Hurwitz spaces

1. In a 1891 paper, Hurwitz explains how the set of degree d simple covers (i.e., such
that all fibers consist of at least d — 1 points) of P! can be endowed with a structure
of complex manifold. Nowadays Hurwitz spaces refer more generally to moduli spaces of
covers with specified automorphism group and with certain constraints on the ramification.

Moduli spaces of covers constitute an appropriate tool for studying arithmetic questions
on covers of the line; for example, the Regular Inverse Galois Problem amounts to finding
rational points on these spaces. The general idea is to look at the constraints a given
question imposes on the intrinsic data of the covers in question, as the automorphism group
and the ramification, and then to investigate whether there exist possible solutions on the
associated moduli space, first over C, and then over the ground field. The diophantine
nature of the problem remains, but this approach somewhat classifies the equations by
abstracting their structural properties.

Recent developments consider modular towers. The motivating example is the tower of
modular curves of levels p". A modular tower is a tower of Hurwitz spaces, whose levels
p" come from a universal Frattini construction starting with a given finite group and a
prime p. The general question is to extend the rich arithmetic contents of modular curve

towers to general modular towers.

2. Hurwitz spaces are moduli spaces of covers of P! with fixed monodromy group! G
(given as a subgroup of the symmetric group S, with d the degree of the cover) and with
a fixed number r > 3 of branch points. The basic notation for it is H, ¢ and a point
representing a cover f, or more exactly its equivalence class, is denoted by [f]. There are
several variants of Hurwitz spaces, depending

first, on whether one is interested in
- the mere cover situation: the covers are not necessarily Galois, or
- the G-cover situation: the covers are Galois covers given with an isomorphism between

their automorphism group and the group G,

and, second, on which cover equivalence is used:
- the original equivalence: two covers f : X — P! and g : Y — P! are equivalent if there
exists an isomorphism x : X — Y such that goxy = f, or
- the PGLy-reduced equivalence: f: X — P! and g : Y — P! are equivalent if there exist
two isomorphisms x : X — Y and a : P! — P! such that goxy = a o f,

equivalently, the monodromy group is the Galois group of the Galois closure of the cover.



with for both equivalences the extra condition that y : X — Y be compatible with the
actions of GG in the G-cover situation. For simplicity, we will not distinguish here between

these different variants.

3. At the beginning stage, covers are considered over the complex field C. The cor-
responding moduli space is then a complex smooth quasi-projective variety, denoted by
HX%. Given an (unordered) r-tuple C = (C1,...,C;) of conjugacy classes of G, we let

7 (C) be the union of all components? of H e whose points correspond to covers with
ramification type equal to C 3. Fixing the ramification type can be regarded analogous to
fixing the genus in the theory of curves and their moduli spaces.

For each 7 € Aut(C), the conjugate space H;%;(C)7 is still a Hurwitz space, which
only depends on the restriction 7|gs € Gal(Q™/Q); namely it is H,?fG(CX(T)) (where x is
the cyclotomic character and CX(7) = (Ci((T), o ,C’%(T))). Thus the (generally reducible)
varieties HX%, and H;?f’G(C) can be defined over Q and Q® respectively, in the sense that
their (geometric) components are permuted transitively by Gal(Q/Q) and Gal(Q/Q)
respectively. Furthermore, the Hurwitz space H2%(C) is itself defined over Q if C is a
rational union of conjugacy classes of G, i.e., if for every integer m prime to |G|, there
exists o € S such that C]" = C5(;). More generally, given a field k C Q®, the tuple C is
said to be a k-rational union of conjugacy classes of G if the same property holds for all
integers m = x(7) modulo |G| with 7 € Gal(Q*/k). Under this condition, the Hurwitz
space H5(C) is defined over k. For example, the field generated by all roots of unity of
order |G| is a rationality field for C.

4. Denote the configuration space for finite subsets of P! of cardinality r by U, and
then by W, : H); — U, @z C the map sending each point [f] € H%(C) to the branch
point set t = {t1,...,t.} € U.(C) of the cover f. A key to the theory, based on Riemann’s
existence theorem, is that this map is an etale cover (of algebraic varieties); furthermore

there is a one-one correspondence between the fiber ¥ !(t) and the set

By component we mean irreducible or connected components; due to smoothness of H ., these coincide.
,

The ramification type is the r-tuple of conjugacy classes (in the monodromy group G) of the monodromy branch cycles associated
to sample loops revolving about the r branch points. It is locally constant on Ha (C), thus is constant on each connected
component of Ha (C). More arithmetically, the ramification type corresponds to the inertia canonical invariant. This invariant
is the collection (C' ) of conjugacy classes C (in the Galois group of the Galois closure) of distinguished generators of inertia
groups above t as t ranges over the branch points of the cover. The distinguished generator of some inertia group I, say of order

2im /e

e, is the generator that corresponds to e in the natural isomorphism between I and the group pe of e-th roots of 1.



g1--gr =1
ni(C)* =< (91,---,9-) €G" | <g1,...,9- >=0G / ~

9i € Co(i),i=1,...,7 for some o € S,
Here by “/ ~”, we mean that the tuples (¢1,...,¢,) are regarded up to componentwise
conjugation by elements of a certain subgroup of S; (depending on the situation: for
example it is G for G-covers with the original equivalence, it is the normalizer Norg, (G)
for mere covers, etc.). The identification ¥ 1(t) ~ ni(C)*® is given by the monodromy
representation: for any choice of a topological bouquet* I = (T'y, ..., T,.) for P!\ (t} based
at some point tg ¢ t, the map BCDp 5 sending each complex cover f : X — P! to the
r-tuple with entries the monodromy permutations of f~!(tq) associated with I'y,..., T,
provides the correspondence ¥, 1(t) — ni(C)®.
Hurwitz braid group® H, = 7°°(U,,t) on 7’(P}(C) \ t,ty), which induces an action
on the fiber U7!(t), and on ni(C)® via maps BCDr. This induced action on ¥ !(t) is
the monodromy action corresponding to the topological cover W, : H>%(C) — U,-(C). It

There is a classical outer action of the

can be explicitly determined: (U, t)"P has generators Q1,...,Q,_1 whose action on

U -1(t), when computed relative to some suitable topological bouquet I, corresponds to

the following action on ni(C)®:
Qi

(917---7gr) (glv"'7gi—1vgigi+1gi_lagi7gi+27'--agT)7 iZl,...,?“—l.

Components of H>%;(C) correspond to orbits of the Hurwitz braid group action.

5. S. Wewers has given a general construction of Hurwitz spaces, which leads to a
definition of H,. g and of some compactification H,. ¢ as schemes over Spec(Z[1/|G|]). For
each prime p not dividing |G|, the corresponding fibers above p are denoted by Hf’G and
%. This includes the case p = oo for which one recovers the space HX%.

There is good reduction of H,. ¢ at those primes p f|G|: the fiber H} ; is a (reducible)
smooth variety defined over F;, and its components correspond to those of H;%, through
the reduction process. Furthermore, each Hf’G is a moduli space, for covers of P! with

branch points and monodromy group G, over algebraically closed fields of characteristic p.

i.e., a r-tuple '=(Tq,...,I';-) of homotopy classes of sample loops based at some point ¢, ¢t generating the topological funda-

mental group TFEOp (P*(C)\t,to) with the unique relation I'y---T'»=1 (plus some other technical conditions).
where BCD stands for “branch cycle description”.

The Hurwitz braid group H, has a classical presentation: it is the group on r—1 generators Q1,...,Q,—_1 with relations

QiQ;=Q;Q; for [i—j|>1, Qi+1Q:iQi+1=Q:Qi+1Q; for 1<i<r—2and Q1+ Qr—1Qr—1-Q1=1.



The compactification H,. g is locally the quotient of a smooth variety by a finite group
Components in H, g are closures of components in H, . The natural étale morphism
v, : ' H,q — U, extends to a ramified cover m — U,. Points on the boundary U, \ U,
represent degenerations of tuples t = (t1,...,t¢,) when two or more of the ¢; “coalesce”
(i.e. become equal). More formally they correspond to stable marked curves of genus 0
with a root, i.e. trees of curves of genus 0 with a distinguished component T, — the root
— equipped with an isomorphism P! ~ T, and at least three marked points (including
the double points) on any component but the root. Points on the boundary H, g \ H,c

represent admissible covers (in a certain sense) of stable marked curves of genus 0.



