugate elements in Sk, τ and τ ′, we have∑
x∈Xτ

f(x1, x2, . . . , xk) =
∑
x∈Xτ ′

f(x1, x2, . . . , xk)

Then, we have the result:

Lemma 3.3. If f is normal on X, then

F =
∑

∑
ici=k

(−1)k−
∑
ciN(c1, c2, . . . , ck)Fτ

44

3.2.3 A Rephrasing of Error Distance

We will take a specialised version of the error distance characterisation seen in the previous

chapter.

Lemma 3.4. Let C be a Reed-Solomon code over Fq using the evaluation set D. Let u be

a received word and u(x) be its interpolated polynomial with deg u(x) = k + 1. The error

distance satisfies d(u, C) ≤ |D|−k−1 if and only if there exists a subset {xi1 , xi2 , . . . , xik+1
} ⊂

D such that

u(x)− v(x) = (x− xi1)(x− xi2) · · · (x− xik+1
)

for some v(x) with deg v(x) ≤ k − 1.

3.3 The Proof

Proof. For the received word u, write the interpolated polynomial as

u(x) = xk+1 − b1x
k + . . .+ (−1)k+1bk+1

By Lemma 3.4, if u(x) is not a deep hole, then there exists a codeword v(x) of degree ≤ k−1

where

u(x)− v(x) = (x− x1) · · · (x− xk)(x− xk+1)

for distinct values of x1, . . . , xk, xk+1 in D. By expanding this product, we see that u will

not be a deep hole if and only if the equation

x1 + . . .+ xk + xk+1 = b1

has a solution with distinct coordinates for every b1 in Fq. Let Nu be the number of solutions

to this equation and G be the group of additive characters ψ : Fq → C∗. By the orthogonality

of characters,

Nu =
1

q

∑
xi∈D

distinct

∑
ψ∈G

ψ(x1 + . . .+ xk + xk+1 − b1)

45

Removing the trivial character and exchanging the sums,

|Nu − (|D|)k+1| =

∣∣∣∣∣∣∣∣
1

q

∑
xi∈D

distinct

∑
ψ∈G
ψ 6=1

ψ(b1)−1ψ(x1 + . . .+ xk + xk+1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

q
ψ(b1)−1

∑
ψ∈G
ψ 6=1

∑
xi∈D

distinct

ψ(x1 + . . .+ xk + xk+1)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑
xi∈D

distinct

ψ(x1 + . . .+ xk + xk+1)

∣∣∣∣∣∣∣
Now we can estimate the right hand side using Li-Wan’s new sieve. Let X = Dk+1,

f(x1, . . . , xk, xk+1) = ψ(x1 + . . . + xk + xk+1) = ψ(x1) · · ·ψ(xk)ψ(xk+1), so F =
∑

x∈X f(x).

F is symmetric and normal. Then

Fτ =
∑

ψ(x11) · · ·ψ(x1c1) · · ·ψk+1(x(k+1)c1) · · ·ψk+1(x(k+1)ck+1
)

where the sum runs over xsts ∈ D, 1 ≤ s ≤ k + 1, and 1 ≤ ts ≤ cs. Applying the larger of

the estimates in Lemma 3.1 for a bound independent of of the evenness or oddness of q,

|Nu − (|D|)k+1| ≤

∣∣∣∣∣∣∣
∑
xi∈D

distinct

ψ(x1 + . . .+ xk + xk+1)

∣∣∣∣∣∣∣
≤

∑
∑
ici=k+1

N(c1, . . . , ck+1)|Fτ |

≤ Ck+1((n+ 2)
√
q, |D|, (n+ 2)

√
q, |D|, . . . , (n+ 2)

√
q, |D|)

≤
(

(n+ 2)
√
q + (k + 1) +

|D| − (n+ 2)
√
q

2
− 1

)
k+1

=

(
(n+ 2)

√
q

2
+ k +

|D|
2

)
k+1

To guarantee that Nu > 0, it suffices to have

(|D|)k+1 >

(
(n+ 2)

√
q

2
+ k +

|D|
2

)
k+1

which is true if

|D| >
(n+ 2)

√
q

2
+ k +

|D|
2

46

or
|D|
2
−

(n+ 2)
√
q

2
> k

Using Theorem 3.2, we can calculate |D| explicitly. It is sufficient to drop the δ term and

have
q − 1

4 gcd(n, q − 1)
+

q + 1

4 gcd(n, q + 1)
−

(n+ 2)
√
q

2
> k

A more concrete condition can be prescribed by noting that n cannot be larger than q − 1

or else the term on the left will be negative. Therefore, gcd(n, q − 1), gcd(n, q + 1) ≤ n and

we have
q − 1

4n
+
q + 1

4n
−

(n+ 2)
√
q

2
> k

which is satisfied if

q > 2nk +

(
n3/2 +

n5/2

2

)√
8k + 4n+ 4n2 + n3 + 2n2 + 2n3 +

n4

2

47

Chapter 4

Conclusions

48

4.1 Summary and Future Work

In this dissertation, we searched for families of received words in Reed-Solomon codes that

are not deep holes. For an (n, k) code, we managed to show that words represented by

polynomials or rational functions of degree close to k (in the numerator) are not deep holes,

given some restrictions on k and choosing D = Fq or a subgroup of D = F∗q. Our techniques

in this case also allowed us to estimate the error distance. The approach is general in that

for other choices of D, one only needs to fill in the character sum estimate∣∣∣∣∣∑
a∈D

χ(1− ax)

∣∣∣∣∣ ≤ Kq1/2

with a suitable value of K to immediately produce similar results. In an initial attempt to

study the problem of choosing D as the image of a Dickson polynomial, we tried to estimate

this sum. For a Dickson polynomial Dn(x, b), the sum can be written as∣∣∣∣∣∣
∑
y∈Fq

χ(1−Dn(y, b)x)

∣∣∣∣∣∣
Trying to estimate this combined with various Dickson polynomial forms and character sum

techniques seen in the Chou, Mullen, and Wassermann paper [9] turned out to be difficult.

Daqing Wan has suggested that it might work to factor 1−Dn(y, b)x into linear terms over

an appropriate extension field and deal with a product of characters. An appropriate theory

still needs to be developed to continue this idea.

Instead of taking the character sum route, we looked into the weaker problem of showing

that polynomials of degree k+1 do not represent deep holes when D is the image of Dn(x, b).

We reduced it to a type of restricted subset sum problem, trying to solve an equation of the

form

x1 + . . .+ xr = c

where each of the xi ∈ D are distinct, and c ∈ Fq is arbitrary. We found conditions on q, n,

and r which guarantee solutions. Another way to view this problem is to write xi = Dn(ui, b)

for suitable ui ∈ Fq. Then we see the equation as

Dn(u1, b) + . . .+Dn(ur, b) = c

49

requiring distinct Dn(ui, b). This is actually a slightly more difficult version of Waring’s

problem for Dickson polynomials. The original, without the distinctness restriction, was

studied by Gomez and Winterhof [11] and improved later by Ostafe and Shparlinski [22].

The deep hole problem on large or structured evaluation sets, as it stands currently, has

progress from two sides: one classifying words whose degree is slightly larger than k, and

the other classifying very specific words whose degree is close to n but with a small number

of terms. If we stay with this strategy, the way to bridge this gap is to either guarantee

solutions to complicated systems of equations or to improve sieving techniques and the Weil

bound, all of which are difficult.

Another idea is to instead investigate the idea of deep hole trees by Cheng, Li, and

Zhuang, which allowed them to partially resolve the problem. The limitation of their results

to q = p is caused by the use of a very specialised combinatorial result that applies only to

prime fields. It doesn’t seem to have an obvious generalisation.

One last direction is to follow the suggestion of Guruswami and Vardy that it may be

easier to determine deep holes in codes using large or structured evaluation sets D. We

can look for sets D where at least partial results are possible. Using techniques from Wan

would call for producing estimates for incomplete character sums. This might be aided

by understanding the behaviour of the value sets of certain polynomials, as seen with the

Dickson polynomials in our results.

Hopefully, some combination of these concepts will bring this problem to a total resolu-

tion, giving us a better idea of the true capability of the Reed-Solomon code.

50

BIBLIOGRAPHY

51

[1] D. Augot and F. Morain. Discrete Logarithm Computations Over Finite Fields Using

Reed-Solomon Codes. arXiv:1202.4361v1. 2012.

[2] E.R. Berlekamp. Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[3] V.K. Bhargava, S.B. Wicker, et al. Reed-Solomon Codes and Their Applications. IEEE

Press, Piscataway, NJ. 1994.

[4] Q. Cheng, J. Li, and J. Zhuang. On Determining Deep Holes of Generalized Reed-

Solomon Codes. arXiv:1309.3546.

[5] A. Cafure, G. Matera, and M. Privitelli. Singularities of Symmetric Hypersurfaces and

Reed-Solomon Codes. Advances in Mathematics of Communications, Vol. 6(1), 2012,

pp.69-94.

[6] Q. Cheng and E. Murray. On deciding deep holes of Reed-Solomon codes. Proceedings

of TAMC 2007, LNCS 4484, pp. 296-305

[7] Q. Cheng and D. Wan. On the List and Bounded Distance Decodibility of Reed-Solomon

Codes. Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer

Science (FOCS’04).

[8] Q. Cheng and D. Wan. Complexity of Decoding Positive-Rate Primitive Reed-Solomon

Codes. IEEE Transactions on Information Theory, Vol. 56, No. 10, October 2010: 5217-

5222.

[9] W. Chou, G.L. Mullen, and B. Wasserman. On the number of solutions of equations of

Dickson polynomials over finite fields. Taiwanese Journal of Mathematics Vol. 12, No. 4,

pp. 917-931, July 2008.

[10] L. Fu and D. Wan. L-functions and Character Sums over Finite Fields. Preprint.

[11] D. Gomez and A. Winterhof. Warings Problem in Finite Fields with Dickson Polyno-

mials. Finite fields: Theory and applications, Contemp. Math., vol. 477, Amer. Math.

Soc., 2010, 185192.

52

[12] V. Guruswami. List Decoding of Error-Correcting Codes. Springer-Verlag Berlin Hei-

delberg, 2004.

[13] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-

geometry codes. IEEE Transactions on Information Theory, Vol. 45, No. 6, September

1999: 1757-1767.

[14] V. Guruswami and A. Vardy. Maximum-Likelihood Decoding of Reed-Solomon Codes is

NP-hard. SODA ’05 Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-

crete algorithms: 470-478. Society for Industrial and Applied Mathematics Philadelphia,

PA, USA, 2005.

[15] M. Keti, D. Wan, and G. Zhu. Computing Error Distance of Reed-Solomon Codes.

Preprint.

[16] J. Li and D. Wan. On the subset sum problem over finite fields. Finite Fields and Their

Applications, Volume 14, Issue 4, November 2008: 911-929

[17] J. Li and D. Wan. A new sieve for distinct coordinate counting. Science China Mathe-

matics, Vol. 53 No.9: 2351-2362. Science China Press and Springer-Verlag Berlin Heidel-

berg, 2010.

[18] Y. Li and D. Wan. On error distance of Reed-Solomon codes, Science China Math-

ematics, Vol. 51, No. 11, 1982-1988. Science China Press and Springer-Verlag Berlin

Heidelberg, 2008.

[19] Y. Li and G. Zhu. On error distance of received words with fixed degrees to Reed-

Solomon code. Preprint.

[20] Q. Liao. On Reed-Solomon Codes. Chinese Annals of Mathematics, 32B(1), 89-98.

Springer-Verlag Berlin Heidelberg, 2011.

[21] J.L. Massey. Shift-Register Syntehsis and BCH Decoding. IEEE Transactions on Infor-

mation Theory, Vol. IT-15, No. 1, January 1969.

53

[22] A. Ostafe and I.E. Shparlinski. On the Waring Problem with Dickson Polyonmials in Fi-

nite Fields. Proceedings of the American Mathematical Society, Vol. 139, No. 11, Novem-

ber 2011, Pages 3815-3820.

[23] I.S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Society for

Industrial and Applied Mathematics, Vol. 8, No. 2, June 1960.

[24] D. Wan. Generators and irreducible polynomials over finite fields. Mathematics of Com-

putation, 66, 119-1212 (1997).

[25] A. Weil. Basic Number Theory. Springer-Verlag, 1973.

[26] R. Wu and S. Hong. On deep holes of generalized Reed-Solomon codes.

arXiv:1108.3524v2.

[27] J. Zhang, Fang-Wei Fu, and Qun-Ying Liao. New Deep Holes of Generalized Reed-

Solomon Codes. arXiv:1205.6593v1.

[28] G. Zhu and D. Wan. Computing Error Distance of Reed-Solomon Codes. TAMC 2012,

LNCS 7287, pp. 214-224, 2012. Springer-Verlag

54

	List of Figures
	List of Tables
	Acknowledgements
	Curriculum Vitae
	Abstract of the Dissertation
	Introduction
	History and the Basics
	A Simple Code
	The First Nontrivial Code: Hamming (7,4)

	Reed-Solomon Codes
	Encoding and Decoding
	Code Properties
	Applications in Technology

	Further Improving Error-Correction Limits
	List Decoding
	New Problems
	Hardness Results

	The Deep Hole Problem
	Results when D=Fq
	Results when D=Fq*

	A Schematic Approach to the Deep Hole Problem
	Main Theorem
	Examples
	Preliminaries
	Weil's Character Sum Bound
	Li-Wan's New Sieve
	A Rephrasing of Error Distance

	The Proof
	The Second Corollary
	The Third Corollary

	Deep Holes in Reed-Solomon Codes Based on Dickson Polynomials
	Main Theorem
	Examples

	Preliminaries
	Weil's Character Sum Bound
	Li-Wan's New Sieve
	A Rephrasing of Error Distance

	The Proof

	Conclusions
	Summary and Future Work

	BIBLIOGRAPHY 0.5

