
Chapter 9

The Topology of Metric Spaces

9.1 Abstract Topological Spaces

We undertake a study of metric spaces because we wish to study, among other things the set

of continuous functions defined on Rn, and Rn is a simple instance of a metric space, which

we shall shortly define. The topology of a space is of particular interest to us, because the

topology of the space and the set of continuous function defined on that space are intimately

connected, as we shall soon see.

Definition 9.1 Let X be a set, and C a collection of subsets of X. Then (X, C) is called

a topological space, and the elements of C are called the open sets of X, provided the

following hold:

1. ∅ ∈ C.

2. X ∈ C.

3. If X, Y ∈ C then X ∩ Y ∈ C.

4. The union of any number (i.e. finite or infinite number) of elements of C is again an

element of C.
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Note that by induction, (3) implies that the intersection of any finite number of elements of

C is an element of C, or said another way: C is closed under finite intersection, and from (4),

C is closed under arbitrary union.

Often, having exhibited the topological space (X, C), we will often refer to “an open set

O in the topological space X”, understanding that that means O ∈ C.

Example 1 Let X = {0, 1}, that is, a set consisting of two elements. Then if we let

C = {{0}, {1}, X, ∅}, then (X, C) is a topological space. This is true because (1) and (2)

can be verified by inspection. (3) and (4) require that certain subsets of X are elements of

C, but we have chosen C to be all subsets of C, which make (3) and (4) hold automatically.

This reasoning generalizes to the following example:

Example 2 Let X be an arbitrary set, and C be the set of all subsets of X, including both

∅ and X. Then according to the reasoning of Example 1, (X, C) is a topological space. This

is called the discrete topology for X.

Example 3 Let X be arbitrary, and let C = {∅, X}. Then (X, C) is a topological space,

and the topology is called the trivial topology.

Example 4 [The Usual Topology for R1.] Let X = (−∞,∞), and let C consist of all

intervals of the form (a, b), the arbitrary union of such intervals, and the intersection of any

finite number of elements of C. Then (X, C) is a topological space, and the open sets are

just the open sets we studied in Chapter 1. To see this, first note that since (1, 2) ∈ C and

(3, 4) ∈ C, ∅ = (1, 2) ∩ (3, 4) ∈ C. Further,

⋃
x∈X

(x− 1, x+ 1) ∈ C

which implies that X ∈ C. To prove (3), suppose (a, b) and (c, d) are elements of C. Then if

(a, b) ∩ (c, d) �= ∅, either (a, b) ⊂ (c, d) or (c, d) ⊂ (a, b) or a < c < b < d or c < a < d < b.

In each of these four cases the intersection is an interval.1 The intersection of two arbitrary

1In Exercise 1 you are asked to compute the intersection explicitly, for each of the four cases.
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unions of intervals is again a union of such intervals, and hence so is the intersection of

finitely many such unions.

Example 5 [The Right Order Topology] Let X = (−∞,∞), and let C consist of all

intervals of the form [a,∞), arbitrary unions of such intervals, the empty set, and X. Then

(X, C) is a topological space.

We conclude the introduction with a simple and yet powerful theorem about open sets:

Theorem 9.1 Let (X, C) be a topological space. Then O ⊂ X is an open set, that is, O ∈ C,

if and only if for every x ∈ O there exists a B ∈ C such that x ∈ B ⊂ O.

Proof: If O ∈ C, then for every x ∈ O, there exists a B ∈ C (O will play the role of B) so

the theorem is trivially true.

Conversely, if for every x ∈ O there exists a B ∈ C such that x ∈ B ⊂ O, then indicating

the dependence of B upon x by Bx,

O ⊂
⋃

{x:x∈O}

Bx ⊂ O

and therefore

O =
⋃

{x:x∈O}

Bx.

Since arbitrary unions of sets in C are again in C, it follows that O ∈ C.

Continuous Functions on an Arbitrary Topological Space

Definition 9.2 Let (X, C) and (Y, C′) be two topological spaces. Suppose f is a function

whose domain is X and whose range is contained in Y . Then f is continuous if and only

if the following condition is met:

For every open set O in the topological space (Y, C′), the set f−1(O) is open in the topo-

logical space (X, C).
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Informally, we say: The inverse image under f of every open set in Y is an open set in

X.

If f : X → Y is continuous we occasionally call f a mapping from X to Y .

Note that whether or not a particular function f is continuous depends upon the topologies,

that is, what the open sets are, of both the domain and range. This is an important property

of continuity.

Later, when we specialize our study of topological spaces to Metric Spaces, we shall see

that our ε − δ definition of continuity and the topological definition of continuity are the

same.

A useful way to test continuity of a function is given by the following theorem.

Theorem 9.2 f : (X, C) → (Y, C′) is continuous on X if and only if for every x ∈ X and

every open set V containing f(x) there exists an open set U containing x such that f(U) ⊂ V.

Proof: If f : X → Y is continuous on X, then since the inverse of every open set in Y is

open in X, for any V ∈ C′, f−1(V ) is open in X and provides the U . Thus the necessity of

the condition is proved.

Conversely, suppose that V is open in Y , and y ∈ V . Then for any x ∈ X such that

f(x) = y, by hypothesis there exists an open set U in X, containing x, and such that

f(U) ⊂ V. Label the above U by Ux to indicate its dependence upon x, and let

O =
⋃

{x:f(x)∈V }

Ux.

Then O is open because it is the union of open sets, and clearly2 O = f−1(V ).

Corollary 9.3 Let f : R1 → R1 be any function where R1 = (−∞,∞) with the usual

topology (see Example 4), that is, the open sets are open intervals (a, b) and their arbitrary

unions. Then in R1, f is continuous in the ε− δ sense if and only if f is continuous in the

topological sense.

2Provide the details. See Exercise 2.
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Proof: Suppose f is ε−δ continuous, and x0 ∈ R1. Let V be an open set in R1, and suppose

v = f(x0) ∈ V . Since V is open, it is the union of open intervals, and hence v ∈ (a, b) for

some a, b. Then let ε = min{v − a, b − v}, and note that (v − ε, v + ε) ⊂ (a, b). Since f is

assumed continuous in the ε − δ sense, there exists a δ > 0 such that |x − x0| < δ implies

|f(x)− f(x0)| < ε implies x ∈ V. Letting U = (x0 − δ, x0 + δ) in Theorem 9.2 shows that f

is continuous in the topological sense.

Conversely, suppose f is continuous in the topological sense. Let x be arbitrary, and

y = f(x). Let ε > 0. Then since V = (y− ε, y+ ε) is an open set in the range, by hypothesis

there exists an open set U , containing x, in the domain of f , and such that f(U) ⊂ V. But

U open implies there exists an interval (a, b), containing x, which is contained in U . That

is, z ∈ (a, b) implies f(z) ∈ V . Now let δ = min{x−a, b−x} and observe that if |z−x| < δ,

then z ∈ (a, b) and hence f(z) ∈ V. But f(z) ∈ V implies |y − f(z)| < ε. Thus, f is ε − δ

continuous at x.

Exercise 1 Compute the four intersections in Example 1.

The following two exercise indicate the degree with which continuity is connected to the

topology of the spaces involved:

Exercise 2 In the proof of Theorem 9.2, why is O = f−1(V )?

The following exercises show the intimate connection between topology and continuity.

Exercise 3 Let X be an arbitrary set with the discrete topology: C is the set of all subsets

of X. Let (Y, C′) be an arbitrary topological space. Then f : (X, C)→ (Y, C′) is continuous,

for any f !

Exercise 4 Let Y be an arbitrary set endowed with the trivial topology: C′ = {∅, Y }, and

(X, C) an arbitrary topological space. Then f : (X, C)→ (Y, C′) is continuous, for any f.

Exercise 5 Let X = (−∞,∞) and the open sets of X be half-open, half-closed intervals of

the form [a, b), for a < b, and their arbitrary unions. Let Y = (−∞,∞), and the open sets
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of Y be arbitrary. Then prove that f(x) = [x] is continuous(!) [Hint: what does the range

of f consist of?]

Limit Points and the Derived Set

Definition 9.3 Let (X, C) be a topological space, and A ⊂ X. Then x ∈ X is called a limit

point of the set A provided every open set O containing x also contains at least one point

a ∈ A, with a �= x.

Definition 9.4 Let (X, C) be a topological space, and A ⊂ X. The derived set of A, denoted

A′, is the set of all limit points of A.

Exercise 6 Let (X, C) be R1 with the usual topology. Then prove that for any a < b, the

set of limit points of the interval (a, b) is the interval [a, b].

Exercise 7 Let (X, C) be R1 with the right order topology, as defined in Example 5. Show

that the derived set of the set consisting of the single point a, {a}, is (−∞, a). Note that a

is not a limit point of {a}.

Exercise 8 Let (X, C) be (−∞,∞) with the trivial topology. Compute the derived set of

{a}.

Exercise 9 Let (X, C) be (−∞,∞) with the discrete topology. Compute the derived set of

{a}.

The Closure of a Set; Closed Sets

Definition 9.5 Let (X, C) be a topological space. Let A ⊂ X. The closure of A, denoted

A, is defined as the union of A and its derived set, A′:

A = A ∪A′.

Definition 9.6 Let (X, C) be a topological space. Let A ⊂ X. We say A is closed if it

contains all its limit points.
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The major theorem relating closed sets and open sets is the following:

Theorem 9.4 A set A in a topological space (X, C) is closed if and only if its complement,

Ac, is open.

Proof: Suppose A is closed, and x ∈ Ac. Then since A contains all its limit points, x is not

a limit point of A, that is, there exists an open set O containing x, such that O ∩ A = ∅.

Then x ∈ O ⊂ Ac, and by Theorem 9.1 Ac is open.

Conversely, suppose Ac is open. If x ∈ Ac, then since Ac ∩ A = ∅, x cannot be a limit

point of A. Therefore, all limit points of A are contained in A, that is, A is closed.

Theorem 9.5 The closure of A is closed, for any set A.

Proof: We prove that the complement is open, which in light of Theorem 9.4, is equivalent.

Suppose x ∈ (A)c = Ac ∩ (A′)c. x �∈ A′ ⇒ x ∈ O, O ∩ A = ∅, O some open set. If

O ∩ A′ �= ∅, then there exists some limit point a′ of A, a′ ∈ O. But a′ a limit point of A

means that every open set containing a′ has non-empty intersection with A. But O is an

open set that contains a′, and does not intersect A, a contradiction. Hence O ∩A′ = ∅. But

then x ∈ O ⊂ (A)c, and hence (A)c is open.

9.2 Metric Spaces:

9.2.1 Definition of a Metric:

We think of a metric as a way of measuring distance between points in a topological space.

A metric has certain properties, which we elaborate below. If X is a set and d(x, y) is a

metric on X, then the pair (X, d) is called a metric space.

Definition 9.7 A metric d on a space X is a function d : X × X → [0,∞) with the

following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X.
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2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x).

4. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X. (Triangle inequality)

Note: We shall often write d(x, y) as ||x− y|| or occasionally as |x− y|, when doing so will

cause no confusion.

Example 6 X = R1, and d(x, y) = |x − y|, the usual absolute value on R1. This is the

“euclidean metric” on R1. It is easy to check that it satisfies all four properties of a metric.

Example 7 X is an arbitrary non-empty set, and

d(x, y) =



1 if x �= y

0 if x = y.

It is not difficult3 to verify that this is a metric! In this metric, all points are “far apart.”

Example 8 X = C[0, 1], the set of continuous functions on [0, 1], and the metric d is the

“sup-norm”:

d(f, g) = sup
0≤x≤1

|f(x)− g(x)| = ||f − g||[0,1].

To verify that this is a metric, properties (1) and (3) are immediate. Property (2) holds

because

||f − g||A = 0⇐⇒ sup
x∈A
|f(x)− g(x)| = 0⇐⇒ f(x) = g(x) for all x ∈ A⇐⇒ f(x) ≡ g(x).

Property (4) was proved in Chapter **.

Exercise 10 Prove that the distance function of Example 7 above is a metric.

3See Exercise 10.
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9.2.2 The Topology of Metric Space

Definition 9.8 Let (X, d) be a metric space. Let a ∈ X. The set

B(a, r) = {x ∈ X : d(a, x) < r} = {x ∈ X : ||x− a|| < r}

is called the ball about a of radius r. Informally, B(a, r) is the set of all points in X

which are at distance less than r from a.

Definition 9.9 Suppose (X, d) is a metric space. Let x ∈ X. Then a neighborhood of x,

Nx is any set containing B(x, ε), for some ε > 0.

Next, we shall show that the metric of the space induces a topology on the space so

that the metric space (X, d) is also a topological space (X, C), where the elements of C are

determined by the balls of X:

Definition 9.10 Let (X, d) be a metric space. Define a family C of subsets of X as follows:

A set O ⊂ X is an element of C (we will be thinking of such an O as “open”) if, for every

x ∈ O there exists an ε > 0 such that B(x, ε) ⊂ O. (Note that in general, ε will depend on

x.)

Theorem 9.6 (Metric space is a topological space) Let (X, d) be a metric space. The

family C of subsets of (X, d) defined in Definition 9.10 above satisfies the following four

properties, and hence (X, C) is a topological space. The open sets of (X, d) are the elements

of C. We therefore refer to the metric space (X, d) as the topological space (X, d) as well,

understanding the open sets are those generated by the metric d.

1. ∅ ∈ C.

2. X ∈ C.

3. If A,B ∈ C, then A ∩ B ∈ C.
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4. If {Oα : α ∈ A} is a family of sets in C indexed by some index set A, then

⋃
α∈A

Oα ∈ C.

Informally, (3) and (4) say, respectively, that C is closed under finite intersection and arbi-

trary union.

Exercise 11 Prove Theorem 9.6.

Theorem 9.7 (The ball in metric space is an open set.) Let (X, d) be a metric space.

Then for any x ∈ X and any r > 0, the ball B(x, r) is open.

Proof: Let x ∈ X and r > 0. Let y ∈ B(x, r), and let r1 = r − ||x− y||. Since ||x− y|| < r,

r1 > 0. We claim that B(y, r1) ⊂ B(x, r). To see this, let z ∈ B(y, r1). Then ||z − y|| <

r1 = r − ||x − y||, so ||x − y|| + ||y − z|| < r. By Triangle inequality for metric spaces,

||x − z|| ≤ ||x − y|| + ||y − z|| < r. But then z ∈ B(x, r). Thus, B(y, r1) ⊂ B(x, r), so by

Theorem 9.1, B(x, r) is open.

Continuous Functions on a Metric Space

We remarked earlier, that our notion of a continuous function from R1 to R1 in terms of

ε− δ would carry over to metric space, and now we are in a position to state and prove the

theorem:

Theorem 9.8 Suppose f : (X, d)→ (Y, d′) is a function from one metric space to another.

Then f is continuous in the topological sense if and only if for every x ∈ X and ε > 0 there

exists a δ > 0 such that

f(B(x, δ)) ⊂ B(f(x), ε).

Proof: Suppose f is continuous in the topological sense. Let x ∈ X and ε > 0. Let V =

B(f(x), ε). By Theorem 9.2, since V is open in Y , there exists a U open in X such that
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x ∈ U and f(U) ⊂ V. Since U is open in X and x ∈ U there exists a ball centered at x and

contained in U . Suppose the radius of this ball is δ. That is, B(x, δ) ⊂ U . But then

f(B(x, δ)) ⊂ f(U) ⊂ V = B(f(x), ε),

which proves the theorem in the forward direction.4

Conversely, suppose O is an open set in (Y, d′), and let x ∈ f−1(O). Since O is open,

there exists a ball B(f(x), ε) ⊂ O for some ε > 0. By assumption, there exists a δ > 0 such

that f(B(x, δ)) ⊂ B(f(x), ε) ⊂ O. So, B(x, δ) ⊂ f−1(O), which shows that f−1(O) is open

in (X, d).

Exercise 12 Let X be arbitrary and the metric d be that of Example 7 above:

d(x, y) =



1 if x �= y

0 if x = y.

Determine the family C of open sets of (X, d).

Definition 9.11 Let (X, d) be a metric space. Let {xn} be a sequence of elements of X.

We say the sequence {xn} converges to x, and write

lim
n→∞

xn = x

or

xn → x

if and only if

lim
n→∞

d(xn, x) = lim
n→∞

||xn − x|| = 0,

that is,

||xn − x|| → 0.

4It is interesting to note that the translation of this last statement is: “for all y, if ||y − x|| < δ then

||f(y)− f(x)|| < ε.”
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Definition 9.12 Let (X, d) be a metric space. Let {xn} be a sequence of elements of X.

We say the sequence {xn} is a Cauchy sequence if and only if

For every ε > 0 there exists N such that for all m,n ≥ N ,

d(xn, xm) < ε.

Informally, “the sequence is Cauchy in the metric d.”

Exercise 13 Suppose f : (X, d)→ (Y, d′) is a function from one metric space into another

metric space. Then f is continuous if and only if for every x ∈ X, if xn → x, then f(xn)→

f(x). That is,

lim
n→∞

xn = x =⇒ lim
n→∞

f(xn) = f(x).

Hint: it is easiest to prove the contrapositive in each direction. Use Theorem 9.8.

In the following exercises, we are assuming that X is a metric space, with metric

d:

Exercise 14 Let A ⊂ X. Prove x ∈ X is a limit point of A if and only if for every ε > 0

the ball B(x, ε) contains infinitely many points of A.

Exercise 15 Let A ⊂ X. Prove x ∈ X is a limit point of A if and only if there exists a

sequence {xn}, xn ∈ A, xn �= x, and ||xn − x|| → 0.

Exercise 16 Prove that in R2, the closure of the ball

B((0, 0), 1) = {(x, y) : x2 + y2 < 1}

is the set

{(x, y) : x2 + y2 ≤ 1}.

Exercise 17 For the topological space (X, d) of Example 7, determine all the limit points

of X. (Answer: none). Alternatively, prove X has no limit points.
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Exercise 18 Let (R1, d) be the real numbers with the “usual” distance metric. Determine

all the limit points of the set of rationals, Q.

Exercise 19 Prove that in R2 there exists a countable family B of open balls which form a

basis for all the open sets in the topology of the space: every open set O in the topology of

R2 can be written as the (necessarily countable) union of sets from B. Hint: prove that the

set of all balls whose centers have rational coordinates, and whose radii are rational, meet

the requirements.

A topological space with such a countable family B of open sets is called second count-

able. (Note that your proof would generalize toRn as well, and henceRn is second countable

as well.)

Theorem 9.9 If A and B are closed, then A ∪ B is closed. Hence the union of any finite

number of closed sets is closed.

Exercise 20 Prove Theorem 9.9.

Theorem 9.10 If A is an index set5, and {Gα : α ∈ A} is a family of closed sets, then the

intersection ⋂
α∈A

Gα

is closed. Restated: the intersection of an arbitrary number of closed sets is closed.

Proof: { ⋂
α∈A

Gα

}c
=
⋃
α∈A

(Gα)
c
,

which, by Theorem 9.4, is open. QED.

Definition 9.13 The interior of A, denoted A0 is defined as follows:

A0 = {a ∈ A : B(x, ε) ⊂ A for some ε > 0}.

5Just think of A as a set of indices, such as (in the simple case) A = {1, 2, 3, . . . }.
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Exercise 21 In R1 with the usual topology, what is the interior of [0, 1]? What is the

interior of Q?

Definition 9.14 The exterior of A is defined as the interior of Ac.

Definition 9.15 The boundary of A is the set of points x ∈ X which lie in neither A0

nor the exterior of A. It is denoted ∂A.

Theorem 9.11 The boundary of A is the set of x ∈ X for which every open set containing

x contains both points of A and points of Ac.

Proof: See Exercise 23.

Example 9 In R2, let D be the “closed” unit disc6,

D = {(x, y) : x2 + y2 ≤ 1}.

Then D0 is the “open” disc B((0, 0), 1):

D0 = {(x, y) : x2 + y2 < 1}.

Also, the exterior of D,

(Dc)0 = {(x, y) : x2 + y2 > 1}.

Finally, the boundary of D,

∂D = {(x, y) : x2 + y2 = 1}.

Proof: Suppose (x, y) ∈ D. If x2+y2 < 1 (so that (x, y) ∈ B(0, 1)), by Theorem 9.7 (“The

ball is open”), there exists7 an ε > 0 such that B((x, y), ε) ⊂ B(0, 1). Hence B(0, 1) ⊂ D0.

On the other hand, if x2 + y2 = 1 and 0 < ε < 1/2,

(
x

1− ε
,
y

1− ε

)
∈ {B(0, 1)}c ∩ B((x, y), 2ε)

6Exercise 16 justifies the name.

7Challenge: can you construct ε?
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while

((1− ε)x, (1− ε)y) ∈ B(0, 1) ∩ B((x, y), 2ε)

which shows8 that (x, y) ∈ ∂D.

Definition 9.16 A is dense in B if B ⊂ A. If A is dense in X (the entire space), we say

A is dense.

In each of the following assume (X, d) is a metric space.

Exercise 22 Give two proofs that xn → x ∈ O and O open imply there exists N so that

n ≥ N =⇒ xn ∈ O.

Exercise 23 Prove Theorem 9.11.

Exercise 24 Give an example of two closed sets A and B in R2 such that the distance

between A and B,

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} = 0,

but

A ∩B = ∅.

9.2.3 Continuous Functions on a Metric Space: Three Theorems

One of our major purposes for studying Topology is to understand the deep connection

between continuous functions and the topological structure of the space. In fact, we proved

three major theorems about continuous functions in Chapter 3, the Boundedness Theorem,

the Extreme Value Theorem, and the Intermediate Value Theorem. In this Chapter we

shall show that these are really properties about continuous functions on an arbitrary metric

space, by proving these three theorems in this setting. We proceed with our study.

8Work out the details to verify these two statments. Mathematics can be alot of hard work.
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Exercise 25 Prove that in a metric space, the distance function is continuous: Let (X, d)

be a metric space, and a ∈ X. Define f(x) = d(a, x) = ||x − a||. Then prove that f is

continuous: X →R1.

Example 10 [Closed Graph Theorem] Let f be a continuous real-valued function defined

on some interval [a, b]. Then in R2, the graph of f is a closed set.

Proof: We show that the complement is open. Let (x0, y0) be in the complement of the

graph of f . Then y0 �= f(x0), and since f is continuous on [a.b], there exists a δ > 0 such

that |x− x0| < δ implies |f(x)− f(x0)| <
|y0 − f(x0)|

2
. Then the set

{
(x, y) : |x− x0| < δ and |y − y0| <

|y0 − f(x0)|

2

}

contains no points of the graph of f . This set is a rectangle centered at (x0, y0). Thus there

is a ball centered at (x0, y0) contained in the rectangle, which therefore is in the complement

of the graph of f , and hence the graph of f is closed.

Euclidean Space: Rn

Let Rn = R1×R1× . . .×R1, where we take the Cartesian product of R1 with itself n times.

The objects x ∈ Rn are n-tuples: x = (x1, x2, . . . , xn) where each xi ∈ R1.

The Euclidean distance between points in Rn is given by

d(x, y) =

(
n∑
i=1

(xi − yi)
2

)1/2
.

It can be verified that this distance function is a norm. Triangle inequality follows from an

inequality which we won’t prove here, called the Cauchy-Schwartz inequality.

Complete Metric Spaces

Definition 9.17 We say a metric space (X, d) is complete if every Cauchy sequence (in

the metric d) converges to some element of the space.
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Compactness; Compact Sets

Definition 9.18 Let A be a set in a topological space X. A cover of A is a family F of

subsets of X with the property that the union of the sets in F contains A:

A ⊂
⋃
B∈F

B.

A cover is called an open cover if every set B in the family F is an open set.

Definition 9.19 Suppose F is a cover of the set A. A subcover of F is a family F ′ ⊂ F ,

which is also a cover of A. If, in addition, F ′ contains only finitely many sets, we call it a

finite subcover.

Definition 9.20 A set A in a topological space (X, C) is called compact if every open cover

of A has a finite subcover. If X itself is compact, we say X is a compact space.

Example 11 N is not compact in R1. To see this, let On = (n − 1/4, n + 1/4), for

n = 1, 2, . . . . Then N ⊂ ∪∞n=1On, since n ∈ On for every n ∈ N . But if N were compact,

finitely many of the On would cover N . But each On contains only one integer! Hence the

natural numbers would be finite, a contradiction.

Example 12 A finite set in R1 is compact.

Suppose the finite set E = {x1, . . . , xk} is covered by ∪αOα. Then xi ∈ Oαi, 1 ≤ i ≤ k, and

hence the finite collection {Oα1, . . . , Oαk} covers E.

Theorem 9.12 If f is a continuous mapping from the topological space (X, C) to the topo-

logical space (Y, C′) and A ⊂ X is compact, then f(A) is compact in (Y, C′).

Proof: To show f(A) is compact, suppose O is an open cover of f(A). We need to produce

a finite subcover. Since each set B ∈ O is open, f−1(B) is open in X. Then

A ⊂
⋃
B∈O

f−1(B) (why?),
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so
⋃
B∈O f

−1(B) is an open cover of A. But A is compact, so finitely many of

{f−1(B) : B ∈ O},

call them f−1(B1), f
−1(B2), . . . , f

−1(Bn), form an open cover of A. But then B1, B2, . . . , Bn

form an open cover of f(A).

We continue to explore the properties of continuous functions in metric space. We shall

show that certain properties of sets and spaces are inherited under mapping by a continuous

function. The idea is explained in the following definition:

Definition 9.21 Suppose f is a continuous function from one topological space X to an-

other, Y . If it is the case that some property possessed by a set A is then possessed by

the (continuous) image of A under the continuous function f , we say that the property is a

continuous invariant.

In the terminology just introduced, the previous theorem can be restated:

Theorem Compactness is a continuous invariant.

Definition 9.22 A set A in a metric space (X, d) is bounded if there exists an x0 ∈ X

and r > 0 such that A ⊂ B(x0, r).

Theorem 9.13 Let f : (X, C) → (Y, d) be a continuous function from a topological space

into a metric space. Let A be a compact set in X. Then f(A) is bounded in (Y, d).

Exercise 26 Prove Theorem 9.13.

Corollary 9.14 In a metric space, a compact set is bounded.

Proof: Let A be compact in (X, d). Note that the identity map i : (X, d) → (X, d) is

continuous. (Why?)9 Hence A is bounded in (X, d).

9See Exercise 27 to see that this is not “obvious”.
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Exercise 27 Let X be an arbitrary set and C be the set of all subsets of X. Let C′ = {∅, X}.

Then (X, C) is the discrete topology, while (X, C′) is the trivial topology. Prove that if X

consists of at least two points, then the identity map i : (X, C′)→ (X, C) is NOT continuous.

Theorem 9.15 In a metric space, a compact set is closed.

Proof: Let A be compact, and a �∈ A. We show that a is not a limit point of A, and hence

A is closed. Let

En =
{
x ∈ X : d(a, x) >

1

n

}
n = 1, 2, . . .

and observe that each En is open and

A ⊂ ∪∞n=1En.

But A compact and the En’s are nested implies that

A ⊂ En0,

for some n0. Since every point of A is at distance greater than 1/n0 from a, B(a, 1/n) is a

ball about a which does not intersect A. Hence a is not a limit point of A.

Theorem 9.16 In the usual topology on R1, a closed bounded interval [a, b] is compact.

Proof: Suppose we have proven that [0, 1] is compact in the usual topology on R1. Then the

map f(x) = a+ (b− a)x is continuous (for any number of reasons), and hence the image of

[0, 1], namely [a, b], is compact in the usual topology on R1.

We are thus reduced to considering the case of [0, 1]. Let
⋃
α

Oα be an open cover of [0, 1],

and suppose there exists no finite subcover. Let

E = {x ∈ [0, 1] : the closed interval [0, x] can be covered by a finite number of the open sets Oα}

and note that 0 ∈ E. Let s = supE. It follows from the Approximation Theorem for sup’s

that for any x < s, the closed interval [0, x] can be covered by a finite number of the open

sets. But s ∈ [0, 1) implies that s ∈ Oα0 for some α0, and since R
1 is a metric space, s ∈ Oα0
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implies that for some ε > 0, (s − ε, s + ε) ⊂ Oα0 . But then from the remarks about the

Approximation Theorem, it follows that [0, s − ε/2] can be covered by a finite number of

the open sets in the cover, which, together with Oα0 , provide a finite subcover of [0, s + ε],

a contradiction.

Theorem 9.17 (Heine-Borel Theorem) A set in R1 is compact if and only if it is closed

and bounded.

Proof: We have already proved that a compact set is closed and bounded. The converse will

be proved if we prove the following theorem, since a closed and bounded set in R1 is a closed

subset of an interval [a, b].

Theorem 9.18 A closed subset of a compact set is compact.

Proof: Let G be a closed subset of the compact set C. Let {Oα} be an open cover of G.

Then the family {Oα}, together with Gc, form an open cover of X, and hence an open cover

of C. Hence finitely many elements of the cover cover C. Since G is a subset of C, this finite

subcover also covers G. Gc is not needed in the subcover to cover G since it is disjoint from

G. Hence finitely many of the {Oα} cover G.

Exercise 28 In the proof of Theorem 9.16, what happens to the argument if s = 0? Why

must s > 0?

Theorem 9.19 (Bolzano-Weierstrass) Let A be a compact subset of a metric space X.

Then every sequence of elements of A has a convergent subsequence (to an element of A).

Proof: Let A be compact and {xn} be a sequence in A.

Case I: Suppose there exists an a ∈ A such that for every r > 0, B(a, r) contains xn for

infinitely many n. Then for each k ∈ N there exists10 an nk so that n1 < n2 < . . . < nk

and

|a− xnk | <
1

k
.

10Provide the details. Some care needs to be taken so that {xnk} is a subsequence of {xn}.
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Then xnk → a.

Case II: If no such a ∈ A exists, for every a ∈ A there exists an ra > 0 such that B(a, ra)

contains xn for only finitely many n. In this case

⋃
a∈A

B(a, ra) covers A

and A is compact, so finitely many of these open balls cover A:

A ⊂
m⋃
i=1

B(ai, rai).

But each of these balls contains xn for only finitely many n, which implies that N is finite,

a contradiction.

Theorem 9.20 (Extreme Value Theorem) Let f be a continuous function from (X, d)

to R1. If A is a compact subset of X, then f(A) has a maximum: that is, there exists an

a ∈ A such that f(x) ≤ f(a) for all x ∈ A.

Proof: By Theorem 9.13, f(A) is bounded, so t = supx∈A f(x) < ∞. For every n ∈ N

there exists an xn ∈ A such that f(xn) > t − 1/n. Hence, by Bolzano-Weierstrass, there

exists a convergent subsequence xnk → x0. But

t−
1

nk
< f(xnk) ≤ t, k = 1, 2, . . .

and the Sandwich Theorem imply11

f(x0) = t.

Exercise 29 Give an alternate proof that a compact set in a metric space is bounded, using

an open cover with balls.

Countable Compactness

Definition 9.23 A space X is called countably compact if every infinite subset has a

limit point.

11Provide the details.
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Theorem 9.21 If X is compact, it is countably compact.

Proof: Suppose A is an infinite subset of X with no limit point. Let {xn} be an infinite

set of distinct elements of A. Since A has no limit point, it follows that {xn} has no limit

point, as well. Hence, for each n, there exists an rn > 0 such that B(xn, rn) contains no

points of {xn} other than xn itself. For any other y ∈ X − {xn}, there is also a ry > 0 such

that B(y, ry) contains no points of {xn}. Let

O =
⋃

y∈X−{xn}

B(y, ry).

Then

X =
∞⋃
n=1

B(xn, rn) ∪O.

But X is compact, so finitely many of the above open sets cover X. But each contains at

most one point of {xn}, and there were infinitely many distinct xn’s, a contradiction.

The following theorem shows that completeness is a consequence of compactness. In

fact, the completeness of R1 is “due” to the fact that each point in R1 has a compact

neighborhood (called local compactness).

Theorem 9.22 If X is a compact metric space, then X is complete: every Cauchy sequence

converges.

Proof: Let {xn} be a Cauchy sequence. Suppose first that there is some x0 such that

for infinitely many n, xn = x0. Then it is not difficult to conclude
12 that xn → x0, so the

Cauchy sequence converges.

On the other hand, if there is no such x0, there are infinitely many different xn, and by

the preceding theorem that a compact space is countably compact, the set {xn} has a limit

point, call it a. It is not difficult to conclude13 that in this case, xn → a.

Exercise 30 Complete the proof that if {xn} is a Cauchy sequence for which infinitely many

elements are equal to x0, then xn → x0.

12As usual, provide the details. See Exercise 30.

13Exercise 31.
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Exercise 31 Complete the proof that if a is a limit point of the Cauchy sequence {xn},

then xn → a.

Example 13 A subset A of a metric space which is closed and bounded but not

compact.

We show this by showing there is a bounded sequence which contains no convergent

subsequence. Hence it fails to have the Bolzano-Weierstrass property, and hence cannot be

compact.

Let X be the set of all sequences of real numbers {an} for which
∑
(an)

2 < ∞. This set

is known as �2, (pronounced: “little L-2”), the space of all square-summable sequences. We

take as the metric on �2:

d(x, y) =
(∑
(xi − yi)

2
)1/2
.

It can be shown that d satisfies triangle inequality (but we won’t do that here.)

Now let xn ∈ �2 be the sequence < 0, 0, 0, . . . , 0, 1, 0, . . . > where all the terms in the

sequence are 0 except for the n-th term, which is 1. We compute

d(xm, xn) =



√
2 if m �= n

0 if m = n

Now we consider the set A of sequences {xn}. Since the distance between any two terms in

the sequence is
√
2, there cannot be any convergent subsequence. Hence the set A cannot be

compact. If a were a limit point of A, then every ball B(a, ε) would contain infinitely many

points of A, which would imply by triangle inequality that for two different xm and xn, the

distance between them was less than 2ε. But we already observed that the distance between

any two points of A is
√
2, and if we choose ε = 1, say, we obtain a contradiction. Thus,

there are no limit points of A, and hence A is closed. Further, since ||xn|| = 1, it follows

that A ⊂ B(0, 2), hence A is bounded.

Connectedness; The Intermediate Value Theorem

Definition 9.24 We say a set C in a topological space X is connected if C = A ∪ B, A,

B open in X, and A ∪ B = ∅ imply that either A = ∅ or B = ∅. That is, C is connected if
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it cannot be written as the disjoint union of two non-empty open sets.

Theorem 9.23 In R1, any interval [a, b], with a < b, is connected.

This requires proof. Not suprisingly, in light of our remarks above, the proof will contain

elements similar to the proof of the Intermediate Value Theorem, in Chapter 3.

Proof: Suppose I = [a, b] and I = A ∪ B, A and B open and disjoint. We reason to

a contradiction: Suppose by symmetry14 that b ∈ B. Since B is open, there is an interval

(b − ε, b + ε) ⊂ B, for some ε > 0. Now let t = supA, and observe that a < t < b (why

cannot t = a?). If t ∈ A, then since A is open, there exists an interval (t − δ, t + δ) ⊂ A,

contradicting t = supA. Hence t ∈ B. But B is open, and t ∈ B implies (t − δ, t + δ) ⊂ B

for some δ > 0. Then, the Approximation Property for sup’s provides an increasing sequence

{an} → t, an ∈ A. This contradicts the fact that the interval (t− δ, t+ δ) is a subset of B.

Theorem 9.24 (Connectedness is a continuous invariant) If f is a continuous func-

tion, f : X → Y , and X is connected, then the image f(X) will be connected in Y .

Proof: Suppose not. Then f(Y ) can be written as the disjoint union of two non-empty open

sets:

f(Y ) = A ∪ B.

But A open in Y implies f−1(A) is open in X, and similarly for f−1(B). Then

X = f−1(A) ∪ f−1(B),

which shows X fails to be connected as well.

Corollary 9.25 (Intermediate Value Theorem on R1) If f is a real-valued continuous

function on [a, b] and f(a) < f(b), then for any c ∈ [f(a), f(b)] there exists an x ∈ [a, b] such

that

f(x) = c.

14If b ∈ A, merely reverse the roles of A and B in the argument.
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Proof: The closed interval [a, b] is connected, by Theorem 9.23. Therefore, by Theorem 9.24

the image is connected. That is,

[f(a), f(b)] ⊂ Range(f).


