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Abstract. The theory of one-dimensional one-frequency quasiperiodic operators with
analytic potentials has long been centered around several very specific models, with
solutions of several famous open problems not extending even to small analytic per-
turbations of those. We describe a duality-based approach to Avila’s global theory
of such operators that has both uncovered its fundamental mysteries and allowed
to solve the robust versions of key spectral problems. This article is related to the
lecture delivered at ICM22/v(WM)2, July 2022 (with the proceedings, [48] dissem-
inated in January 2022), where this approach was first announced. The talk and
the proceedings [48] consisted of two parts, one devoted to the overview of already
published almost Mathieu results [51, 52] and related developments, and the other to
the announcement of this approach and some of its consequencies. We expand here
only on the second part, that has since seen some remarkable developments, including
powerful corollaries, first announced in September 2022.

As explained in more detail in [48], one-dimensional discrete one-frequency Schrödinger
operators

(HV,α,xu)n := un−1+un+1+V (x+nα)un, u ∈ `2(Z), α ∈ R\Q, x ∈ T := R/Z, V : T→ R,
(0.1)

and related questions of the dynamics of analytic quasiperiodic cocycles have a strong
background in physics, largely centered around the Harper’s model of two-dimensional
Bloch electron in a uniform perpendicular magnetic field, and the related operator family
H2λ cos,α,x called, following Barry Simon [69], the almost Mathieu operator. The model
remains highly popular and relevant in physics.

Originally approached in mathematics in a perturbative way, going back to the work
of Dinaburg-Sinai [23] 1, several remarkable symmetries of the family H2λ cos,α,x were
noticed in the early 80s by the physicists Aubry and Andre [1]. This, coupled with
heuristics and numerics by M. Azbel and D. Hofstadter [17, 42], as well as the emerg-
ing understanding that the arithmetics of parameters plays an unexpected role in this
physics-based problem [16, 35], led to several beautiful and precise conjectures about
this family, heavily popularized 2 by B. Simon in his lists of problems in mathemati-
cal physics [70, 71]. Based on partial advances [44, 56], one conjecture took a sharp
arithmetic turn in 1994 [45], so the key list3 became

Date: January 31, 2024.
1the first KAM success in the spectral theory
2originally, in one case, in a wrong form
3This is leaving out two other famous but not quite fitting in the later narrative of this note problems:

measure of the spectrum problem, finally solved in [13, 49], and purely singular continuity of the
spectrum for all α, x and λ = 1 problem, finally solved in [47]
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(1) The4 spectrum of H2λ cos,α,x is a Cantor set for all α /∈ Q, λ 6= 0 (aka the ten
martini problem)

(2) the integrated density of states is absolutely continuous for all λ 6= 1 and all α
(3) (a) For a.e. (in fact, Diophantine) α there is a sharp transition from purely

absolutely continuous for λ < 1 to (arithmetically defined) a.e, pure point
spectrum for λ > 1 (aka the Aubry-Andre or AA conjecture)

(b) For λ ≥ 1 there is a sharp transition between singular continuous and
(arithmetically defined) a.e. pure point spectrum at λ = eβ(α) (aka the
Aubry-Andre-Jitomirskaya, or AAJ conjecture)

(4) The spectrum is purely absolutely continuous for all α, x for λ < 1.

Here,

β(α) := lim sup
k→∞

−
ln ||kα||R/Z
|k|

(0.2)

where ||x||R/Z = dist(x,Z), - an arithmetic parameter originally introduced in [45]. It is
equal to zero for Diophantine (thus a.e.) α.

Remarkably, after various significant developments (see, e.g. [54, 55] for the history),
all these problems have been fully solved: the ten martini problem (1) in [8] , the
absolute continuity of the λ 6= 1 IDS (2) in [6], the AA conjecture (3a) in [46], the AAJ
conjecture (3b) in [14, 51], and pure absolute continuity for λ < 1 (4) in [2, 8]. 5

It should be noted that problem (4) has reappeared on Simon’s list [71] already after
having been solved for the Diophantine (thus a.e.) α in [46], underscoring the particular
importance given to proving the sharp arithmetic results, as formulated.6 Problems (1),
(2) were also solved for (arithmetically) almost all parameters [46, 67] before their final
celebrated all α solutions. Problems (1)-(4) therefore can be viewed in some sense as
number theory problems, with no room whatsoever for any approximation or parameter
perturbation.

Let L(E) be the (top) Lyapunov exponent of the transfer-matrix cocycle of operator
(0.1) at energy E : L(E) := limn→∞

∫
1
n ln ‖An(x,E)‖ dx, where

An(x,E) :=
0∏

J=n−1
A(x+ jα,E). (0.3)

and

A(x,E) :=

(
E − V (x) −1

1 0

)
(see e.g. [48] for the discussion).

The distinction between the regimes λ < 1 and λ > 1 is based on the behavior of
the Lyapunov exponents L(E) of corresponding transfer-matrix cocycles (α,A(x,E)) of
H2λ cos,α,x for energies E in its spectrum: L(E) = 0 for λ ≤ 1 and L(E) > 0 for λ > 1
[1, 20], with λ = 1 being the transition point aka critical value.

4x-independent
5Clearly, for the almost Mathieu, due to the self-duality (2) follows from (4) and (3a) also follows

from a combination of (3b) and (4), but historically those proofs came later.
6the same holds for the measure of the spectrum problem, that was already solved for arithmetically

a.e. α in [61] before being reiterated in [71]
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The Lyapunov exponent based methods for the proofs of localization for operators
(0.1) were developed (for the almost Mathieu) in [46], making it natural to expect
the universality of the supercritical Diophantine localization (3a) already then. The
measure theoretical such universality was proved by Bourgain and Goldstein [19] leading
to various significant developments by Bourgain and collaborators (see [18] and also [53]
and [66] for more recent extensions of some of the most sophisticated Bourgain’s results
to more general toral dimensions). The arithmetic (Diophantine (3a) or the sharp (3b))
global version of the localization result however remains open.

Avila’s global theory of analytic quasiperiodic cocycles [3] (later extended to the high-
dimensional cocycles in [12]) is based on the structure of complexified Lyapunov expo-
nent Lε := limn→∞

∫
1
n ln ‖

∏0
j=n−1Aj(x + jα + iε)‖ dµ, where A ∈ Cω(T, SL(2,C)).

Avila observed that, for a given cocycle, Lε is a convex function of ε, and proved that it
has quantized derivative in ε.

Theorem 1. [3] For any complex analytic one-frequency cocycle,

ω(A) = lim
ε→0+

Lε(A)− L0(A)

2πε
∈ Z.

The integer-valued ω(A) is called the acceleration of the cocycle. This has led Avila
to distinguish three cases of behavior on the spectrum, with the terminology inspired
by the almost Mathieu family:

Subcritical: Lε = 0, ε < δ, δ > 0, or, alternatively, L0 = ω(A) = 0.
Critical: L0 = 0, Lε > 0, ε > 0, or, alternatively, L0 = 0, ω(A) > 0.
Supercritical: L0 > 0, ω(A) > 0,

underscoring the prototypical nature of the almost Mathieu family.
According to the λ (non)dependence of the celebrated almost Mathieu results (1)-(4),

it is natural then to ask the following questions:
(1) For what non-trivial analytic HV,α,x does the ten martini (Cantor spectrum for

all α /∈ Q) hold?
(2) For what non-trivial non-critical HV,α,x does the absolute continuity of the IDS

hold?7

(3) For what non-trivial super-critical HV,α,x does sharp aritmetic transition AAJ
hold?

(4) For what non-trivial sub-critical HV,α,x does absolutely continuous spectrum for
all α, θ hold?

Problem (4) has quickly morphed into something much bigger: the almost reducibil-
ity conjecture (ARC) (first formulated in [10]), stating that subcritical analytic co-
cycles are almost reducible, that is can be analytically conjugated arbitrarily close to
constants. This property (also modeled on the almost Mathieu operator [2, 10], and
previously known, more generally, for small couplings [10, 21], implies that subcritical
cocycles can be conjugated into the Eliasson’s regime [26] leading to a host of spectral
consequences in the Schrödinger case, including the absolute continuity of the spectral

7slightly abusing the language we say H is non-critical if its transfer-matrix cocycles for E in the
spectrum are non-critical, a prevalent property [3]. We also say HV,α,x is sub/super critical if its
transfer-matrix cocycles for E in the spectrum are.
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measures (4) and also various more delicate properties, such as, e.g. uniform Hölder
regularity of the absolutely continuous spectral measures [11].

The ARC was proved by Avila [4, 5], thus, in particular, taking care of the universality
of (4) for subcritical operators in the entire class of operators (0.1). For problems (1)-(3),
however, not only there are no global universality results, but by the time of the (WM)2-
ICM22 talk, there were not even known arithmetic results for problems, as formulated,
for any V other than the cos .

Indeed, the proofs of (1)-(3) in, correspondingly [2, 6, 8, 14, 46, 51] are all very spe-
cific for V = cos, utilizing a number of its very special features, making extending these
results particularly challenging. However, the strong physics origin of the almost Math-
ieu operator suggests that these results should be at least robust with respect to small
changes of V, so should hold for an open set of analytic V (corresponding to allow-
ing small probabilities of not-nearest-neighbor hopping on the original two-dimensional
lattice [64], a very physically plausible scenario).

Additionally, Avila’s quantizatization of the acceleration implies that as a function
of ε > 0, Lε is convex, piecewise affine, and thus is fully characterized by L = L0 and
monotone increasing sequences of turning points bi and slopes ni ∈ 2πZ+, where the
slope of Lε between bi and bi+1 is ni. It was unclear however what information about
the cocycle is revealed by the sequences bi and ni.

The breakthrough in [32], as reported in [48] is the approach to Avila’s global theory
through Aubry duality that has revealed the above mystery and became a foundation
for not only the first non-cos but also the robust versions of (1)-(3), as well as the new
proof of ARC.

The Aubry dual of the one-frequency Schrödinger operator (0.1) is defined as

(ĤV,α,θu)n =

∞∑
k=−∞

Vkun+k + 2 cos 2π(θ + nα)un, n ∈ Z. (0.4)

where Vk is the k-th Fourier coefficient of V viewed as a transformation of the entire
family indexed by x for fixed V, α, namely a unitary conjugation on H = L2(T×Z), via

Uψ(x, n) = ψ̂(n, x+ αn), (0.5)

where ψ̂ : L2(Z×T)→ L2(T×Z) is the Fourier transform. The almost Mathieu family is
self-dual with respect to this transformation: Ĥ2λ cos,α,x = H 2

λ
cos,α,θ, and, in particular,

H2 cos,α,x, that is, H2λ cos,α,x with λ = 1, is the fixed (self-dual) point.
It can be explained by the magnetic nature and corresponding gauge invariance of

two-dimensional magnetic Laplacians that lead to HV,α,x [64], so, in particular, spectra
and integrated densities of states of HV,α,x and ĤV,α,x coincide. A form of Aubry duality
was first formulated in [1], leading, in particular, to the AA conjecture. Aubry duality
has been formulated and explored on different levels, e.g. [64], [36], [10].

In general, operator (0.4) is long-range. If V is a trigonometric polynomial of degree
d, the transfer-matrix A(x,E) of the eigenvalue equation ĤV,α,xΨ = EΨ gives rise to a
2d-dimensional cocycle, which has a complex-symplectic structure [39], so can be viewed
as a Sp(2d,C) cocycle (α,A), A ∈ Sp(2d,C), a linear skew product:

(α,A) :

{
T× C2d → T× C2d

(x, v) 7→ (x+ α,A(x) · v)

}
.
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The Lyapunov exponents L1(α,A) ≥ L2(α,A) ≥ ... ≥ L2d(α,A), repeated according
to their multiplicity, are defined by

Lk(α,A) = lim
n→∞

1

n

∫
T

ln(σk(An(x)))dx,

where for a matrix B ∈ Mm(C), σ1(B) ≥ ... ≥ σm(B) are its singular values (eigen-
values of

√
B∗B). Since for real E the transfer-matrix A(x,E) of the eigenvalue equa-

tion ĤV,α,xΨ = EΨ is symplectic, its Lyapunov exponents come in the opposite pairs
{±Li(α,A)}di=1. Let

L̂i := Ld−i(α,A), (0.6)
so that 0 ≤ L̂1 ≤ L̂2 ≤ ... ≤ L̂d. It turns out, the dual Lyapunov exponents L̂i are
precisely the turning points bi of the piecewise-linear complexified Lyapunov exponent
Lε of the transfer-matrix cocycle of HV,α at E, with the number of L̂i < ε (counting
multiplicity) being the slopes ni after a 2π normalization. For V with infinitely many
non-zero Fourier coefficients, there is no dual cocycle, but dual Lyapunov exponents
can still be defined as appropriate limits of dual Lyapunov exponents constructed for
the Fourier cutoffs of V, and the above still holds. This is represented by the following
theorem that can be viewed as the multiplicative version of the classical Jensen’s formula

Theorem 2. [32, 48] For α ∈ R\Q and V ∈ Cω(T,R), there exist non-negative {L̂i(E)}
such that for any E ∈ R

L̂i(E) = lim
d→∞

L̂di (E),

where L̂di (E), i = 1, · · · , d, are the Lyapunov exponents, as defined in (0.6), of the
Sp(2d,C) transfer-matrix cocycle of the dual eigenvalue equation ĤV d,α,xΨ = EΨ, with
V d(x) = Dd ? V, Dd being the Dirichlet kernel. Moreover,

Lε(E) = L0(E)−
∑

{i:L̂i(E)<2π|ε|}

L̂i(E) + 2π(#{i : L̂i(E) < 2π|ε|})|ε|

In particular, dual Lyapunov exponents are the analogue of ln |zi| where zi are zeros
of an analytic function in the Jensen’s formula (and, in fact, the classical Jensen’s
formula can also be explained through spectral theory and dual Lyapunov exponents for
pure diagonal quasiperiodic operators [32]. Also, the acceleration ω(E) is precisely the
number of vanishing dual Lyapunov exponents (an analogue of the winding number for
an analytic function on T.) In fact, one can say more

Theorem 3. [32] The acceleration ω(E) > 0 if and only if the dual Sp2d(C) cocycle
(α, ÂE) is partially hyperbolic with the dimension of the center equal to 2ω(E) and zero
center Lyapunov exponents.

This duality based approach led, in particular, to a new proof of ARC [27] for
Schrödinger cocycles. While not as strong as Avila’s result [5] in several aspects, this
provided a novel elegant vision of ARC and several important technical tools.

Ge’s proof [27] was first announced in the review [48] without detail, and first pre-
sented, along with the entire strategy and various details, in Ge’s talk at QMath 15,
September 2022. The authors of [38] developed another duality proof, using Ge’s strat-
egy, but different from Ge’s in some technical aspects (along with a technically different
from [32] proof of the multiplicative Jensen’s formula of [32, 48]).
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We now depart from the talk as given at (WM)2/ICM22 and the material presented in
[48], and list several exciting developments for which it has been the foundation. They
were first presented in the above mentioned Qmath 15 talk by L. Ge.

It turns out that the partially hyperbolic structure of the dual cocycle described in
Theorem 3 helps approach various questions that previously seemed intractable. One
property of the almost Mathieu operators is that its acceleration is always either zero
or one. However (as easily demonstarted by the almost Mathieu itself), acceleration is
not a stable quantity. To this end, in [30] we introduced the generalized acceleration:

ω′(E) = lim
ε→0+

Lε(E)− Lε1(E)

2π(ε− ε1)
.

where ε1 ≥ 0 is the first turning point of the piecewise affine function Lε(E). Then we
define operators of type 1 as operators with ω′(E) = 1 on the spectrum.8. It turns out
to be a set open in Cωh for each h > 0, that contains the entire almost Mathieu family,
along with several other popular families, and therefore their analytic neighborhoods. In
[29–31] we present full solutions of problems (1)-(3) for all operators of type I. Namely,
we have

Theorem 4. [30, 31][Robust Problem 1]. The ten martini holds for all operators of type
I: the spectrum of HV,α,θ is a Cantor set for all α ∈ R\Q.

Theorem 5. [29][Robust Problem 2]. The IDS of all non-critical operators HV,α,θ of
type I is absolutely continuous

Theorem 6. [29][Robust Problem 3]. Supercritical operators HV,α,θ of type I have pure
point spectrum for a.e. θ for E with L(E) > β(α) and singular continuous spectrum for
all θ for E with L(E) < β(α).

Each of these theorems is not only the solution of the corresponding robust problem,
but also presents the first corresponding arithmetic result for any operator HV,α,θ with
V other than the λ cos .

The proof of the original ten martini problem in [8] has crucially depended in several
places on V being a λ cos. The original Puig’s argument, establishing Cantor spectrum
for the almost Mathieu for Diophantine α, was based on the fact that localization for
H2λ cos,α,0 proved in [46, 50] (with the argument requiring V = λ cos) implies reducibility
at each eigenvalue E for the dual SL(2,R) cocycle to(

1 c
0 1

)
. Puig showed that c 6= 0 implies by a Moser-Pöshel argument that E is an edge of
an open gap, while c = 0 is impossible by the simplicity of the eigenvalues for second-
difference operators. This therefore requires V = λ cos in three different places; to
ensure localization at x = 0, to ensure that the dual operator is second-difference, and,
at the last step, that the one where we need to argue through the simplicity of the
eigenvalues, is also second-difference. Since localization for x = 0 is only expected to
hold up to the β(α) = L(E)/2 threshold [8, 9, 63], this had to be replaced in [8] by
a more sophisticated argument, that still required V = λ cos in three different places,

8A subtle point is that the operator may be of type 1 in Cωh but not in Ch′
ω for some h′ < h if the

first turning point h′ < e1 < h
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already for the “Diophantine” side of the argument. Indeed, for the Kotani theory for
ergodic Schrödinger operators and (fictitious) improved regularity of the m-function [8]
the second-differenceness of the dual operator is needed; the elements of Puig’s argument
that were left required both the operator and its dual to be second-difference, and
fixed frequency localization for the dual model also required V = λ cos . Even more
importantly, the Liouville side of the proof, which was an extension of a C∗-algebraic
argument of [22] requires V = λ cos in a rather dramatic way. It is mainly the last
consideration that has prompted the authors of [8] to state that they viewed the fact
that the Diohantine and Liouville approaches met at the middle as some sort of a miracle.

To get rid of this cos spell, the general theory of finite difference operators whose
complex-symplectic transfer-matrix cocycles are partially hyperbolic with two dimen-
sional center (so called PH2 operators) was developed in [30].

The two key results are

• the Kotani theory: for PH2 Sp(2d,C) cocycles over minimal dynamics T that
have zero center Lyapunov exponents, there is L2 reducibility in the center (see
[30] for details).
• the simplicity of point spectrum: ergodic finite difference operators with minimal
underlying dynamics, whose transfer matrix cocycles are PH2 have simple point
spectrum.

The Kotani theory part, in particular, makes the first progress in the solution of the
Kotani-Simon problem [60]: to find the conditions when vanishing of some Lyapunov
exponents of the transfer-matrix cocycle imply the potential is deterministic9. Similar
theory for partially hyperbolic cocycles with center of arbitrary dimension will appear in
[28], thus solving the Kotani-Simon problem whenever the cocycle with zero Lyapunov
exponents in the center is partially hyperbolic.

The simplicity of point spectrum part provides a condition for effective second-differenceness
for higher difference linear operators, thus having also many other possible consequences.

Finally, to develop an all-frequency argument, it was most important to not rely on
reducibility to the identity, since it has Diophantine obstructions. Avila, Fayad, and
Krikorian [7], using the “cheap trick” of [24], proved that if one replaces reducibility to
constants by the reducibility to rotations, then the a.e. energy reducibility result (in
the regime of zero Lyapunov exponents) holds for every α. 10 In the same spirit, the
“all α /∈ Q” nature of the proof of [30] is largely enabled by replacing the impossibility
to reduce to the identity, used in the proofs of [8, 67] with the impossibility to reduce
to a rotation with zero rotation number, with, in turn, the simplicity of eigevalues for
operators with PH2 cocycles with the impossibility to have two linearly independent
almost localized solutions.

These arguments constitute the core of [30], that therefore present the first non-cos
ten martini result. [30] still requires though V to be a trigonometric polynomial (so that
there is a dual cocycle) and to be even. The robust version of the ten martini statement,
as presented in Theorem 4 will appear in [31]. It is based on the tools developed in [29]
to

9It was proved in [60] for the case when all Lyapunov exponents vanish.
10We note also a recent all α /∈ Q argument, where Avila-You-Zhou [15] replace reducibility to the

identity by quantitative almost reducibility to the identity.
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(1) pass from trigonometric polynomials to analytic functions in the duality based
arguments

(2) remove the need for the evenness of V.
.

The requirement for V to be even first appeared in [25], and was significantly used in
[46] and the follow-up arithmetic results [8, 51, 52, 63], exploiting the fact that reflection-
based resonances appearing for even V can be handled efficiently. The fact that the
approach of [46] can be extended to the case of acceleration 1 for even V has been clear
ever since the introduction of acceleration in [3] where Avila’s proof essentially showed
that, for energies with acceleration 1, traces of transfer-matrices (i.e., determinants of
block-restrictions with periodic boundary conditions) of size qn effectively behave like
trigonometric polynomials of degree qn, which they are for the almost Mathieu operator,
and therefore have no more than qn zeros, a feature that enables arithmetic localization
proofs in [8, 46, 51, 52, 62, 63] as well as many other recent localization results that
fundamentally go back to the same zero-counting idea, e.g. [43, 49, 57, 59, 68, 73]. The
details have been recently implemented in [37].

However, if V is not even, the zero count, even for the case of acceleration 1, becomes
2qn making the approaches that go back to [46] break down. The approach of [29] is based
instead on the structure of dual cocycle, and allows also to uncover the deep dynamical
meaning of evenness. It is shown in [29] that the complex-symplectic structure in the
dual center is analytically conjugated to a real-symplectic one modulated by a diagonal
rotation, with the angle of the latter being zero if and only if V is even. This allows to
introduce the rotation numbers for the complex-symplectic case, which, while important
in its own right, leads also to the solution of problems (2) and (3) for all trigonometric
polynomial V without the need for V to be even.

While the above structures are defined for the dual cocycles associated with trigono-
metric polynomial V , for general analytic V one can consider a sequence of cocycles
corresponding to its trigonometric polynomial cutoffs. While the cocycles itself change
dramatically, with no limit in any of their components, it was shown in [32] that when the
size of the cutoffs increases, their appropriately ordered Lyapunov exponents converge
in the limit to so-called dual Lyapunov exponents (that exist in absence of a cocycle). A
key result of [29] is that the corresponding complex-symplectic structures in the center
and therefore the related rotation numbers also converge, leading to the existence of
well-structured center (and the rotation numbers) for the dual operator, still in absence
of an underlying cocycle.

The final details of the proof of Theorem 4 will appear in [31], completing therefore
the program of showing robustness of all of (1)-(4).

Personal remarks

Other than doubling as the plenary virtual ICM 22 and (WM)2 talk, that I was given
a special opportunity to deliver in-person in front of a great audience at the Probability
and Mathematical Physics conference in Helsinki on June 30 2022, my presentation has
had yet another role as the talk for being honored with the inaugural Olga Ladyzhenskaya
medal in Mathematical Physics. I am very grateful for the encouragement by the editors
and the opportunity to present here what I remember of some of the personal remarks
I made then in this regard.
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Ladyzhenskaya was a giant of a mathematician. She was a truly great role model
to men and women mathematicians, through her lifetime of dedication to mathematics,
dedication that has never stopped. Receiving an award honoring her is not only a
tremendous honor, but also a huge inspiration.

It is additionally special to me, because, while most mathematicians, even if restricting
to the PDE people, probably learn about Ladyzhenskaya only sometime in their 20s,
I’ve been regularly hearing her name literally right from the time I was born. My
mom, Valentina Borok, and my dad, Yakov Zhitomirskiy, were both mathematicians
working on PDEs, and very much in the orbit of Ladyzhenskaya, especially my mom.
In particular, Ladyzhenskaya, was an opponent at both my mom’s Candidate (PhD)
and Doctor (a significantly more demanding version of habilitation) defenses. Despite
the sound of the word "opponent", this role essentially meant a well-known arm-length
person in a close field who reads the thesis in detail and gives a presentation on it at
the defense, so it should rather have been called "a supporter". Her name (usually, as
a patronimic “Olga Alexandrovna”) was mentioned a lot by my parents, with a great
deal of reverence. She was arguably the strongest woman mathematicians of the second
half of the last century. Moreover, after the deaths of Petrovskij and Shilov in the early
70s, Ladyzhenskaya was definitely the best PDE expert in the USSR - not a small feat!
The school she created includes people such as Buslaev, L. Faddev, and counts over 300
descendants on math genealogy. Possibly for political reasons in the USSR 11 and for
the iron curtain reasons outside it, she hasn’t had many formal accolades up until the
90s when she was already in her 70s, but the respect to her was deep and universal.

I may or may not have met Ladyzhenskaya at age four, when she came to Kharkiv
as an opponent at my mom’s doctoral (habilitation+) defense. After that, I did have
multiple opportunities to meet Ladyzhenskaya, but lost all of them. My mom would
travel to St. Petersburg about once a year to speak at Ladyzhenskaya’s seminar and/or
meet with her. She would quite often take me along, mostly with a purpose to expose
me to more culture. So she would drop me off at one of the great St. Petersburg musea,
while she visited Ladyzhenskaya. I liked that.

In fact, my mom, didn’t really want me to become a mathematician and even discour-
aged me quite a bit. “This job is not good for a girl", "You want to come home at five
and only have your family in mind; You cannot do it as a mathematician", "The most
important thing for a girl is family” are things I heard growing up. It is particularly
interesting because she was actually a very successful mathematician herself. Succeed-
ing professionally against the odds; for over 20 years she was the only female professor
of mathematics in the entire country of Ukraine (over 30 mln people). Reaching the
Professor level there has been prohibitively difficult for all; the rate among faculty of
professors to more junior titles was 1/20 if not less, and the title brought a lot of prestige,
for anyone. With no affirmative action, everybody knew that all mom’s achievements
were hers, and the respect to her - from everyone around - was palpable. When I was five,
there was a long article about her, in the city’s central newspaper. It started with “Little
Svitlana has big blue eyes” and featured a picture of me helping mom at a subbotnik. I
was enormously proud.

So why would she discourage me? Larger-than-life, universally loved and admired,
sharp and multi-talented, she had only one goal for me: happiness. My theory for a

11She was involved with the dissident circles, and was a friend of Ahmatova and Solzhenitzyn
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long time was that she just didn’t want to traumatize me by being my unachievable
role model. Yet I well knew I was not as brilliant as her and never thought I could
achieve nearly as much, anyway. Also, my parents didn’t discourage my brother; to the
contrary it was almost assumed from the early on that he would be a mathematician.
When a few years ago, I finally asked my father why, he told me that it was mom’s
idea because she was afraid... that, being a bit obsessive, I would try to go into the
footsteps of Ladyzhenskaya. Because to be a really great mathematician, you had to
be fully dedicated, like her. Mathematics was her life. Indeed, at least in the Soviet
Union, at that time it was essentially incompatible with family life for women because
of various cultural issues, see e.g. [58]. My mom was one of the handful of women in
the entire Soviet Union who were able to combine high level math with family, but she
didn’t achieve the greatness at a really high level.

I only followed about 50% of my mom’s advice, but I am lucky to be living in different
time and circumstances. I think that the times when, as my mom said, mathematician
was a bad job for a girl are long gone. One needs a lot of luck to do something that
gets a lot of recognition, and I am very humbled by and grateful for the recognition I’ve
been getting lately. But whether or not it happens is not what is really important. It is
a great job for all who are lucky enough to develop their interest in math. Setting your
level of dedication and your balance to whatever suits you best, ranging from a quest
to the true greatness, like Ladyzhenskaya, all the way to mainly focusing on the other
things in life when outside the office, but doing the work that you love, much of it in
the environment that you love, what can be better?
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