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Abstract
Spectral theory of one-dimensional discrete one-frequency Schrödinger operators is a field
with the origins in and strong ongoing ties to physics. It features a fascinating competi-
tion between randomness (ergodicity) and order (periodicity), which is often resolved on
a deep arithmetic level. This leads to an especially rich spectrum of phenomena, many of
which we are only beginning to understand. The corresponding analysis involves, in partic-
ular, dealing with small denominator problems. It has led to the development of non-KAM
methods in this traditionally KAM domain, and to results completely unattainable by the
old techniques, also in a number of other settings. This article accompanies the author’s
lecture at the International Congress of Mathematicians 2022. It covers several related
recent developments.
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Figure 1 Hofstadter’s butterfly

One-dimensional discrete one-frequency Schrödinger operators
(0.1)
(�+ ,U,GD)= := D=−1 + D=+1 ++ (G + =U)D=, D ∈ ℓ2 (Z), U ∈ T := R\Q, G ∈ T, + : T→ R,

and related questions of the dynamics of quasiperiodic cocycles have not been under-
represented at the ICMs. Just on my memory, so roughly within the last 25 years, there
were sectional lectures by H. Eliasson in 1998, myself in 2002, B. Fayad, R. Krikorian, and
J. You in 2018, as well as plenary lectures by A. Avila in 2010 and 2014, devoted either in
part or in full to this topic.

The field itself is not at all new. It may be seen as having been originated in physics
when Peierls [102], and later his student Harper [60] studied the tight-binding two-dimensional
electron in a uniform perpendicular magnetic field (aka the Harper model) and derived the
by now iconic family �2_ cos,U,G that we now, following Barry Simon [104], call the almost
Mathieu operator. It remains hugely popular in physics, being directly linked to several
remarkable experimental discoveries and Nobel prizes, providing, in particular, the theo-
retical underpinning of the Quantum Hall Effect, as proposed by D.J. Thouless in 1983. A
google search for ’Harper’s model physics” leads to millions of hits.

The field may also be seen as having been originated in a numerical experiment, as
the interest was picked after Douglas Hofstadter came up with what we now call the Hofs-
tadter’s butterfly [63] - a beautiful numerically produced fractal, discovered even before the
word fractal was coined by Benoit Mandelbrot. Finally, the field may be seen as having been
originated from the first application of KAM in the spectral theory, - a pioneering work
of Dinaburg and Sinai [36], that preceded Hofstadter. The field has consistently attracted
top mathematical physicists (e.g. Bellissard, Deift, Simon, Sinai, Spencer), dynamicists
(e.g. Avila, Eliasson, Herman, Krikorian, You), and analysts (e.g. Bourgain, Eliott, Sarnak,
Schlag). Indeed, it turned out to be a fantastic ever-expanding playground for the analysts
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and dynamicists alike, leading to strong cross-fertilization of ideas that have a tendency to
later expand to other subjects. Jean Bourgain wrote a book [28] devoted to analytic, mostly
one-dimensional, quasiperiodic operators that summarized significant new understanding
achieved around the turn of the century, where the work of Jean and collaborators was
central.

It is therefore all the more surprising that as of the time of this writing it seems that
the field is on the verge of further significant breakthroughs, with our current understanding
covering just the tip of an exciting iceberg. Given the remarkable current momentum we will
refrain from making an attempt at an overview of vast past literature, not even very recent,
nor a number of important milestones, and will concentrate instead only on two selected
topics that enjoyed significant recent advances and hold a particular promise to shape some
of the future discourse.

For the review up to about five years ago see [84], and for various fine issues related
to continuity of the Lyapunov exponents, featuring, in particular, very important work by M.
Goldstein and W. Schlag, see the recent book by P. Duarte and S. Klein [37]. The 2018 ICM
Proceedings by J. You [116] summarize, among other things, the quantitative reducibility
breakthrough developed in his group, that has led to a number of powerful consequences.
There are also recent expositions: [68, 69], that include some further remarkable results of
roughly the last decade that could not make it into this article.

1. Spectral theory meets (dual) dynamics
Quasiperiodic operators (0.1) are of course a particular case of one-dimensional

discrete ergodic Schrödinger operators

(1.1) (�GD)= := D=−1 + D=+1 ++ ()=G)D=, D ∈ ℓ2 (Z),

where G ∈ -, and (-, `, )) is an ergodic dynamical system. Operators with ergodic poten-
tials (also in the continuum or in a more general multi-dimensional/covariant setting) always
have spectra and closures of the other spectral components constant for `−a.e. G[95, 101]. In
case of the minimal underlying dynamics, such as e.g. the irrational rotation of the circle in
(0.1), the spectra [20] and absolutely continuous spectra in the one-dimensional case [96] are
constant for all G. In contrast, the point and singular continuous parts (that are constant a.e.)
can depend sensitively on G. It is an interesting problem, usually attributed to B. Simon, and
open even in the setting of (0.1) whether this still holds when they are combined together
(see Problem 6 in [70]).

The spectral theory of one-dimensional ergodic Schrödinger operators (1.1) is
deeply connected to the study of linear cocycles over corresponding underlying dynam-
ics. By an (! (2, R) cocycle, we mean a pair (), �), where ) : - → - is ergodic, � is a
measurable 2 × 2 matrix valued function on - and det � = 1.

We can regard it as a dynamical system on - × R2 with

(), �) : (G, 5 ) ↦−→ ()G, �(G) 5 ), (G, 5 ) ∈ - × R2.

3 Quasiperiodic operators.



A one-parameter family of Schrödinger cocycles over (-, `,)), indexed by the energy � ∈ C
is given by (), �) : (-, R2) ↦→ (-, R2) where (), �) : (G, H) ↦→ ()G, �(G, �)H), and � ∈
(! (2,C) is the transfer-matrix

�(G, �) :=

(
� − {(G) −1

1 0

)
,

G ∈ - , H ∈ R2, � ∈ C. The eigenvalue equation �D = �D can be re-written dynamically as(
D=+1
D=

)
= �()=G, �)

(
D=

D=−1

)
.

The (top) Lyapunov exponent is then defined as ! (�) := lim=→∞
∫

1
=

ln ‖�= (G, �)‖ 3`
where

(1.2) �= (G, �) :=
0∏

8==−1
�() 8G, �).

Two classical results link dynamics/Lyapunov exponents to the spectral theory of ergodic
operators.

• Johnson’s theorem [91]: for minimal (-, `,)), the spectrum f(�) (which is con-
stant in G ∈ -) is given by the set of � ∈ R such that the Schrödinger cocycle
(), �(·, �)) is not uniformly hyperbolic.

• Kotani theory [94]: The absolutely continuous spectrum f02 (�) (`- a.e. constant
for any ergodic (-, `, )) and constant for minimal systems [96]) is given by the
essential closure of the set {� : ! (�) = 0}.

Therefore, for minimal, and in particular, quasiperiodic, underlying dynamics, spec-
trum and absolutely continuous spectrum of �G are fully encoded by the dynamics of the
one-parameter family �(G, �) of transfer-matrix cocycles, indexed by the energy �. One
recent surprising development is that for analytic one-frequency quasiperiodic Schrodinger
operators, the spectrum (and therefore absence of uniform hyperbolicity of the correspond-
ing cocycles) can be characterized more directly. In [50] we introduce a new object, dual
Lyapunov exponent !̂ (�) and prove

Theorem 1.1. [50] For quasiperiodic operators (0.1) with analytic +,

(1.3) f(�) = {� : ! (�) !̂ (�) = 0}.

!̂ (�) is defined as the limit of lowest Lyapunov exponents of dual high-dimensional
cocycles (see Sections 2,4) which is proved to exist. There are interesting questions of vary-
ing levels of difficulty on whether this can be appropriately extended to higher-dimensional
analytic one-frequency quasiperiodic Schrodinger cocycles, corresponding to operators on
the strips, to multi-frequency analytic cocycles, to non-analytic potentials, or even other
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underlying dynamics. Perhaps the most natural question is whether one can find an ana-
lytic characterization of absence of uniform hyperbolicity for all analytic one-frequency
quasiperiodic cocycles. For the latter, there is a topological obstruction, but one can reduce
the question, say, to cocycles homotopic to the identity.

2. Aubry duality and higher-dimensional cocycles
The early work of Dinaburg-Sinai [36] notwithstanding, it is fair to say that the study

of the spectral theory of quasiperiodic operators has been largely shaped around and driven
by several explicit models, all coming from physics. The most prominent of those is the
almost Mathieu family �2_ cos,U,G , which can be argued to be the tight-binding analogue of
a harmonic oscillator. Besides being the main model in the related physics studies and the
one featured in the Hofstadter’s butterfly, it is also the simplest, in many ways, analytic case,
yet it seems to represent most of the nontrivial properties expected to be encountered in the
more general situation. In some sense, it plays the same role in the theory of quasiperiodic
operators that the Ising model plays in statistical mechanics, and similarly to the latter, it
does have an important additional symmetry.

Namely, we define the Aubry dual of the one-frequency Schrödinger operator (0.1)
as

(2.1) (�̂+ ,U,\D)= =
∞∑

:=−∞
+:D=+: + 2 cos 2c(\ + =U)D=, = ∈ Z.

where+: is the :-th Fourier coefficient of+ *. It can be useful to view this as a transformation
of the entire family indexed by G for fixed +, U. In this regard, this transform can be viewed
as a unitary conjugation onH = !2 (T × Z), via

*k(G, =) = k̂(=, G + U=),(2.2)

where k̂ : !2 (Z × T) → !2 (T × Z) is the Fourier transform. The almost Mathieu family
is self-dual with respect to this transformation: �̂2_ cos,U,G = � 2

_
cos,U, \ , and, in particular,

�2 cos,U,G , that is, �2_ cos,U,G with _ = 1, is the self-dual (also called critical) point.
Aubry duality can be explained by the magnetic nature and corresponding gauge

invariance of two-dimensional magnetic Laplacians that lead to �+ ,U,G [100]. In particu-
lar, spectra and integrated densities of states of �+ ,U,G and �̂+ ,U,G coincide. However, it
is not the case for the spectral type, and indeed it is natural to expect that a Fourier type
transform would take localized eigenfunctions (point spectrum!) into extended ones (abso-
lutely continuous spectrum!) and vice versa. That was the basis for several predictions by
the physicists Aubry and Andre [1] about the almost Mathieu family with irrational U: that
the spectrum of �2_ cos,U,G is absolutely continuous for _ < 1, (called subcritical) and pure
point for _ > 1, (called supercritical). It was in that paper where transformation (2.1) was

* There is a more general, multi-dimensional definition, but we stick to the one-dimensional
case for this exposition.
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introduced in the context of the almost Mathieu family, leading to the name Aubry duality.
This problem, along with a few others related to this family, was heavily popularized by
Barry Simon in [106,107], fueling an increased interest in the math community.

Aubry duality has been formulated and explored on different levels, e.g. [100], [54],
[10]. It has consistently played a central role in the analysis of quasiperiodic operators, in
proving absolutely continuous spectrum and reducibility [10,30], point spectrum [16,24,47,56,

73]*, or its absence [11,72].
In general, operator (2.1) is long-range. If+ is a trigonometric polynomial of degree

3, the transfer-matrix �(G, �) of the eigenvalue equation �̂+ ,U,GΨ = �Ψ gives rise to a 23-
dimensional cocycle, which has a complex-symplectic structure [59], so we will view it as a
(?(23,C) cocycle (U, �), � ∈ (?(23,C) : a linear skew product:

(U, �) :
{
T × C23 → T × C23

(G, {) ↦→ (G + U, �(G, �) · {)

}
.

The Lyapunov exponents !1 (U, �) ≥ !2 (U, �) ≥ ... ≥ !23 (U, �), repeated accord-
ing to their multiplicity, are defined by

!: (U, �) = lim
=→∞

1
=

∫
T

ln(f: (�= (G)))3G,

where for a matrix � ∈ "< (C), f1 (�) ≥ ... ≥ f< (�) denote its singular values (eigenvalues
of
√
�∗�). Since for real � the transfer-matrix �(G, �) of the eigenvalue equation �̂+ ,U,GΨ=

�Ψ is symplectic, its Lyapunov exponents come in the opposite pairs {±!8 (U, �)}38=1. We
will now denote

(2.3) !̂8 = !3−8 (U, �),

so that 0 ≤ !̂1 ≤ !̂2 ≤ ... ≤ !̂3 .
In general, Lyapunov exponents are not nicely behaved with respect to parameter

changes. They can be (and most likely, typically are) discontinuous in U at U ∈ Q (the almost
Mathieu cocycle is one example), are generally discontinuous in � in�0, and can be discon-
tinuous in � even in �∞ [34,83,112,113]. It is a remarkable fact, enabling much of the related
theory, that Lyapunov exponents are continuous in the analytic category

Theorem 2.1 ([12, 26, 30, 76]). The functions R × �l (T, "< (C)) 3 (U, �) ↦→ !: (U, �) ∈
[−∞,∞) are continuous at any (U′, �′) with U′ ∈ R\Q. **

For the almost Mathieu operator, it leads to the exact formula for the Lyapunov
exponent for energies � in the spectrum of �2_ cos,U,G . We have !_,U (�) = max{ln |_ |, 0}
[29].

For Diophantine U this continuity extends to sufficiently smooth Gevrey spaces
[34,92] and it is a remarkable recent result [51] that for certain U the transition in the topology

* made possible with the development of recent powerful methods [7, 14, 64, 117] to establish
non-perturbative reducibility directly and independently of localization for the dual model

** In dimension one, it extends to the Lyapunov exponents of multi-frequency cocycles R ×
�l (T1 , S!2 (C)) 3 (U, �) ↦→ ! (U, �) ∈ [0,∞)
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for continuity of ! occurs sharply at the Gevrey space �2. It should be noted that both the
original spectacular counterexample [112] and its refinements [51,113] require U to be a fixed
irrational of bounded type, i.e. having a continued fraction expansion with bounded coef-
ficients. This set includes the golden mean but forms a set of zero Lebesgue measure. The
authors of all these papers also vary the cocycle, i.e. the potential. This still leaves open the
question whether continuous behavior of the Lyapunov exponents at least for Schrödinger
cocycles with regularity lower than �2 is possible if U is not of bounded type. Another
open question is whether it is true that for a fixed potential of lower than �2 regularity, the
Lyapunov exponent is necessarily a continuous function of energy.

3. Avila’s global theory of analytic one-frequency cocycles and their
classification
While many results exist in lower regularity, analyticity of + in (0.1) brings on

board powerful ideas related to subharmonicity (leading, in particular, to the crucially
important for other developments continuity results) and the technique of semi-algebraic
sets introduced to the field by J. Bourgain [28]. As a result, a lot more can be said about ana-
lytic quasiperiodic operators. Particularly, while Kotani theory based its characterization of
the absolutely continuous spectrum on compexifying the energy, for analytic quasiperiodic
operators there is one more natural parameter to complexify: the phase. This idea goes back
to M. Herman [62], and has been fruitfully used to prove positivity (and later continuity)
of the Lyapunov exponent in [26, 62, 109]. Avila [6] discovered a remarkable related structure
that has served as a foundation of his global theory (later extended to the high-dimensional
cocycles in [12]). Define ! n (�) := lim=→∞

∫
1
=

ln ‖∏0
9==−1 � 9 (G + 9U + 8n , �)‖ 3`. Avila

observed that, for a given cocycle, ! n is a convex function of n , and proved that it has
quantized derivative in n .

Theorem 3.1. [6] For any complex analytic one-frequency cocycle,

l(�) = lim
n→0+

! n (�) − !0 (�)
2cn

∈ Z.

This was enabled through approximation by the rationals due to the continuity of
the Lyapunov exponent in the analytic category [31, 76]. The fact that such continuity does
not hold even for higher Gevrey cocycles [51, 112, 113] complicates potential non-analytic
extensions.

Theorem 3.1 already enables full analytic computation of the Lyapunov exponents
for � in the spectrum, as well as of their complexifications ! n and further analysis for several
models originating and relevant in physics: the almost Mathieu operator [6], the extended
Harper’s model [83], recently discovered models with mobility edges [111] and unitary almost
Mathieu operator [33], models arising in the study of the quantum graph graphene [23], and
others.
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Avila classified analytic cocycles �(G) depending on the behavior of the Lyapunov
exponent ! n of the complexified cocycle �(G + 8n). Namely, he distinguishes three cases,
with the terminology inspired by the almost Mathieu family:

Subcritical: ! n = 0, n < X, X > 0, or, alternatively, !0 = l(�) = 0.

Critical: !0 = 0, ! n > 0, n > 0, or, alternatively, !0 = 0, l(�) > 0.

Supercritical: !0 > 0.

For the almost Mathieu family these three regimes are uniform over the spectrum,
corresponding to the supercritical (_ > 1), subcritical (_ < 1), and critical (_ = 1) values
of the coupling constant. Spectrally, there is purely absolutely continuous spectrum for all G
and all U ∈ R\Q in the subcritical case [2], purely singular continuous spectrum for all G and
all U ∈ R\Q, in the critical case [72], and pure point spectrum for a.e. G, U with sharp spectral
transitions depending on the arithmetics of both U and G between pure point spectrum and
singular continuous spectrum, in the supercritical case (see Section 5). Remarkably, the
critical almost Mathieu operators appear at the boundary of the two other regimes.

For general quasiperiodic operators, this classification leads to the corresponding
division of energies in the spectrum, depending on (sub/super)criticality of the cocycle
�(·, �). For convenience we will call the energy in the spectrum (super/sub)critical accord-
ing to whether the corresponding transfer-matrix cocycle is. It is expected that the key
spectral properties of spectra in the three above regimes follow those of the correspond-
ing almost Mathieu operators.

Indeed, pure point spectrum for a.e. G, U holds through the supercritical set of ener-
gies, for any analytic operator [29]. It is an important open problem to make this result
arithmetic, and it is expected that certain universal features of the transitions and struc-
ture of the eigenctions discovered in [79, 80] will hold globally, throughout the supercritical
regime, see Section 6.3.

The subcritical regime is subject to the almost reducibility conjecture ( ARC) which
claims that subcritical cocycles are almost reducible: have constant cocycles in the closure
of their analytic conjugacy class (note that since almost reducibility implies subexponential
growth of the iterates of the cocycle that is uniform in the (complexified) phase, the converse
is obviously true). The idea of reducing non-perturbative (global) to perturbative (local)
results originated from an earlier work by Avila and Krikorian [14]. ARC was first formulated
in [10], and first established for the almost Mathieu operator [2,10]. It was solved by Avila for
the Liouville case in [3], and the solution for the complementary Diophantine case has been
announced [6] to appear in [4]. Also, L. Ge has recently found a different proof [45].

Almost reducible (and therefore subcritical) cocycles enjoy all the dynamical and
spectral consequences of the Eliasson’s perturbative regime [38]. In particular, there is purely
absolutely continuous spectrum throughout the subcritical regime. Moreover, reducibil-
ity can be made quantitative [116], and even arithmetically so [47], allowing for a wealth
of conclusions. However, it remains true that the absolutely continuous spectrum is fully
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characterized by the subcritical regime, with no delicate dependence, as far as the spectral
decomposition goes, on any other parameters.

The critical regime is expected (see [11, 84]) to support only singular continuous
spectrum (again, no dependence on the other parameters, as long as U is irrational) but
fully establishing it even for the critical almost Mathieu operator took decades and was only
accomplished recently [72].

On the other hand, the key result of Avila’s global theory [6] is that operators with
critical energies throughout the spectrum, like the critical almost Mathieu operator, are
an anomaly, that does not happen typically. In fact, for prevalent (in a certain measure-
theoretic sense) potentials, there are no critical energies, and the spectrum is contained
in finitely many intervals, with either only subcritical or only supercritical regime within
each*. Moreover, the set of potentials and energies (+, �) such that � is critical is con-
tained in a countable union of codimension-one analytic submanifolds of Cl (T; R) × R.
Another remarkable related fact is that Lyapunov exponent enjoys even much stronger regu-
larity when restricted to potentials and energies with fixed value of acceleration: it becomes
real analytic on this (typically rather irregular) set, in both the energy � and any parameter _
ranging in a real analytic manifoldΛ, if+_ in Cl (T;R) is a real analytic family in parameter
_.

From the point of view of the global theory, it becomes particularly important to
study the universal features of the two prevalent regimes: subcritical and supercritical. As
mentioned above, the absolutely continuous spectrum is fully characterized by the subcriti-
cal regime, with no delicate dependence, as far as the spectral decomposition goes, on any
other parameters. The picture for the supercritical regime is a lot more interesting, and is in
a certain sense at the beginning of its development.

Going back to the complexified cocycle ! n , quantizatization of acceleration means
that as a function of n > 0, ! n is convex, piecewise affine, and thus is fully characterized
by ! = !0 and monotone increasing sequences of turning points 18 and slopes =8 ∈ 2cZ+,
so that the slope of ! n between 18 and 18+1 is =8 . Clearly, sequences 18 and =8 present a
very important intrinsic characterization of the cocycle and the corresponding Schrödinger
operator. What information do they give us?

4. Dual Lyapunov exponents or global theory demystified
It turns out that Aubry duality not only provides a new proof of quantization of

acceleration, but holds key to the mystery of the global theory. We have

Theorem 4.1. [50] Assume U ∈ R\Q and + ∈ �l (T, R). Then there exist non-negative
{!̂8 (�)} such that for any � ∈ R

!̂8 (�) = lim
3→∞

!̂38 (�),

* A part of this picture was previously established in the semi-classical regime in the contin-
uum in [39].
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where !̂3
8
(�), 8 = 1, · · · , 3, are the Lyapunov exponents, as defined in (2.3), of the (?(23,C)

transfer-matrix cocycle of the dual eigenvalue equation �̂+ 3 ,U,GΨ= �Ψ, with+3 (G) = �3 ★
+, �3 being the Dirichlet kernel. Moreover,

! n (�) = !0 (�) −
∑

{8:!̂8 (�)<2c |n | }

!̂8 (�) + 2c(#{8 : !̂8 (�) < 2c |n |}) |n |

In fact, the theorem also holds for + ∈ �l
ℎ
(T, R) and |n | < ℎ, where �l

ℎ
(T, R)

is the space of bounded analytic functions 5 defined on a strip {|=I | < ℎ} with the norm
‖ 5 ‖ℎ = sup |=I |<ℎ | 5 (I) |. See Figure 2 for an illustration of the three possible scenarios.

Figure 2 The complexified Lyapunov exponent

This means that for the trigonometric polynomials+ the turning points 18 are given
precisely by the Lyapunov exponents !̂8 (�) of the dual cocycle, and increases in the slopes
are given by the 2c times their multiplicities; for analytic + these objects are given by the
limits of those quantities for successive trigonometric polynomial cutoffs of +. We call
!̂8 (�) the dual Lyapunov exponents, the objects that play a role similar to that of zeros of an
analytic function in the Jensen’s formula. In particular, the acceleration l(�), turns out to
be precisely the number of vanishing dual Lyapunov exponents (an analogue of the winding
number for an analytic function on T.)

Besides unraveling the mystery of the behavior of complexified Lyapunov expo-
nents this leads to a new understanding of the key statement of Avila’s global theory: that
for prevalent operators (0.1), almost all pairs of potentials and energies are acritical. Indeed,
it immediately follows that
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Theorem 4.2. [50] Assume U ∈ R\Q and + is analytic, then the energy � ∈ R is

(1) Outside the spectrum if ! (�) > 0 and !̂1 (�) > 0,

(2) Supercritical if ! (�) > 0 and !̂1 (�) = 0,

(3) Critical if ! (�) = 0 and !̂1 (�) = 0,

(4) Subcritical if ! (�) = 0 and !̂1 (�) > 0.

Thus, in the regime ! (�) = 0, criticality is in the locus of vanishing of an additional
continuous [12] function !̂1 (�), implying the prevalence of acriticality claim. Theorem 4.2
of course also contains the statement of Theorem 1.1, with !̂ := !̂1, as well as the fact that
Schrödinger cocycle is subcritical if and only if its dual Lyapunov exponents are all positive.
It also leads to a number of other powerful spectral corollaries, both for the general analytic
case and several particular models [50]. It also has exciting physics applications [99] .

5. Precise analysis of small denominators
One of the most fascinating features of the spectral theory of one-frequency quasiperi-

odic operators in the supercritical regime is its delicate dependence on the arithmetics, that
can be analysed to a remarkable depth, and in some cases completely. There were many
exciting recent developments where the arithmetics has played a crucial role (e.g. [8, 15, 89])
but here we focus only on the analysis of small denominators in the proofs of point spectrum
and related study of the eigenfunctions.

The main difficulty in proving point spectrum (or the phenomenon of Anderson
localization: pure point spectrum with exponentially decaying eigenfunctions) and analysing
the correspoding eigenfunctions of ergodic operators is in the fact that the eigenvalues are
dense in the spectrum. Formal perturbative expansions of eigenfunctions and eigenvalues
include the (+ ()=G) −+ ()<G))−1 terms, that of course get arbitrarily large. More generally,
when we have resonances, that is restrictions to boxes that are not too far away from each
other that have eigenvalues that are too close (something that is bound to happen for ergodic
operators) small denominators are created. Thus localization for ergodic, and in particular,
quasiperiodic operators can be viewed as a small denominator problem.

Indeed, it has been traditionally approached in a perturbative way: through KAM-
type schemes for large couplings [38, 43, 108], which all required Diophantine conditions on
the frequency U. Small denominators are not simply a nuisance, but lead to actual change
in the spectral behavior, since in the opposite regime of very Liouville frequencies (too
small denominators), there is no localization even with positivity of the Lyapunov expo-
nent; and delocalization (which in this case means singular continuous spectrum) can be
proved by perturbation of nearby periodic operators [19, 53]. At the same time, for expo-
nentially approximated frequencies that are neither far from nor close enough to rationals,
there is nothing left to perturb about or to remove. Tackling those cannot be approached
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perturbatively, but requires a precise analysis, giving the problem a strong number-theoretic
flavor.

It should be noted that the topology of the one dimensional line is such that even
occasional barriers make it difficult to pass through, strongly favoring localization in pres-
ence of even small irregularities. For example, in the one-dimensional random case localiza-
tion holds for all couplings _, when considering a family of potentials _+, and the same is
expected but is apparently difficult to prove even for the underlying dynamics (-, `,)) with
very weak chaotic properties, such as skew shift. It has even been conjectured by Kotani
and Last that absolutely continuous spectrum is impossible for one dimensional operators
that are not almost periodic, but it has been disproved [5,110], and with a particularly simple
construction in [119]. Those examples notwithstanding, presence of metal-insulator transi-
tions (that roughly correspond to transitions between the spectral types) as couplings change
remains a distinctive feature of quasiperiodic operators.

The transitions in coupling between absolutely continuous and singular spectrum
are fully determined by vanishing/non-vanishing of the Lyapunov exponent. In the super-
critical regime, absolutely continuous spectrum is impossible, but whether the spectrum is
point or singular continuous is resolved in the competition between the depth of the small
denominators - the strength of the resonances - and the Lyapunov growth.

Two types of resonances have played a special role in the spectral theory of
quasiperiodic operators. Frequency resonances, when |+ (G) − + (G + :U) | is small sim-
ply because | | (G + :U) − G) | |R/Z = | |:U | |R/Z is small, where | |G | |R/Z = infℓ∈Z |G − ℓ |, were
first exploited in [20] based on [53] to prove absence of eigenvalues (and therefore singular
continuous spetrum in the hyperbolic regime) for quasiperiodic operators with Liouville
frequencies. Their strength is measured by the arithmetic parameter

(5.1) V(U) = lim sup
:→∞

−
ln | |:U | |R/Z
|: |

that is equal to zero for Diophantine (thus a.e.) U. Frequency resonances are ubiquitous for
all quasiperiodic potentials.

Another class of resonances, appearing for all even potentials, was discovered in
[85], where it was shown that the arithmetic properties of the phase also play a role and may
lead to singular continuous spectrum even for the Diophantine frequencies. Indeed, for even
potentials, phases with almost symmetries, when |+ (G) −+ (G + :U | is small because | | (G +
:U) − (−G) | |R/Z is small, lead to resonances, regardless of the values of other parameters.
The strength of phase resonances is measured by the arithmetic parameter

(5.2) X(U, \) = lim sup
:→∞

−
ln | |2\ + :U | |R/Z

|: |
Phase resonances are symmetry based and exist for all even functions +.

It was conjectured in [66] that for the almost Mathieu family no other resonances
appear and the competition between the Lyapunov growth and combined exponential res-
onance strength resolves in a sharp way: there is pure point spectrum for ! (�) > V(U) +
X(U, G) and singular continuous spectrum in the regime ! (�) < V(U) + X(U, G).We note that
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for the special case of U-rational G, that is such that 2G ∈ ZU + Z, we have X(U, G) = V(U)
so the resonances “double up” and the conjectured threshold becomes 2V(U).

An early non-perturbative localization method was first developed in the 90s for the
almost Mathieu operator [67] and represented perhaps the first case of solving a traditionally
KAM problem in a direct way, without an inductive procedure. It presented a (simple, but
not sharp) technique to treat the non-resonant case, V(U) = X(U) = 0. Further breakthroughs
came in [71]where the role of the Lyapunov exponents and corresponding deviations was first
understood, allowing to achieve the non-resonant result up to the actual Lyapunov transition,
and then in the work of Bourgain and collaborators [28, 29] where robust non-perturbative
methods were developed for general analytic potentials and more, leading to the proofs of
localization for a.e. frequency throughout the supercritical regime. The ideas of [71] hold
more generally, and have, in particular, led to very simple proofs of localization for the
one-dimensional Anderson model [90]. Most importantly, however, their arithmetic nature
has been crucial for further developments. For example, the fact that localization holds for
U-rational G*, enabled Puig’s proof [103] of the ten martini problem (that the spectrum is a
Cantor set) for Diophantine U. The solution of the full ten martini problem [8,9] required, in
particular, dealing with intermediate frequencies that are neither Diophantine nor Liouville,
thus with the frequency resonances. A method to treat those has been devised in [8] leading
to the proof of localization for ! (�) > 16

9 V, but failing in the neighborhood of the actual
transition. A sharp method to treat pure frequency resonances was developed in [79] and a
sharp method to treat pure phase resonances in [80].

Therefore, the sharp arithmetic spectral transition conjecture of [66] has been estab-
lished for single-type-resonances: for pure frequency resonances (that is for so-called U-
Diophantine phases for which X(U, G) = 0 so there are no exponential phase resonances)
in [16, 49, 79]** and for pure phase resonances (that is for Diophantine frequencies for which
V(U) = 0 so there are no exponential frequency resonances) in [80].

The methods to treat pure frequency and phase resonances in [79,80] are robust in a
sense that weak exponential resonances of the other type can be added easily, but it is still an
open problem to treat combined frequency and phase resonances in a sharp way. However,
there were two very recent breakthroughs.

Namely, W. Liu has developed a way to sharply treat doubled resonances for the
almost Mathieu operator, proving localization up to the conjectured threshold:

Theorem 5.1. [98] Operator �2_ cos,U,G with U-rational G has Anderson localization when-
ever ! (�) > 2V(U), (or equivalently, _ > 42V (U) ) .

* This was, in fact, established in [76]
** In [16] the pure frequency part of the conjecture of [66] has been proved by a completely

different method: through quantitative reducibility [116] and duality, but in a measure-
theoretic in G sense: losing the control over the arithmetics of G. A recent breakthrough
by Ge-You [47] where an arithmetic version of quantitative reducibility was developed has
lead to a way to obtain sharp arithmetic in phase results through duality as well, enabling,
in particular, an arithmetic duality-based proof of the frequency part of the conjecture [49],
that works also for all Aubry duals (2.1) of operators (0.1)
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In Liu’s earlier work, this was established for ! (�) > 3V(U), [97] but a significant
new understanding of treatment of doubled resonances was necessary to go sharp, and it was
achieved in [98]. U-rational phases G hold special importance for various questions because
eigenvalues for such G are located at gap edges [103]. Puig’s proof of the ten martini problem
for the Diophantine case [103] was based precisely on localization for U-rational G. The
original plan to prove the full ten martini problem was to establish localization for U-rational
G and ! (�) > V(U) [9]. Not surprisingly, it failed, prompting the resonance doubling-up
conjecture in [8] that is now solved [98]. It should be noted that the singular-continuous part
of the conjecture: singular-continuous spectrum for U-rational G and ! (�) < 2V(U) is still
open.

In a different direction, R. Han, F. Yang, and I [57] developed a sharp method to treat
the third type of resonances: high barriers (that effectively play the role of anti-resonances),
and moreover, combinations of frequency resonances and high barriers, in another popular
quasiperiodic family originating in physics, the Maryland model.

Maryland model, is a family

(5.3) ("_,U,\D)= = D=+1 + D=−1 + _ tan(c(\ + =U))D=,

where _ > 0 is the coupling constant, irrational U ∈ T = [0, 1] is the frequency and \ ∈ T is
the phase with \ ∉ Θ = { 1

2 + UZ + Z}.
It was originally proposed by Grempel, Fishman and Prange [55] as a linear version

of the quantum kicked rotor and has attracted continuing interest from the physics com-
munity, see e.g. [25, 41, 44], due to its exactly solvable nature. It has explicit expression for
the Lyapunov exponent, integrated density of states, and even (a little less explicit) for the
eigenvalues and eigenfunctions. In particular, the Lyapunov exponent !_ (�) is an explicit
function of _, � not dependent on U. However the implicit expressions for the eigenfunc-
tions don’t allow for easy conclusions about their behavior, which is expected to be quite
interesting, with transfer matrices satisfying certain exact renormalization [40].

Phase resonances do not exist for the Maryland model, and as a result, for Diophan-
tine (i.e. non-resonant) frequencies it has localization for all phases [86, 105]. However, it
does have barriers, when trajectory of a given phase approaches the singularity too early.
Barriers compensate for the resonances, and therefore serve as what we call in [57] the
anti-resonances, providing the reason why for the Maryland model there are phases with
localization even for the most Liouville frequencies [78]. Thus Maryland model features a
combination of frequency resonances and phase anti-resonances.

Maryland model was the first one where the spectral decomposition has been
resolved completely, for all values of the parameters [78].* Let ?=/@= be the continued
fraction approximants of U. We note that the frequency resonance index V(U) defined in
(5.1) also satisfies V(U) = lim sup=→∞

ln @=+1
@=

. A new index, X" (U, \) was introduced in [78]

* It also remains the only one with spectral transitions where this could be claimed.

14 ICM 2022



as

X" (U, \) := lim sup
=→∞

ln @=+1 + ln ‖@= (\ − 1
2 )‖T

@=
.(5.4)

We have

Theorem 5.2. [78] �_,U,\ has purely singular continuous spectrum on {� : !_ (�) <
X" (U, \)}, and pure point spectrum on {� : !_ (�) > X" (U, \)}. *

This provides complete spectral analysis, for all U, \, but was established implic-
itly: through the combination of Cayley and Fourier transforms and the study of a resulting
explicit cohomological equation, making sharp the previous work in [55,105]. The extension
of the analysis from a.e \ in [105] to all \ in [78] required accounting the effect of the barriers,
and Cayley transform allowed to do it albeit in a highly implicit way. In particular, this proof
did not allow the analysis of the structure of eigenfunctions.

Method of [71] was adapted to the Maryland model in [86] where the nonresonant
situation was treated and localization for Diophantine U was shown, developing the initial
framework to study the eigenfunctions in the much more difficult resonant situation.

In [57] we show that X(U, \) can be interpreted as the exponential strength of fre-
quency resonances, V(U), combined with the (negative) exponential strength of phase anti-
resonances, defined as the positions of exponential smallness of the cos(c(\ + :U)), ** and
develop the approach to sharply treat the “resonance tamed by an anti-resonance” situation.
In particular, we give a constructive proof of the localization part of Theorem 5.2 and obtain

Theorem 5.3. [57] For any U ∈ R \ Q and any \, the spectrum on {� : !_ (�) ≥ X" (U, \)}
is pure point and for any eigenvalue � ∈ {!_ (�) > X" (U, \)} and any n > 0, the corre-
sponding eigenfunction q� satisfies |q� (:) | < 4−(!_ (�)−X

" (U,\)−n ) |: | for sufficiently large
|: |.

Theorem 5.3 provides the sharp upper envelope, and develops the key tools to study
the fine behavior of the eigenfunctions, see Section 6.2. In fact, such study is the most
exciting outcome of the proofs of localization based on sharp analysis of resonances.

There are several other models where sharp arithmetic spectral transitions have
been conjectured and partially established, most notably the extended Harper’s model,
where for the complete analysis one would need to develop tools to study simultaneous
presence of three different types of resonances: frequency, phase, and singularity-induced
anti-resonances. However, for a.e. phase we expect the arithmetic frequency transition to be
universal in the class of general analytic potentials. As far as the arithmetic transitions in
phase, we expect the same results to hold for general even analytic potentials for a.e. fre-
quency. We note that the singular continuous part up to the conjectured transition is already
established, even in a far greater generality, in [16,74,80].

* It follows from the explicit formula for !_ (�) that the equality can only happen for two
values of �.

** So exponential largeness of the tan .
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Finally, there is a question of arithmetic interfaces, e.g. what happens for the almost
Mathieu operators with ! (�) = V(U) + X(U, \)? It turns out that (in the pure resonance situ-
ations) both pure point and singular continuous spectra are possible depending on the finer
arithmetic properties of parameters [13,87,88]. So far we don’t even have a good conjecture on
where the arithmetic treshholds within the transition lines lie. Making a significant progress
on this problem would require a development of polynomial (as contrasted with current
exponential) methods to tackle resonances, a very important problem in its own right, as it
could lead to universal hierarchical structures (see Section 6) on polynomial scales.

6. Exact asymptotics and universal hierarchical structure of eigenfunctions
A very captivating question and a longstanding theoretical challenge is to explain

the self-similar hierarchical structure visually obvious in the Hofstadter’s butterfly, as well
as the hierarchical structure of eigenfunctions, as related to the arithmetics of parameters.
Such structure was first predicted for the almost Mathieu operator in the work of Azbel
in 1964 [22], some 12 years before Hofstadter [63], and before numerical experimentation
was possible. Such self-similar behavior is present for spectra and eigenfunctions of all
quasiperiodic operators.

While this does not describe or explain the self-similarity, a step in the right direc-
tion is to prove that the spectrum is a Cantor set. Mark Kac offered ten martinis in 1982 for
the proof of the Cantor set part of Azbel’s 1964 conjecture. It was dubbed the Ten Martini
problem by Barry Simon, who advertised it in his lists of 15 mathematical physics problems
[106] and later, mathematical physics problems for the XXI century [107]. Most substantial
partial solutions were made by Bellissard, Simon, Sinai, Helffer, Sjöstrand, Choi, Eliott,
Yui, and Last, between 1983-1994. J. Puig [103] solved it for Diophantine U by noticing that
localization at \ = 0 [71, 76] leads to gaps at corresponding (dense) eigenvalues. Final solu-
tion was given in [8]. Cantor spectrum is also prevalent for general one-frequency operators
with analytic potential: in the subcritical regime [10], and, by very different methods, in the
supercritical regime [52] (and it is conjectured [11] also in the critical regime, which is non-
generic in itself [6]). Moreover, even all gaps predicted by the gap labeling are open in the
non-critical almost Mathieu case [10,17], the statement that is also expected to be true in the
critical case, and recently claimed in the physics literature [27] to follow directly from [72].

As for the understanding the hierarchical behavior of the eigenfunctions, despite
significant numerical studies and even a discovery of Bethe Ansatz solutions [115], it has
remained an important open challenge even at the physics level, although some indications
existed in the perturbative regime [32,61,108,118].

Sharp analysis of resonances and small denominators has led to the discovery of
universal self-similar structures of eigenfunctions defined by the type of resonance. The
universal nature of these structures manifests in two ways: there is the same universal func-
tion that depends only on the type of the resonance, that governs the behavior around each
exponential frequency or phase resonance (upon (possibly) reflection and renormalization),
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and it is the same structure for all the parameters involved: any (Diophantine) frequency U,
(any U-Diophantine phase \) with V(U) < !, (X(U, \) < !), and any eigenvalue � . It has
been discovered and proved for the almost Mathieu operator [79, 80] but is expected to be
universal also throughout the class of analytic potentials, and more,* that is to hold in the
regime of pure resonances. For example, the same universal structure for frequency reso-
nances has already been proved for the Maryland model [58], for a.e. phase, namely, phases
without the exponential anti-resonances, see also a result on the hierarchical structure in
the semi-classical regime [93]. However, for phases whose trajectories approach the barrier
too fast, the hierarchical structure of the eigenfunctions is very different, and the complete
analysis is extremely delicate.

Generally, one can identify four types of (anti-)resonances that lead to different
universal structures

• frequency

• phase (only even potentials)

• barriers (anti-resonance)

• singularity (anti-resonance for Jacobi matrices)

We describe the universal structures for phase and frequency resonances [79, 80] in
the following subsections, and the one for the barrier anti-resonances will appear in [58].

We expect that when different types of resonances are present, there will be fur-
ther different self-similar structures, universal for all corresponding parameters and different
resonance positions. Describing these structures for different combinations of resonances is
very challenging but seems to be potentially within reach. In particular, in [57] we developed
the tools to fully describe the universal structures for the Maryland model for all parameters,
that is for combinations of frequency resonances and barrier anti-resonances. We expect it to
be done in [58]. We also expect the latter structures to be universal in the class of monotone
potentials with a simple pole.

To give a glimpse into the universality results we present two of them in more detail

6.1. Frequency resonances
In [79] we find explicit universal functions 5 (:) and 6(:), depending only on the

Lyapunov exponent and the position of : in the hierarchy defined by the denominators
@= of the continued fraction approximants of the flux U, that completely define the expo-
nential behavior of, correspondingly, eigenfunctions and norms of the transfer matrices of
the almost Mathieu operators, for all eigenvalues corresponding to U-Diophantine phasse,
see Theorem 6.1. This result holds for all frequency and coupling pairs in the frequency-
resonance localization regime. Since the behavior is fully determined by the frequency and

* for example, �2 cos-type potentials have been a popular object of study [42, 46, 48, 108,
114] and there are reasons to believe that they will feature the same structure, at least in the
perturbative regime
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does not depend on the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure.

Since we are interested in exponential growth/decay, the behavior of 5 and 6

becomes most interesting in case of frequencies with exponential rate of approximation
by the rationals.

These functions allow to describe precise asymptotics of arbitrary solutions of
�_,U,\i = �i where � is an eigenvalue. The precise asymptotics of the norms of the
transfer-matrices, provides the first example of this sort for non-uniformly hyperbolic
dynamics. Since those norms sometimes differ significantly from the reciprocals of the
eigenfunctions, this leads to further interesting and unusual consequencies, for example
exponential tangencies between contracted and expanded directions at the resonant sites.

Given U ∈ R\Q we define functions 5 , 6 : Z+ → R+ in the following way. Let ?=
@=

be the continued fraction approximants to U. For any @=
2 ≤ : <

@=+1
2 , define 5 (:), 6(:) as

follows:

Case 1 @
8
9
=+1 ≥

@=
2 or : ≥ @=.

If ℓ@= ≤ : < (ℓ + 1)@= with ℓ ≥ 1, set

(6.1) 5 (:) = 4−|:−ℓ@= | ln |_ | Ā=ℓ + 4
−|:−(ℓ+1)@= | ln |_ | Ā=ℓ+1,

and

(6.2) 6(:) = 4−|:−ℓ@= | ln |_ | @=+1
Ā=
ℓ

+ 4−|:−(ℓ+1)@= | ln |_ | @=+1
Ā=
ℓ+1

,

where for ℓ ≥ 1,
Ā=ℓ = 4

−(ln |_ |− ln@=+1
@=
+ ln ℓ
@=
)ℓ@= .

Set also Ā=0 = 1 for convenience.
If @=2 ≤ : < @=, set

(6.3) 5 (:) = 4−: ln |_ | + 4−|:−@= | ln |_ | Ā=1 ,

and

(6.4) 6(:) = 4: ln |_ | .

Case 2 @
8
9
=+1 <

@=
2 and @=

2 ≤ : ≤ min{@=, @=+12 }.
Set

(6.5) 5 (:) = 4−: ln |_ | ,

and

(6.6) 6(:) = 4: ln |_ | .
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Notice that 5 , 6 only depend on U and _ but not on \ or �. 5 (:) decays and 6(:)
grows exponentially, globally, at varying rates that depend on the position of : in the hier-
archy defined by the continued fraction expansion of U, see Fig.3 and Fig.4.

It turns out that in the entire regime ! (�) > V, the exponential asymptotics of the
eigenfunctions and norms of transfer matrices at the eigenvalues are completely determined
by 5 (:), 6(:).

Theorem 6.1. Let U ∈ R\Q be such that |_ | > 4V (U) . Suppose \ is Diophantine with respect

to U, � is an eigenvalue of �_,U,\ and q is the eigenfunction. Let * (:) =
(

q(:)
q(: − 1)

)
.

Then for any Y > 0, there exists  (depending on _, U, �̂, Y) such that for any |: | ≥  ,* (:)
and �: * satisfy

(6.7) 5 ( |: |)4−Y |: | ≤ ||* (:) | | ≤ 5 ( |: |)4Y |: | ,

and

(6.8) 6( |: |)4−Y |: | ≤ ||�: | | ≤ 6( |: |)4Y |: | .

Ā=
ℓ

Ā=
ℓ+2

Ā=
ℓ+4

ℓ@= (ℓ + 1)@= (ℓ + 2)@= (ℓ + 3)@= (ℓ + 4)@= :@=+1
2

@=
2

5 (:)

Figure 3

* �: are defined in (1.2).

19 Quasiperiodic operators.



@=+1
Ā=
ℓ

@=+1
Ā=
ℓ+2

@=+1
Ā=
ℓ+4

ℓ@= (ℓ + 1)@= (ℓ + 2)@= (ℓ + 3)@= (ℓ + 4)@= :@=+1
2

@=
2

6(:)

Figure 4

In fact, the theorem is formulated in [79] for generalized eigenfunctions, thus can
also be used to establish pure point spectrum throughout the indicated regime. Certainly,
there is nothing special about : = 0, so the behavior described in Theorem 6.1 happens
around arbitrary point : = :0. This implies the self-similar nature of the eigenfunctions:
* (:) behave as described at scale @= but when looked at in windows of size @: , @: ≤ @=−1,

will demonstrate the same universal behavior around appropriate local maxima/minima.

To further illustrate the above, let q be an eigenfunction, and* (:) =
(

q(:)
q(: − 1)

)
.

An immediate corollary of Theorem 6.1 is the universality of behavior at all appropriately
defined nonresonant local maxima. We will say :0 is a local 9-maximum of q if | |* (:0) | | ≥
| |* (:) | | for |: − :0 | ∼ @ 9 . Then, with an appropriate notion of non-resonant (see [79]) we
have

Theorem 6.2. [79] Given Y > 0, there exists 9 (Y) <∞ such that if :0 is a non-resonant local
9-maximum for 9 > 9 (n), then

(6.9) 5 ( |B |)4−Y |B | ≤ ||* (:0 + B) | |
| |* (:0) | |

≤ 5 ( |B |)4Y |B | ,

for |B − :> | ∼ @ 9 .

In case V(U) > 0, Theorem 6.1 also guarantees an abundance (and a hierarchical
structure) of local maxima of each eigenfunction.
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Universal hierarchical structure of an eigenfunction

11 121−11−2 :0
Local maximum of depth 1Local maximum of depth 1

Global maximum

Figure 5
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11,−1
11,1

11,2

Window I

Window I

11,1 11,211,−111,−2 11
Local maximum of depth 2Local maximum of depth 2

Local maximum of depth 1

Figure 6
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Let :0 be a global maximum. The self-similar hierarchical structure of local maxima can be
described in the following way.We will say that a scale = 90 is exponential if ln@= 90+1 > 2@= 90 .
Then there is a constant scale =̂0 thus a constant � := @=̂0+1, such that for any exponential
scale = 9 and any eigenfunction there are local = 9 -maxima within distance � of :0 + B@= 90
for each 0 < |B | < 42@=90 .Moreover, these are all the local = 90 -maxima in [:0 − 4

2@=90 , :0 +
4
2@=90 ].

The exponential behavior of the eigenfunction in the local neighborhood (of size of
order @= 90 ) of each such local maximum, normalized by the value at the local maximum is
given by 5 . Note that only exponential behavior at the corresponding scale is determined by
5 and fluctuations of much smaller size are invisible.

Now, let = 91 < = 90 be another exponential scale. Denoting “depth 1” local maximum
located near :0 + 0= 90 @= 90 by 10=90 we then have a similar picture around 10=90 : there
are local = 91 -maxima in the vicinity of 10=90 + B@= 91 for each 0 < |B | < 42@=91 . Again, this
describes all the local @= 91 -maxima within an exponentially large interval. And again, the
exponential (for the = 91 scale) behavior in the local neighborhood (of size of order @= 91 ) of
each such local maximum, normalized by the value at the local maximum is given by 5 .

Denoting those “depth 2” local maxima located near 10=90 + 0= 91 @= 91 , by 10=90 ,0=91
we then get the same picture taking the magnifying glass another level deeper, and so on.
At the end we obtain a complete hierarchical structure of local maxima that we denote by
10=90

,0=91
,...,0=9B

with each “depth B + 1" local maximum 10=90
,0=91

,...,0=9B
being in the cor-

responding vicinity of the “depth B" local maximum 10=90
,0=91

,...,0=9B−1
, and with universal

behavior at the corresponding scale around each. The quality of the approximation of the
position of the next maximum gets lower with each level of depth, yet the depth of the hier-
archy that can be so achieved is at least 9/2 −�, Fig. 5 schematically illustrates the structure
of local maxima of depth one and two, and Fig. 6 illustrates that the neighborhood of a local
maximum appropriately magnified looks like a picture of the global maximum. See [79] for
the exact statement.

6.2. Phase resonances
In [80] we found another universal structure, for phase resonances. Once again, we

found (different) functions 5 that determine universal asymptotics of the eigenfunctions,
also locally around the resonances, which features a self-similar hierarchical structure. In
particular, we have Theorem just like Theorem 6.1 but with new 5 and for V(U) = 0 and
! > X(U, \) [80] The behavior described in this theorem happens around arbitrary point.
This, coupled with effective control of parameters at the local maxima, allows to uncover
the self-similar nature of the eigenfunctions, but this time one needs not only the rescaling
but also alternating reflections, leading to what we call the reflective-hierarchical structure.

Assume phase \ satisfies 0 < X(U, \) < ln_. Fix 0 < e < X(U, \). Let :0 be a global
maximum of eigenfunction q. Let  8 be the positions of exponential resonances of the phase
\ ′ = \ + :0U defined by

(6.10) | |2\ + (2:0 +  8)U | |R/Z ≤ 4−e | 8 | ,
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This means that |{(\ ′ + ℓU) − {(\ ′ + ( 8 − ℓ)U) | ≤ �4−e | 8 | , uniformly in ℓ, or,
in other words, the potential {= = {(\ + =U) is 4−e | 8 |-almost symmetric with respect to
(:0 +  8)/2.

Since U is Diophantine, we have

(6.11) | 8 | ≥ 242 | 8−1 | ,

where 2 depends on e and U through the Diophantine constants ^, g. On the other hand,  8

is necessarily an infinite sequence. Let q be an eigenfunction, and * (:) =
(

q(:)
q(: − 1)

)
.

We say : is a local  -maximum if | |* (:) | | ≥ | |* (: + B) | | for all B − : ∈ [− ,  ].
The informal descriprion of the reflective-hierarchical structure of local maxima is

the following. There exists a constant  ̂ such that there is a local 2 9 -maximum 1 9 within
distance  ̂ of each resonance  9 . The exponential behavior of the eigenfunction in the
local 2 9 -neighborhood of each such local maximum, normalized by the value at the local
maximum is given by the reflection of 5 .

Moreover, this describes the entire collection of local maxima of depth 1, that is  
such that  is a 2 -maximum. Then we have a similar picture in the vicinity of 1 9 : there
are local 2 8-maxima 1 9 ,8 , 8 < 9 , within distance  ̂2 of each  9 −  8 . The exponential (on
the  8 scale) behavior of the eigenfunction in the local 2 8-neighborhood of each such local
maximum, normalized by the value at the local maximum is given by 5 .

Then we get the next level maxima 1 9 ,8,B, B < 8 in the  ̂3-neighborhood of  9 − 8 +
 B and reflected behavior around each, and so on, with reflections alternating with steps. At
the end we obtain a complete hierarchical structure of local maxima that we denote by
1 90 , 91 ,..., 9B , with each “depth B + 1" local maximum 1 90 , 91 ,..., 9B being in the corresponding
vicinity of the “depth B" local maximum 1 90 , 91 ,..., 9B−1 ≈ :0 +

∑B−1
8=0 (−1)8 98 and with uni-

versal behavior at the corresponding scale around each. The quality of the approximation
of the position of the next maximum gets lower with each level of depth, with 1 90 , 91 ,..., 9B−1

determined with  ̂B precision, thus it presents an accurate picture as long as  9B �  ̂B .

Thus the behavior of q(G) is described by the same universal 5 in each ∼  9B
window around the corresponding local maximum 1 90 , 91 ,..., 9B after alternating reflections.
The positions of the local maxima in the hierarchy are determined up to errors that at all
but possibly the last step are superlogarithmically small in  9B . We call such a structure
reflective hierarchy.
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reflective self-similarity of an eigenfunction

I II

II′ I′

Global maximum

 91

1 91

 90

1 90

1 90 , 91

0

 91

Figure 7: This depicts reflective self-similarity of an eigenfunction with global max-
imum at 0. The self-similarity: I′ is obtained from I by scaling the G-axis proportional to the
ratio of the heights of the maxima in I and I′. II′ is obtained from II by scaling the G-axis pro-
portional to the ratio of the heights of the maxima in II and II′. The behavior in the regions
I′, II′ mirrors the behavior in regions I, II upon reflection and corresponding dilation.

6.3. Universality and extensions
The hierarchical structures of Sections 6.1,6.2 are expected to hold universally for

most in the appropriate sense (albeit not all, as for the almost Mathieu) local maxima for gen-
eral analytic potentials. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not been established
for the general analytic family, the current state-of-the-art result by Bourgain-Goldstein [29]

being measure theoretic in U.
The universality of the hierarchical structures of Sections 6.1,6.2 is twofold: not

only it is the same universal function that governs the behavior around each exponential fre-
quency or phase resonance (upon reflection and renormalization), it is the same structure for
all the parameters involved: any (Diophantine) frequency U, (any U-Diophantine phase \)
with V(U) < !, (X(U, \) < !), and any eigenvalue � . The universal reflective-hierarchical
structure in Section 6.2 requires evenness of the function defining the potential, and more-
over, in general, resonances of other types may also be present. However, we conjectured
in [80] that for general even analytic potentials for a.e. frequency only finitely many other
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exponentially strong resonances will appear, thus the structure described in Section 6.2 will
hold for the corresponding class.

The key elements of the technique developed for the treatment of arithmetic reso-
nances are robust and have made it possible to approach other questions, and in particular,
study delicate properties of the singular continuous regime. Among other things, it has
allowed to obtain upper bounds on fractal dimensions of the spectral measures and quan-
tum dynamics for the singular continuous almost Mathieu operator [81], as well as potentials
defined by general trigonometric analytic functions [82] and to determine also the exact
exponent of the exponential decay rate in expectation for the two-point function [77], the first
result of this kind for any model. These methods are also expected to be applicable to many
other models.

Funding
This work was partially supported by NSF DMS-1901462, DMS-2052899, and Simons
681675. S.J. was a 2020-21 Simons fellow.

References
[1] S. Aubry, G. André, Analyticity breaking and Anderson localisation in incom-

mensurate lattices. Ann. Israel Phys. Soc. 3 (1980), 133–164.
[2] A. Avila, The absolutely continuous spectrum of the almost Mathieu operator,

2008, arXiv:0810.2965.
[3] A. Avila, Almost reducibility and absolute continuity I, 2010, arXiv:1006.0704.
[4] A. Avila, In preparation.
[5] A. Avila, On the Kotani-Last and Schrödinger conjectures, J. Amer. Math. Soc. 28

(2015), 579–616.
[6] A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math.

215(1) (2015), 1–54.
[7] A. Avila, B. Fayad, and R. Krikorian, A KAM Scheme for SL(2,R) Cocycles with

Liouvillean Frequencies, Geom. Funct. Anal. 21(5) (2011), 1001–1019.
[8] A. Avila, and S. Jitomirskaya, The Ten Martini Problem, Ann. of Math. (2) 170(1)

(2009), 303–342.
[9] A. Avila, and S. Jitomirskaya, Solving the ten martini problem, Lecture Notes in

Physics 690 (2006), 5–16.
[10] A. Avila, and S. Jitomirskaya, Almost localization and almost reducibility, J. Eur.

Math. Soc. (JEMS) 12(1) (2010), 93–131.
[11] A. Avila, S. Jitomirskaya, and C. Marx, Spectral theory of extended Harper’s

model and a question by Erdös and Szekeres, Invent. Math. 210.1 (2017), 283–
339.

[12] A. Avila, S. Jitomirskaya, and C. Sadel, Complex one-frequency cocycles, J. Eur.
Math. Soc. (JEMS) 16(9) (2014), 1915–1935.

25 Quasiperiodic operators.

https://arxiv.org/abs/0810.2965
https://arxiv.org/abs/1006.0704


[13] A. Avila, S. Jitomirskaya, and Q. Zhou, Second phase transition line, Math. Ann.
370 (2018), 271–285.

[14] A. Avila, and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperi-
odic Schrödinger cocycles, Ann. of Math. 164 (2006), 911–940.

[15] A. Avila, Y. Last, M. Shamis, and Q. Zhou, On the abominable properties
of the almost Mathieu operator with well approximated frequencies, 2021,
arXiv:2110.07974.

[16] A. Avila, J. You, and Q. Zhou, Sharp phase transitions for the almost Mathieu
operator, Duke Math. J., 166(14) (2017), 2697–2718.

[17] A. Avila, J. You, and Q. Zhou, In preparation.
[18] J. E. Avron, Topological quantum states and the 2016 Nobel prize, Bull. IAMP

(July 2017), 3–22.
[19] J. Avron, and B. Simon, Singular continuous spectrum for a class of almost peri-

odic Jacobi matrices, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 81–85.
[20] J. Avron, and B. Simon, Almost periodic operators, II. The density of states, Duke

Math. J. 50 (1983), 369–391.
[21] J. Avron, D. Osadchy, and R. Seiler, A Topological Look at the Quantum Hall

Effect, Physics Today 56 (2003), 8–38.
[22] M. Y. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov.

Phys. JETP 19 (1964), 634–645.
[23] S. Becker, R. Han, S. Jitomirskaya, Cantor spectrum of graphene in magnetic

fields. Inventiones math. 218, 979–1041 (2019).
[24] J. Bellissard, R. Lima, and D. Testard, A metal-insulator transition for the almost

Mathieu model, Comm. Math. Phys. 88(2) (1983), 207–234.
[25] M. Berry, Incommensurability in an exactly-soluble quantal and classical model

for a kicked rotator, Physica D 10 (1984). 369–378.
[26] J. Bourgain, Positivity and continuity of the Lyapunov exponent for shifts on

T3 with arbitrary frequency vector and real analytic potential, J. Anal. Math. 96
(2005), 313–355.

[27] D. S. Borgnia and R.-J. Slagerhttps, The Dry Ten Martini Problem at Criticality,
2021, arXiv:2112.06869.

[28] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and
applications, volume 158 of Annals of Mathematics Studies. Princeton Univer-
sity Press, Princeton, NJ, 2005.

[29] J. Bourgain, M. Goldstein, On nonperturbative localization with quasiperiodic
potential, Ann. of Math. 152 (2000), 835–879.

[30] J. Bourgain and S. Jitomirskaya, Absolutely continuous spectrum for 1D quasiperi-
odic operators, Invent. Math. 148 (2002), 453–463.

[31] J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for
quasiperiodic operators with analytic potential, J. Statist. Phys. 108 (2002),
1203–1218. Dedicated to David Ruelle and Yasha Sinai on the occasion of their
65th birthdays.

26 ICM 2022

https://arxiv.org/abs/2110.07974
https://arxiv.org/abs/2112.06869


[32] V. Buslaev, and A. Fedotov, The monodromization and Harper equation, Sémi-
naire Équations aux dérivées partielles (Polytechnique), exp. no. 21 (1993-1994),
1–21.

[33] C. Cedzich, J. Fillman, D. C. Ong, Almost Everything About the Unitary Almost
Mathieu Operator, 2021, arXiv:2112.03216.

[34] H. Cheng, L. Ge, J. You, and Q. Zhou, Global rigidity for ultra-differentiable
quasiperiodic cocycles and its spectral applications, 2021, arXiv:2101.11150.

[35] M. D. Choi, G. A. Elliott, and N. Yui, Gauss polynomials and the rotation algebra,
Invent. Math. 99 (1990), 225–246.

[36] E. Dinaburg, and Ya. Sinai, The one-dimensional Schrödinger equation with a
quasi-periodic potential, Funct. Anal. Appl. 9 (1975), 279–289.

[37] P. Duarte, and S. Klein, Lyapunov Exponents of Linear Cocycles: Continuity via
Large Deviations, Atlantis Series in Dynamical Systems Vol 3 (2016).

[38] L. H. Eliasson, Reducibility and point spectrum for linear quasi-periodic skew
products, Doc. Math, Extra volume ICM 1998 II, 779–787.

[39] A. Fedotov,and F. Klopp, Anderson Transitions for a Family of Almost Periodic
Schrödinger Equations in the Adiabatic Case, Comm. Math. Phys. 227 2002. 1–
92.

[40] A. Fedotov and F. Sandomirskiy. An exact renormalization formula for the Mary-
land model. Communications in Mathematical Physics 334.2 (2015): 1083-1099.

[41] S. Fishman, Anderson localization and quantum chaos maps, Scholarpedia 5(8)
(2010), 9816.

[42] Y. Forman, and T. VandenBoom, Localization and Cantor spectrum for quasiperi-
odic discrete Schrödinger operators with asymmetric, smooth, cosine-like sam-
pling functions, 2021, arXiv:2107.05461.

[43] J. Fröhlich, T. Spencer, and P. Wittwer, Localization for a class of one dimensional
quasi-periodic Schrödinger operators, Commun. Math. Phys. 132 (1990), 5–25.

[44] S. Ganeshan, K. Kechedzhi, and S. Das Sarma, Critical integer quantum hall
topology and the integrable Maryland model as a topological quantum critical
point, Physical Review B 90.4 (2014), 041405.

[45] L. Ge, In preparation.
[46] L. Ge, J. Xu, and J. Wang, The Hölder continuity of Lyapunov exponents for a

class of cos-type quasiperiodic Schrödinger cocycles, 2020, arXiv:2006.03381.
[47] L. Ge, and J. You, Arithmetic version of Anderson localization via reducibility,

Geom. Funct. Anal. 30(5) (2020), 1370–1401.
[48] L. Ge, J. You, and X. Zhao, Arithmetic version of Anderson localization for

quasiperiodic Schrödinger operators with even cosine type potentials, 2021,
arXiv:2107.08547.

[49] L. Ge, J. You, and X. Zhao, Arithmetic version of the frequency transition con-
jecture: new proof and generalization, Peking Journal of Mathematics, online,
https://doi.org/10.1007/s42543-021-00040-y,

[50] L. Ge,S. Jitomirskaya, J. You, and Q. Zhou, In preparation.

27 Quasiperiodic operators.

https://arxiv.org/abs/2112.03216 
https://arxiv.org/abs/2101.11150
https://arxiv.org/abs/2107.05461
https://arxiv.org/abs/2006.03381
https://arxiv.org/abs/2107.08547


[51] L. Ge, Y. Wang, J. You, and X. Zhao, Transition space for the continuity of the
Lyapunov exponent of quasiperiodic Schrödinger cocycles, 2021, arXiv:2102.05175.

[52] M. Goldstein, W. Schlag, On resonances and the formation of gaps in the spec-
trum of quasi-periodic Schroedinger equations, Ann. of Math. 173 (2011), 337–
475.

[53] A. Y. Gordon. The point spectrum of the one-dimensional Schrödinger operator,
Uspekhi Matematicheskikh Nauk, 31 (1976), 257–258.

[54] A. Y. Gordon, S. Jitomirskaya, Y. Last and B. Simon, Duality and singular contin-
uous spectrum in the almost Mathieu equation, Acta Math. 178 (1997), 169–183.

[55] D. Grempel, S. Fishman, and R. Prange, Localization in an incommensurate
potential: An exactly solvable model, Physical Review Letters 49.11 (1982): 833.

[56] R. Han, and S. Jitomirskaya, Full measure reducibility and localization for
quasiperiodic Jacobi operators: A topological criterion, Adv. Math. 319 (2017),
224–250.

[57] R. Han, S. Jitomirskaya, and F. Yang, Anti-resonances and sharp analysis of
Maryland localization for all parameters, preprint 2021

[58] R. Han, S. Jitomirskaya and F. Yang. Universal hierarchical structure of eigen-
functions in the Maryland model, In preparation.

[59] A. Haro and J. Puig, A Thouless formula and Aubry duality for long-range
Schrödinger skew-products, Nonlinearity 26 (2013), 1163–1187.

[60] P. G. Harper, Single band motion of conducting electrons in a uniform magnetic
field, Proc. Phys. Soc. A 68 (1955), 874-878.

[61] B. Helffer,and J. Sjöstrand, Semi-classical analysis for Harper’s equation.III.
Cantor structure of the spectrum, Mem. Soc. Math. France (N.S.) 39 (1989), 1–
139.

[62] M. R. Herman, Une méthode pour minorer les exposants de Lyapounov et
quelques exemples montrant le caractere local d’un théoreme d’Arnold et de
Moser sur le tore de dimension 2, Commentarii Mathematici Helvetici, 58 (1983),
453–502.

[63] D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational
and irrational magnetic fields. Physical review B, 14 (1976), 22–39.

[64] X. Hou, and J. You, Almost reducibility and non-perturbative reducibility of
quasi-periodic linear systems, Invent. Math. 190(1) 2012, 209–260.

[65] K. Ishii, Localization of eigenstates and transport phenomena in the one-dimensional
disordered system, Progress of Theoretical Physics Supplement, 53 (1973), 77–
138.

[66] S. Jitomirskaya, Almost everything about the almost Mathieu operator. II, In XIth
International Congress of Mathematical Physics (Paris, 1994), 373–382 (1994).

[67] S. Y. Jitomirskaya, Anderson localization for the almost Mathieu equation: a non-
perturbative proof, Comm. Math. Phys, 165 (1994), 49–57.

28 ICM 2022

https://arxiv.org/abs/2102.05175


[68] S. Jitomirskaya, Critical phenomena, arithmetic phase transitions, and univer-
sality: some recent results on the almost Mathieu operator, Current Developments
in Mathematics, Vol. 2019, No. 1 (2019), pp. 1-42.

[69] S. Jitomirskaya, W. Liu, S. Zhang, Arithmetic spectral transitions, IAS/Park City
Mathematics Series: Harmonic Analysis and Applications 27, 35-72.

[70] S. Jitomirskaya, Ergodic Schrödinger operators (on one foot), Spectral theory and
mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, 613–
647, Proc. Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI,
2007.

[71] S. Y. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator.
Ann. of Math. (2) 150 (1999), 1159–1175.

[72] S. Jitomirskaya, On point spectrum at critical coupling, Adv. Math. 392 (2021), 6
pp.

[73] S. Jitomirskaya, and I. Kachkovskiy, !2-reducibility and localization for quasiperi-
odic operators, Math. Res. Lett. 23(2) (2016), 431–444.

[74] S. Jitomirskaya, and S. Kocic, Spectral Theory of Schrödinger Operators over
Circle Diffeomorphisms, International Mathematics Research Notices.

[75] S. Jitomirskaya, D.A. Koslover, M.S. Schulteis, Localization for a family of one-
dimensional quasiperiodic operators of magnetic origin, Ann. Henri Poincaré 6
(2005), 103–124.

[76] S. Jitomirskaya, D.A. Koslover, M.S. Schulteis, Continuity of the Lyapunov Expo-
nent for analytic quasiperiodic cocycles, Ergodic Theory Dynam. Systems 29
(2009), 1881–1905.

[77] S. Jitomirskaya, H. Krüeger, and W. Liu, Exact dynamical decay rate for the
almost Mathieu operator. Math. Res. Lett. 27 (2020), no. 3, 789—808.

[78] S. Jitomirskaya, and W. Liu, Arithmetic spectral transitions for the Maryland
model, Comm. Pure Appl. Math. 70 (2017), no. 6, 1025-1051.

[79] S. Jitomirskaya, and W. Liu, Universal hierarchical structure of quasiperiodic
eigenfunctions, Ann. of Math. (2) 187 (2018), 721–776.

[80] S. Jitomirskaya, and W. Liu, Universal reflective-hierarchical structure of quasiperi-
odic eigenfunctions and sharp spectral transition in phase, 2018, arXiv:1802.00781.

[81] S. Jitomirskaya, W. Liu, S. Tcheremchantsev, Upper bounds on the fractal spectral
dimensions and singular continuous spectrum near the arithmetic transition, In
preparation.

[82] S. Jitomirskaya, and W. Liu, In preparation.
[83] S. Jitomirskaya, and C. Marx, Analytic quasi-perodic cocycles with singularities

and the Lyapunov Exponent of Extended Harper’s Model, Commun. Math. Phys.
316 (2012), 237 – 267.

[84] S. Jitomirskaya, and C. Marx, Dynamics and spectral theory of quasi-periodic
Schrödinger-type operators. Ergodic Theory Dynam. Systems 37 (2017), 2353-
2393.

29 Quasiperiodic operators.

https://arxiv.org/abs/1802.00781


[85] S. Jitomirskaya, and B. Simon, Operators with singular continuous spectrum: III.
Almost periodic Schrödinger operators, Comm. Math. Phys., 165 (1994), 201–
205.

[86] S. Jitomirskaya, and F. Yang, Pure point spectrum for the Maryland model: a con-
structive proof, Ergodic Theory Dynam. Systems, 41(1) (2021), pp.283-294.

[87] S. Jitomirskaya, and F. Yang, Phase transition in phase: the interface, Preprint
2021.

[88] S. Jitomirskaya, F. Yang, and Q. Zhou, Second phase transition line: a construc-
tive proof, in preparation.

[89] S. Jitomirskaya, and S. Zhang, Quantitative continuity of singular continuous
spectral measures and arithmetic criteria for quasiperiodic Schödinger
operators. J. Eur. Math. Soc. to appear. DOI10.4171/JEMS/1139.

[90] S. Jitomirskaya, and X. Zhu, Large deviations of the Lyapunov exponent and
localization for the 1D Anderson model, Comm. Math. Phys. 370 (2019), 311–
324.

[91] R. A. Johnson, Exponential Dichotomy, Rotation Number, and Linear Differen-
tial Operators with Bounded Coefficients, Journal of Differential Equations 61
(1986), 54–78.

[92] S. Klein, Anderson localization for the discrete one-dimensional quasi-periodic
Schrödinger operator with potential defined by a Gevrey-class function, Journal of
Functional Analysis 218 (2005), 255 - 292.

[93] Klopp, F. and Fedotov, A.A., 2020. On the Hierarchical Behavior of Solutions of
the Maryland Equation in the Semiclassical Approximation. Mathematical Notes,
108(5), pp.906-910.

[94] S. Kotani, Ljaponov indices determine absolutely continuous spectra of stationary
one-dimensional Schrödinger operators, Stochastic Analysis, North-Holland Math-
ematical Library 32 (1984), 225–248.

[95] H. Kunz, and B. Souillard. Sur le spectre des opérateurs aux différences finies
aléatoires. Comm. Math. Phys., 78 (1980), 201–246.

[96] Y. Last, B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous
spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999),
329–367.

[97] W. Liu, Almost Mathieu operators with ompletely resonant phases, Ergod. Th. &
Dynam. Sys. 40 (2020), 1875—1893.

[98] W. Liu, Small denominators and large numerators of quasiperiodic Schrödinger
operators, Preprint 2021.

[99] Y. Liu, Q. Zhou, and S. Chen. Localization transition, spectrum structure, and
winding numbers for one-dimensional non-Hermitian quasicrystals. Physical
Review B, 104 (2), 024201 (2021).

[100] V. A. Mandelshtam, and S. Ya. Zhitomirskaya, 1D-quasiperiodic operators. Latent
symmetries, Commun. Math. Phys. 139 (1991), 589–604.

30 ICM 2022



[101] L. A. Pastur, Spectral properties of disordered systems in the one-body approxi-
mation, Commun. Math. Phys. 75 (1980), 179–196.

[102] R. Peierls, Zur Theorie des Diamagnetismus von Leitungselektronen, Zeitschrift
für Physik A: Hadrons and Nuclei 80 (1933), 763–791.

[103] J. Puig. Cantor spectrum for the almost Mathieu operator, Commun. Math. Phys.
244 (2004), 297–309.

[104] B. Simon, Almost periodic Schrödinger operators: a review, Advances in Applied
Mathematics, 3 (1982), 463–490.

[105] B. Simon, Almost periodic Schrödinger operators. IV. The Maryland model,
Annals of Physics 159.1 (1985), 157–183.

[106] B. Simon, Fifteen problems in mathematical physics, Oberwolfach Anniversary
Volume, 423–454 (1984).

[107] B. Simon, Schrödinger operators in the twenty-first century, Mathematical physics
2000, 283–288, Imp. Coll. Press, London, 2000.

[108] Ya. Sinai.: Anderson localization for one-dimensional difference Schrödinger
operator with quasi-periodic potential, J. Stat. Phys. 46 (1987), 861-909.

[109] E. Sorets, T. Spencer, Positive Lyapunov exponents for Schrödinger operators with
quasi-periodic potential, CMP 142, 543-566 (1991).

[110] A. Volberg, P. Yuditskii, Kotani–Last problem and Hardy spaces on surfaces of
Widom type, Invent. Math. 197 (2014), 683-740.

[111] Y. Wang, X. Xia, J. You, Z. Zheng, and Q. Zhou. (2021). Exact mobility edges
for 1D quasiperiodic models. arXiv:2110.00962.

[112] Y. Wang, and J. You, Examples of discontinuity of Lyapunov Exponent in smooth
quasi-periodic cocycles, Duke Math. J. 162 (2013), 2363-2412.

[113] Y. Wang, and J. You, Quasi-Periodic Schrödinger Cocycles with Positive Lya-
punov Exponent are not Open in the Smooth Topology, Commun. Math. Phys.
362(9) (2018), 801–826.

[114] Y. Wang, and Z. Zhang, Cantor spectrum for a class of �2 quasiperiodic Schrödinger
operators, Int. Math. Res. Notices. 2017 (2017), no. 8, 2300–2366.

[115] P. B. Wiegmann, and A. V. Zabrodin, Quantum group and magnetic translations
Bethe ansatz for the Azbel-Hofstadter problem, Nucl. Phys. B 422 (1994), 495–
514.

[116] J. You, Quantitative almost reducibility and applications, Proceedings of ICM
(2018).

[117] J. You, and Q. Zhou, Embedding of analytic quasi-periodic cocycles into ana-
lytic quasi-periodic linear systems and its applications, Comm. Math. Phys. 323(3)
(2013), 975–1005.

[118] S. Zhitomirskaya, Singular spectral properties of a one dimensional discrete
Schrödinger operator with quasiperiodic potential, Advances of Sov. Math. 3
(1991), 215-254.

31 Quasiperiodic operators.

https://arxiv.org/abs/2110.00962


[119] J. You, and Q. Zhou, Simple Counter-Examples to Kotani–Last Conjecture Via
Reducibility, International Mathematics Research Notices, 2015, (2015), no. 19,
9450–9455.

Svetlana Jitomirskaya
Georgia Institute of Technology, Atlanta GA 30332/UCI Department of Mathematics,
Irvine CA 92617, szhitomi@uci.edu

32 ICM 2022

mailto:szhitomi@uci.edu

	1. Spectral theory meets (dual) dynamics
	2. Aubry duality and higher-dimensional cocycles
	3. Avila's global theory of analytic one-frequency cocycles and their classification
	4.  Dual Lyapunov exponents or global theory demystified
	5. Precise analysis of small denominators
	6. Exact asymptotics and universal hierarchical structure of eigenfunctions
	References

