
EXPONENTIAL DYNAMICAL LOCALIZATION FOR RANDOM

WORD MODELS

1. Abstract

We give a new proof of spectral localization for one-dimensional Schrödinger opera-
tors whose potentials arise by randomly concatenating words from an underlying set.
We then show that once one has the existence of a complete orthonormal basis of eigen-
functions (with probability one), the same estimates used to prove it naturally lead to
a proof of exponential dynamical localization in expectation (EDL) on any compact set
which trivially intersects a finite set of critical energies.

2. Introduction

We consider the random word models on l2(Z) given by

Hωψ(n) = ψ(n+ 1) + ψ(n− 1) + Vω(n)ψ(n).

The potential is a family of random variables defined on a probability space Ω. To
construct the potential V above, we consider words . . . , ω−1, ω0, ω1, . . . which are vectors
in Rn with 1 ≤ n ≤ m, so that Vω(0) corresponds to the kth entry in ω0. A precise
construction of the probability space Ω and the random variables Vω(n) is carried out
in the next section.

One well-known example of random word models is the random dimer model. In
this situation, ωi takes on values (λ, λ) or (−λ,−λ) with Bernoulli probability. First
introduced in [6], the random dimer model is of interest to both physicists and math-
ematicians because it exhibits a delocalization-localization phenomenon. It is known
that the spectrum of the operator Hω is almost surely pure point with exponentially
decaying eigenfunctions. On the other hand, when 0 < λ ≤ 1 (with λ 6= 1√

2
), there are

critical energies at E = ±λ where the Lyapunov exponent vanishes [5]. The vanishing
Lyapunov exponent at these energies can be exploited to prove lower bounds on quan-
tum transport resulting in almost sure overdiffusive behavior [13]. The authors in [13]
show that for almost every ω and for every α > 0 there is a positive constant Cα such
that

1

T

∫ T

0
〈δ0, eiHωt|X|qe−iHωtδ0〉dt ≥ CαT q−

1
2
−α.

This was later extended to a sharp estimate in [16].
Again, the over-diffusive behavior above is to be contrasted with the fact that not

only does the random dimer model display spectral localization, but also dynamical
localization on any compact set I not containing the critical energies ±λ [5]:

sup
t
〈PI(Hω)e−iHωtψ, |X|qPI(Hω)e−iHωtψ〉 <∞, (1)

Here PI(Hω) is the spectral projection of Hω onto the set I.
1
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We strengthen this last result by showing that there is exponential dynamical local-
ization in expectation (EDL) on any compact set I with ±λ /∈ I. That is, there are
C,α > 0 such that for any p, q ∈ Z,

E
[
sup
t∈R
|〈δp, PI(Hω)e−itHωδq〉|

]
≤ Ce−α|p−q|. (2)

Another well-known example of random word models is the Anderson model. One
of the central challenges in dealing with this model in full generality arises when there
is a lack of the regularity of the single-site distribution. The absence of regularity was
previously overcome using multi-scale analysis; first, in the Anderson setting [2], then in
the dimer case [5, 10], and finally in random word models [4]. The multi-scale approach
leads to weaker dynamical localization results than those where sufficient regularity
of the single-site distribution allows one to instead appeal to the fractional moment
method (e.g. [8], [1]). In particular, EDL always follows in the framework of the
fractional moment method, but of course regularity is required.

Loosely speaking, the multi-scale analysis shows that the complement of the event
where one has exponential decay of the Green’s function has small probability. One of
the consequences of this method is that while this event does have small probability, it
can only be made sub-exponentially small.

A recent new proof of spectral and dynamical localization for the one-dimensional
Anderson model for arbitrary single-site distributions [14] uses positivity and large de-
viations of the Lyapunov exponent to replace parts of the multi-scale analysis. The
major improvement in this regard (aside from a shortening of the length and complex-
ity of localization proofs in one-dimension) is that the complement of the event where
the Green’s function decays exponentially can be shown to have exponentially (rather
than sub-exponentially) small probability. These estimates were implicit in the proofs
of spectral and dynamical localization given in [14] and were made explicit in [9]. The
authors in [9] then used these estimates to prove EDL for the Anderson model and we
extend those techniques to the random word case.

There are, however, several issues one encounters when adapting the techniques de-
veloped for the Anderson model in [9, 14] to the random word case. Firstly, in the
Anderson setting, a uniform large deviation estimate is immediately available using a
theorem in [17]. Since random word models exhibit local correlations, there are addi-
tional steps that need to be taken in order to obtain suitable analogs of large deviation
estimates used in [9, 14]. Secondly, random word models may have a finite set of ener-
gies where the Lyapunov exponent vanishes and this phenomena demands some care in
obtaining estimates on the Green’s functions analogous to those in [9, 14].

As above, with PI(Hω) denoting the spectral projection of Hω onto the interval I,
we have the following result:

Theorem 1. The spectrum of Hω is almost surely pure point with exponentially decaying
eigenfunctions.

Our main result is:
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Theorem 2. There is a finite D ⊂ R such that if I is a compact set and D ∩ I = ∅
then there are C > 0 and α > 0 such that E[sup

t∈R
|〈δp, PI(Hω)e−itHωδq〉|] ≤ Ce−α|p−q| for

any p, q ∈ Z.

The remainder of the paper is organized as follows: section 3 contains preliminaries
needed to discuss the large deviation estimates found in section 4 and the lemmas (which
are established in section 6) needed for localization found in section 5. Finally, section 7
contains the proof of Theorem 1 and section 8 contains the proof of Theorem 2.

3. Preliminaries

We begin by providing details on construction of Ω and Vω(n) by following [4].
Fix m ∈ N and M > 0. Set W =

⋃m
j=1Wj where Wj = [−M,M ]j and νj are finite

Borel measures on Wj so that
∑m

j=1 νj(Wj) = 1.

Additionally, we assume that (W, ν) has two words which do not commute. That is, For i = 0, 1 there exist wi ∈ Wji ∈ supp(ν) such that
(w0(1), w0(2), ..., w0(j0), w1(1), w1(2), ..., w1(j1))
and (w1(1), w1(2), ..., w1(j1), w0(1), w0(2), ..., w0(j0)) are distinct.

(3)

Set Ω0 =WZ and P0 = ⊗Zν on the σ-algebra generated by the cylinder sets in Ω0.
The average length of a word is defined by 〈L〉 =

∑m
j=1 jν(Wj) and if w ∈ W ∩Wj ,

we say w has length j and write |w| = j.
We define Ω =

⋃m
j=1 Ωj ⊂ Ω0×{1, ...,m} where Ωj = {ω ∈ Ω0 : |ω0| = j}×{1, ..., j}.

We define the probability measure P on the σ-algebra generated by the sets A × {k}
where A ⊂ Ω0 such that for all ω ∈ A, |ω0| = j and 1 ≤ k ≤ j.

For such sets we set P[A× {k}] = P0(A)
〈L〉 .

The shifts T0 and T on Ω0 and Ω (respectively) are given by:
(T0ω)n = ωn+1 and

T (ω, k) =

{
(ω, k + 1) if k < |ω0|
(T0(ω), 1) if k = |ω0|.

(4)

With this set-up, the shift T is ergodic and the potential Vω,k is obtained through
..., ω−1, ω0, ω1, ... so that Vω,k(0) = ω0(k).

Thus, the results from [3] can be used to show the spectrum of Hω is almost surely
a non-random set.

Definition. We call ψω,E a generalized eigenfunction with generalized eigenvalue E if
Hωψω,E = Eψω,E and |ψω,E(n)| ≤ (1 + |n|).

We denote Hω restricted to the interval [a, b] by Hω,[a,b] and for E /∈ σ(Hω,[a,b]) the
corresponding Green’s function by

G[a,b],E,ω = (Hω,[a,b] − E)−1.

Additionally, we let

P[a,b],ω,E = det(Hω,[a,b] − E).

We also let Ej,ω,[a,b] denote the jth eigenvalue of the operator Hω,[a,b] and note that
there are b− a+ 1 many of them (counting multiplicity).
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Definition. x ∈ Z is called (c, n,E, ω)-regular if there is a c > 0 so that:

(1) |G[x−n,x+n],E,ω(x, x− n)| ≤ e−cn and

(2) |G[x−n,x+n],E,ω(x, x+ n)| ≤ e−cn.

It is well-known that for any generalized eigenfunction ψω,E and any x ∈ [a, b],

ψ(x) = −G[a,b],E,ω(x, a)ψ(a− 1)−G[a,b],E,ω(x, b)ψ(b+ 1), (5)

and using Cramer’s rule on the b− a+ 1-dimensional matrix Hω,[a,b], one obtains:

|G[a,b],E,ω(x, y)| =
|P[a,x−1],E,ωP[y+1,b],E,ω|

|P[a,b],E,ω|
. (6)

For w ∈ W, with w = (w1, ..., wj), we define word transfer matrices by Tw,E =

Twj ,E . . . Tw1,E where Tv,E =

(
E − v −1

1 0

)
.

The transfer matrices over several words are given by

Tω,E(m, k) =

 Tωk,E . . . Tωm,E if k > m,
I if k = m,
Tω,E(m, k)−1 if k < m.

(7)

and T[a,b],E,ω denotes the product of the transfer matrices so that:

T[a,b],E,ω

(
ψ(a)

ψ(a− 1)

)
=

(
ψ(b+ 1)
ψ(b)

)
. (8)

By induction, we have:

T[a,b],E,ω =

(
P[a,b],E,ω −P[a+1,b],E,ω

P[a,b−1],E,ω −P[a+1,b−1],E,ω

)
. (9)

4. The Lyapunov Exponent

Kingman’s subadditive ergodic theorem allows us to define the Lyapunov exponent:

γ(E) := lim
k→∞

1

k〈L〉
log ||Tω,E(1, k)||. (10)

Note that for a fixed E, the above limit exists for a.e. ω.
Let µE denote the smallest closed subgroup of SL(2,R) generated by the ‘word’-step

transfer matrices. It is shown in [4] that µE is strongly irreducible and contracting for
all E outside of a finite set D ⊂ R and hence, Furstenberg’s theorem implies γ(E) > 0
for all such E. Since the Lyapunov exponent is defined as a product of i.i.d. matrices,
γ is continuous. So, if I is a compact interval such that D ∩ I = ∅ and

v := inf{γ(E) : E ∈ I},
then v > 0.

Motivated by (9) above and large deviation theorems, we define:

B+
[a,b],ε =

{
(E,ω) : E ∈ I, |P[a,b],E,ω| ≥ e(γ(E)+ε))(b−a+1)

}
, (11)

and
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B−[a,b],ε =
{

(E,ω) : E ∈ I, |P[a,b],E,ω| ≤ e(γ(E)−ε))(b−a+1)
}
. (12)

and the corresponding sections:

B±[a,b],ε,ω =
{
E : (E,ω) ∈ B±[a,b],ε

}
, (13)

and

B±[a,b],ε,E =
{
ω : (E,ω) ∈ B±[a,b],ε

}
. (14)

5. Large Deviations

The goal of this section is to obtain a uniform large deviation estimate for P[a,b],E .
In the Anderson model, a direct application of Tsai’s theorem for matrix elements of
products of i.i.d. matrices results in both an upper and lower bound for the above
determinants. In the general random word case, there are two issues. Firstly, the
one-step transfer matrices are not independent. This issue is naturally resolved by
considering ωk-step transfer matrices and treating products over each word as a single
step. However, in this case, both the randomness in the length of the chain as well as
products involving partial words need to be accounted for. Since matrix elements are
majorized by the norm of the matrix and all matrices in question are uniformly bounded,
we can obtain an upper bound identical to the one obtained in the Anderson case. Lower
bounds on the matrix elements are more delicate and require the introduction of random
scales. For the reader’s convenience, we first recall Tsai’s theorem and then give the
precise statements and proofs of the results alluded to above.

As remarked above, µE is strongly irreducible and contracting for E ∈ I. In addi-
tion, the ‘word’-step transfer matrices (defined in (5)) are bounded, independent, and
identically distributed. These conditions are sufficient to apply Tsai’s theorem on large
deviations of matrix elements for products of i.i.d. matrices.

Theorem 3 ([17]). Suppose I is a compact interval and for each E ∈ I, ZE1 , ..., Z
E
n , ...

are bounded i.i.d random matrices such that the smallest closed subgroup of SL(2,R)
generated by the matrices is strongly irreducible and contracting. Then for any ε > 0,
there is an η > 0 and an N such that for any E ∈ I, any unit vectors u, v and n > N ,

P
[
e(γ(E)−ε)n ≤ |〈ZEn . . . ZE1 u, v〉| ≤ e(γ(E)+ε)n

]
≥ 1− e−ηn.

Lemma 1. For any ε > 0 there is an η > 0 and an N such that

P[B+
[a,b],ε,E ] ≤ eη(b−a+1)

for all a,b ∈ Z such that b− a+ 1 > N and all E ∈ I.

Proof. Let Yi = |ωi|, so Yi is the length of the ith word and let Sn = Y1 + ...+ Yn.

Let u =

(
1
0

)
, v =

(
0
1

)
. Let PE,(ω1,ωn) = det(H(ω1,ωn) − E) where H(ω1,ω2) denotes

Hω restricted to the interval where V takes values determined by ω1 through ωn. By
formula (9) from the previous section, PE,(ω1,ωn) = 〈Tω,E(1, n)u, u〉.

Letting ε > 0 and applying Theorem 3 to the random products Tω,E(1, k), we obtain

an η1 > 0 and an N1 such that for n > N1, P[|P(ω1,ωn),E | ≤ e(γ(E)+ε)n〈L〉] ≥ 1− e−η1n.
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Now let ε1 > 0 so that ε1 sup{γ(E) : E ∈ I} < ε. We apply large deviation estimates
(e.g. [7]) to the real, bounded, i.i.d. random variables Yi to obtain an N2 and an η2
such that for n > N2, P[Sn − nε1 < n〈L〉 < Sn + nε1] ≥ 1− e−η2n.

Denoting the intersection of the above events by An, we have,

|PE,(ω1,ωn)| ≤ e
(γ(E)+ε)n〈L〉

≤ e(γ(E)+ε)(Sn+nε1)

= e(γ(E)+ε)Sn+γ(E)ε1n+nεε1

≤ e(γ(E)+ε)Sn+γ(E)ε1Sn+Snεε1

≤ e(γ(E)+3ε)Sn .

Thus, we have an estimate where the Lyapunov behavior is a true reflection of the
length of the interval.

We are now in a position to get an estimate in between two words. For any 1 ≤
k ≤ Sn+1 − Sn, let PE,(ω1,ωn+k) = det(H(ω1,ωn+k) − E) where H(ω1,ωn+k) denotes Hω

restricted to the interval where Vω takes values determined by ω1 through the kth letter
of ωn+1.

Since the one-step transfer matrices are uniformly bounded, formula (9) and the last

inequality imply for any 1 ≤ k ≤ Sn+1−Sn, |Pω,E,[1,Sn+k| ≤ Ce(γ(E)+3ε)Sn ≤ e(γ(E)+4ε)Sn

on An.
Let η3 = min{η1, η2}, and choose 0 < η4 < (2η3)/m). Then for sufficiently large n,

P[An] ≥ 1− e−2η3n

≥ 1− e−η4(Sn+k).

We have an estimate where the Lyapunov behavior and the probability of the event
reflect the true length of the interval, so we can apply the shift T to conclude that for
any sufficiently large n,

P[{|Pω,E,[1,n]| ≤ e(γ(E)+4ε)n}] ≥ 1− e−η4n.

The result now follows for any interval [a, b] with b− a+ 1 > N since T preserves the
probability of events.

�

We now deal with the lower bound.
As in the proof of Lemma 1, let Yi = |ωi|, so Yi is the length of the ith word and let

Sn = Y1 + ...+ Yn.

Lemma 2. For any ε > 0 there is an η > 0, sets An,l ⊂ Ω, a sequence of random scales
Rn and Qn, and an N such that for n > N and every l ∈ Z, on An,l

(1) Sn − nε1 < n〈L〉 < Sn + nε1,

(2) n(〈L〉−ε)
2 −m ≤ Rn ≤ n(〈L〉+ε)

2 −m,
(3) n(〈L〉 − ε) + 2m ≤ Qn ≤ n(〈L〉+ ε) + 2m,

(4) |Pω,[−Rn,Rn],E | ≥ e(γ(E)−ε)2Rn ,

(5) for any Sn + 2m ≤ k < Sn+1 + 2m, |Pω,[k−Rn,k+Rn],E | ≥ e(γ(E)−ε)2Rn ,
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(6) P[An,l] ≥ 1− e−η2Rn .

Proof. Let u =

(
1
0

)
, v =

(
0
1

)
and let PE,(ω1,ωn) denote det(H(ω1,ωn) − E) (where

H(ω1,ωn) denotes Hω restricted to the interval where the values of Vω are given by
ω1, ..., ωn.

Let ε > 0 and apply Theorem 3 to the random products Tω,E(1, n) with vectors u,
u and u, v. By formula (9), we obtain an η1 > 0 and an N1 such that for n > N1,

P[|P(ω1,ωn),E | ≥ e(γ(E)−ε)(Sn(ω))] ≥ 1− e−η1n.
Now let ε1 > 0 so that ε1 sup{γ(E) : E ∈ I} < ε. We now apply large deviation

estimates (e.g. [7]) to the real random variables Yi, to obtain an N and an η2 such that
for n > N ,

P[Sn − nε1 < n〈L〉 < Sn + nε1] ≥ 1− e−η2n. (15)

On the intersection of the above events, we have,

|PE,(ω1,ωn)| ≥ e
(γ(E)−ε)n〈L〉

≥ e(γ(E)−ε)(Sn−nε1)

= e(γ(E)−ε)Sn−(γ(E)ε1)n+nεε1

≥ e(γ(E)−ε)Sn−(γ(E)ε1)Sn+nεε1

≥ e(γ(E)−2ε)Sn .

As in Lemma 1, we now have Lyapunov behavior that reflects the actual length of the
interval that Hω is restricted to. We now adjust the estimate so the interval is centered
at 0.

For any p ∈ Z, (〈L〉−ε)n−j
2 ≤ p ≤ (〈L〉+ε)n−j

2 (j = 1, 2, ...,m), apply T−p to the set

{|P(ω1,ωn),E | ≥ e(γ(E)−ε)Sn} and consider
⋂
T−p{|P(ω1,ωn),E | ≥ e(γ(E)−ε)Sn}.

With η3 = min{η1, η2} for sufficiently large n we have,

P
[(⋂

T−p{|P(ω1,ωn),E | ≤ e(γ(E)−2ε)Sn}
)c]

≤ nεe−η3n

≤ ne−η3n

≤ e−
1
2
η3n.

In particular, P
[⋂

T−p|P(ω1,ωn),E | ≥ e(γ(E)−ε)Sn}
]
≥ 1− e−

1
2
η3n.

For (ω, k) ∈ Ω, we define random variables Rn(ω, k) by

Rn(ω, k) =

{
Sn
2 − Y0 − k + 1 if Sn is even,
Sn−1

2 − Y0 − k + 1 if Sn is odd.
(16)

Note that the desired bounds on Rn hold by (15).

Thus, on
⋂
T−p{|P(ω1,ωn),E |} ≥ e(γ(E)−ε)Sn},

|Pω,[−Rn,Rn],E | ≥ e
(γ(E)−ε)Sn
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≥ e(γ(E)−ε)2Rn .

Denote this last event by Cn.
We want a similar estimate for intervals centered at points sufficiently far from 0.
Define random variables Qn, by Qn = Sn + 2m and note that the desired bounds on

Qn again hold by (15).
Applying the shift T p to Cn for p ∈ Z, (〈L〉 − ε)n+ 2m ≤ p ≤ (〈L〉+ ε)n+ 2m, and

considering the event
⋂
T pCn, we have

P
[(⋂

T p(Cn)
)c]
≤ 2nεP[(Cn)c]

≤ 2nP[(Cn)c]

≤ e−η4n.

where η4 > 0 is chosen so 2ne−
1
2
η3n ≤ e−η4n for sufficiently large n.

We conclude P[
⋂
T pCn] ≥ 1− e−η4n.

Additionally, on
⋂
T pCn, for any k ∈ Z, Sn + 2m ≤ k < Sn+1 + 2m,

|Pω,[k−Rn,k+Rn],E | ≥ e
(γ(E)−ε)2Rn .

Finally, we set An,0 =
⋂

(T kCn) ∩ Cn and all that remains is to adjust the estimate
on the probability of An,0. With η5 = 1

2 min{12η3, η4}, we have

P[An] ≥ 1− e−η5n

≥ 1− e−η2Rn

where η > 0 is chosen so that η32Rn < η2n for all sufficiently large n. Note that this
can be done given the bounds on Rn established by (15).

Since we have the desired result for intervals centered at 0, we obtain the result for
intervals centered at any l ∈ Z by applying T l to An,0 since T preserves the probability
of events. �

Remark. Given an ε > 0, taking the minimum of the two η’s furnished by Lemma 1
and Lemma 2, we have an η which we call the large deviation parameter.

6. Lemmas

We prove localization results on a compact interval I where D ∩ I = ∅. In order to
do so, we fix a larger interval Ĩ such that I is properly contained in Ĩ and D ∩ Ĩ = ∅
and then apply the large deviation theorems from the previous section to Ĩ.

The following lemmas involve parameters ε0, ε, η0, δ0, ηε,K, and the intervals I, Ĩ.
The lemmas hold for any values satisfying the constraints below:

(1) Take 0 < ε0 < v/8 and let η0 denote the large deviation parameter corresponding
to ε0. Choose any 0 < δ0 < η0 and let 0 < ε < min{(η0 − δ0)/3, ε0/4}.
Lastly, choose K so that M̃1/K < ev/2 and let ηε, η ε

4
denote the large deviation

parameters corresponding to ε and ε
4 respectively. Here M̃ > 0 is chosen so that

|P[a,b],E,ω| ≤ M̃ b−a+1 for all intervals [a, b], E ∈ Ĩ, and ω ∈ Ω.
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(2) Any N ’s and constants furnished by the lemmas below depend only on the
parameters above (i.e. are independent of l ∈ Z and ω).

Thus, for the remainder of the paper, ε0, ε, η0, δ0, ηε, and K will be treated as fixed
parameters chosen in the manner outlined above.

Following [14] and [9], we define subsets of Ω below on which we have will have reg-
ularity of the Green’s functions. This is the key to the proof of all the localization
results. As mentioned in the introduction, the proofs of spectral and dynamical lo-
calization given in [14] show that event formed by the complement of the sets below
has exponentially small probability. These estimates were exploited in [9] to provide a
proof of exponential dynamical localization for the one-dimensional Anderson model.
We follow the example set in these two papers with appropriate modifications needed
to handle the presence of critical energies and the varying length of words.

Let mL denote Lebesgue measure on R.

Lemma 3. If n ≥ 2 and x is (γ(E)− 8ε0, n, E, ω)-singular, then

(E,ω) ∈ B−[x−n,x+n],ε0 ∪B
+
[x−n,x−1],ε0 ∪B

+
[x+1,x+n],ε0 .

Let Rn and Qn be the random variables from Lemma 2 and for l ∈ Z set

F 1
l,n,ε0 = {ω : max{mL(B−[l−Rn,l+Rn],ε0,ω

),mL(B−[l+k−Rn,l+k+Rn],ε0,ω
)}

≤ e−(η0−δ0)(2n+1) for all k with Qn ≤ k < Qn+1}.

Lemma 4. There is an N such that for n > N and any l ∈ Z,

P[F 1
l,n,ε0 ] ≥ 1−mL(Ĩ)e−δ0(2Rn).

Proof. With 0 < ε0 < 8v as above, choose N such that the conclusion of Lemma 2
holds, then for n > N ,

mL × P(B−[−Rn,Rn],ε0
) = E(mL(B−[−Rn,Rn],ε0,ω

))

=

∫
R
P(B−[−Rn,Rn],ε0,E

) dmL(E)

≤ mL(Ĩ)e−η0(2Rn).

By the estimate above and Chebyshev’s inequality,

e−(η0−δ0)(2Rn)P(F 1
l,n,ε0) ≤ mL(Ĩ)e−η0(2Rn).

The result follows by multiplying both sides of the last inequality by e(η0−δ0)(2Rn).
�

Set

F 2+
l,n,ε =

2n+1⋂
j=1

{
ω : Ej,ω,[l+n+1,l+3n+1] /∈ B+

[y,l+n],ε,ω for all y ∈
[
l − n, l + n− n

K

]}
,

(17)
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F 2−
l,n,ε =

2n+1⋂
j=1

{
ω : Ej,ω,[l+n+1,l+3n+1] /∈ B+

[l−n,y],ε,ω for all y ∈
[
l − n− n

K
, l + n

]}
,

(18)
and

F 2
l,n,ε = F 2+

l,n,ε ∩ F
2−
l,n,ε. (19)

Lemma 5. There is N such that for n > N and any l ∈ Z,

P[F 2
l,n,ε] ≥ 1− 2(2n+ 1)2e−ηε(

n
K
).

Proof. With ε > 0 as above, choose N such that the conclusions of Lemma 1 hold.
Fix n, y, and j with l − n+ n

K ≤ y ≤ l + n, 1 ≤ j ≤ 2n+ 1 and put

Cn,y,j = {ω : Ej,[l+n+1,l+3n+1],ω ∈ B+
[l−n,y]}.

Since [l+n+1, l+3n+1]∩ [l−n, y] = ∅, by independence and Lemma 1, for n > KN ,

P(B+
[−n,y],Ej,[l+n+1,l+3n+1],ω

) = P[−n,y](B
+
[−n,y],Ej,[l+n+1,l+3n+1],ω

) ≤ e−η0|−n−y|.

For each n, we may write

F 2−
l,n,ε =

⋃
y∈[l−n,l+n], |l−n−y|≥ n

K
, 1≤j≤2n+1

Cn,y,j .

By the above, we have P[F 2−
l,n,ε] ≤ (2n+ 1)2e−η0

n
K . The result follows by applying the

same argument for those y such that l − n ≤ y ≤ l + n− n
K .

�
With the same notation as in Lemma 5 and Rn,Qn as in Lemma 2, set

F 3
l,n,ε =

⋂
j

{
ω : Ej,ω,[l+k−Rn,l+k+Rn] /∈ B

−
[l−Rn,l+Rn],ε,ω

for all k with Qn ≤ k < Qn+1

}
.

(20)
By the same proof as the previous lemma, we have,

Lemma 6. There is N such that for n > N and any l ∈ Z,

P[F 3
l,n,ε] ≥ 1− 2(2Rn)2e−ηε(2Rn).

Remark. Lemma 7 is proved in [14] and used there to give a uniform (and quantitative)
Craig-Simon estimate similar to the one in Lemma 8.

Lemma 7. Let Q(x) be a polynomial of degree n− 1. Let xi = cos 2π(i+θ)
n , for 0 < θ <

1
2 , i = 1, 2, . . . , n. If Q(xi) ≤ an, for all i, then Q(x) ≤ Cnan, for all x ∈ [−1, 1], where
C = C(θ) is a constant.

Set
F[a,b],ε = {ω : |P[a,b],E,ω| ≤ e(γ(E)+4ε)(b−a+1) for all E ∈ Ĩ}. (21)

Lemma 8. There are C > 0 and N such that for b− a+ 1 > N ,

P[F[a,b],ε] ≥ 1− C(b− a+ 2)e
−η ε

4
(b−a+1)

.
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Proof. Since Ĩ compact and Ĩ ∩ D = ∅, Ĩ is contained in the union of finitely many
compact intervals which all intersect D trivially. Hence, it suffices to prove the result
for all E in one of these intervals. So fix one of these intervals, call it I1. By continuity
of γ and compactness of I1, if ε > 0, there is δ > 0 such that if E,E

′ ∈ I1 with
|E − E′ | < δ, then |γ(E)− γ(E

′
)| < 1

4ε. Divide I1 into sub-intervals of size δ, denoted

by Jk = [Enk , E
n
k+1] where k = 1, 2, ...C. Additionally, let Enk,i = Enk + (xi + 1) δ2 .

By lemma 1, there is an N such that for b− a+ 1 > N ,

P[{ω : |P[a,b],En
k,i,ω
| ≥ e(γ(E

n
k,i)+

1
4
ε)(b−a+1)}] ≤ e−η ε

4
(b−a+1)

.

Put F[a,b],k,ε =
n⋃
i=1

{ω : |P[a,b],En
k,i,ω
| ≥ e(γ(E

n
k,i)+

1
4
ε)(b−a+1)} and γk = infE∈Jk γ(E). For

ω /∈ F[a,b],k,ε, |P[a,b],En
k,i,ω
| ≤ e(γk+

1
2
ε)(b−a+1). Thus, an application of the above lemma

yields, for any such ω, |P[a,b],E,ω| ≤ e(γ(E)+ 3
4
ε)(b−a+1).

We have

P[
C⋃
k=1

F[a,b],k,ε] ≥ 1− C(b− a+ 2)e
η ε
4
(b−a+2)

.

Thus, since
C⋃
k=1

F[a,b],k,ε ⊂ F[a,b],ε,

the result follows.
�

Let nr,ω denotes the center of localization (if it exists) for ψω,E (i.e. |ψω,E(n)| ≤
|ψω,E(nr,ω)|). Note that by the results in [11] nr,ω can be chosen as a measurable
function of ω.

Moreover, let l ∈ Z and let Rn and Qn be the scales from Lemma 2.
Set

Jl,n,ε = F 1
l,n,ε0 ∩F

2
l,n,ε ∩F 3

l,n,ε0 ∩ (
⋃

Qn≤k<Qn+1

(F[l+k−Rn,l+k−1],ε ∩F[l+k+1,l+k+Rn],ε). (22)

Lemma 9. There is N such that if n > N , ω ∈ Jl,n, with a generalized eigenfunction
ψω,E satisfying either

(1) nr,ω = l, or
(2) |ψω(l)| ≥ 1

2

then if l + k is (γ(E)− 8ε0, Rn, E, ω)-singular, there exist

l −Rn ≤ y1 ≤ y2 ≤ l +Rn

and Ej = Ej,ω,[l+k−Rn,l+k+Rn] such that

|P[l−Rn,y1],Ej ,ω̃P[y2,l+Rn],Ej ,ω| ≥
1

2mL(Ĩ)
√

2Rn + 1
e(γ(Ej)−ε)+(η0−δ0))(2Rn). (23)

Remark. Note that y1 and y2 depend on ω and l but we do not include this subscript for
notational convenience. In particular, this is done when the other terms in expressions
involving y1 or y2 have the correct subscript and indicate the appropriate dependence.
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Proof. Firstly, since |ψω(l)| ≥ 1
2 , we may choose N1 such that l is (γ(E)− 8ε0, n, E, ω)-

singular for n > N1. In the case that nr,ω = l, then there is an N2 such that l is

naturally, (v − 8ε0, n, E, ω)-singular for all n > N2. Choose N3 so that e
v
2
n < dist(I, Ĩ)

for n > N3 and finally choose N to be larger than N1, N2, N3 and the N ’s from lemma 4,
lemma 5, and lemma 8.

Suppose that for some n > N , l+k is (γ(E)−8ε0, n, E, ω)-singular. By Lemma 3 and
Lemma 8, E ∈ B−[l+k−Rn,l+k+Rn],ε0,ω

. Note that all eigenvalues of H[l+k−Rn,l+k+Rn],ω

belong to B−[l+k−Rn,l+k+Rn],ε0,ω
. Since P[l+k−Rn,l+k+Rn],Ẽ,ω

is a polynomial in Ẽ, it

follows that B−[l+k−Rn,l+k+Rn],ω,ε0
is contained in the union of sufficiently small intervals

centered at the eigenvalues of Hω,[l+k−Rn,l+k+Rn]. Moreover, Lemma 4 gives

m(B[l+k−Rn,l+k+Rn],ω,ε0) ≤ mL(Ĩ)e−(η0−δ0)(2Rn),

so we have the existence of Ej = Ej,[l+k−Rn,l+k+Rn],ω so that |E −Ej | ≤ e−(η0−δ0)(2Rn).
Applying the above argument with l in place of l + k yields an eigenvalue Ei =

Ei,ω,[l−Rn,l+Rn] such that Ei ∈ B−[l−Rn,l+Rn],ε0,ω
and |E − Ei| ≤ mL(Ĩ)e−(η0−δ0)(2Rn).

Hence, |Ei − Ej | ≤ 2mL(Ĩ)e−(η0−δ0)(2Rn). By the previous line and the fact that Ej /∈
B−[l−Rn,l+Rn],ε,ω

, we see that ||G[l−Rn,l+Rn],Ej ,ω|| ≥ e(η0−δ0)(2Rn) so that for some y1, y2
with l −Rn ≤ y1 ≤ y2 ≤ l +Rn,

|G[l−Rn,l+Rn],Ej ,ω(y1, y2)| ≥
1

2mL(Ĩ)
√

2Rn + 1
e(η0−δ0)(2Rn).

Additionally, another application of Lemma 6 yields, |P[l−Rn,l+Rn],Ej ,ω| ≥ e(γ(Ej)−ε)(2Rn).

Thus, by (6) from section 2 we obtain

|P[l−Rn,y1],Ej ,ωP[y2,l+Rn],Ej ,ω| ≥
1

2mL(Ĩ)
√

2Rn + 1
e(γ(Ej−ε)+(η0−δ0))(2Rn).

�

Lemma 10. There is a η̃ > 0 and N such that n > N implies P(Jl,n,ε) ≥ 1− e−η̃n.

Proof. Let A1 denote the possible values taken by l+k−Rn and A2 denote the possible
values taken by l+ k+ 1. Using the bounds on Rn and Qn established in Lemma 2, for
a sufficiently large N , the number of elements in A1 and A2 are at most 3nε and 4nε
respectively. Moreover, inf A2 − supA1 ≥ n

2 (〈L〉 − 5ε).

Thus,
⋃

j1∈A1,j2∈A2

F[j1,j2],ε ⊂
⋃

Qn≤k<Qn+1

(F[l+k−Rn,l+k−1],ε and

P

 ⋃
j1∈A1,j2∈A2

F[j1,j2],ε

 ≥ 1− n2e−η
n
2
(〈L〉−5ε).

Choose N as in Lemma 9, and note that by Lemmas 4-6 and 8 and the argument
above, for n > N ,

P[Jl,n,ε] ≥ 1−mL(Ĩ)e−δ0(2Rn) − 2(2n+ 1)2e−ηε(
n
K
) − 2(2Rn)2e−ηε(2Rn) − n2e−η ε

4

n
2
(〈L〉−5ε)

.
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Again, using the bounds on Rn from Lemma 2, we may choose η̃ sufficiently close to
0 and increase N such that for n > N , we have

mL(Ĩ)e−δ0(2Rn) + 2(2n+ 1)2e−ηε(
n
K
) + 2(2Rn)2e−ηε(2Rn) + n2e

−η ε
4

n
2
(〈L〉−5ε) ≤ e−η̃n,

and the result follows.
�

Lemma 11. There is N such that for n > N , any ω ∈ Jl,n,ε, any y1, y2 with l−Rn ≤
y1 ≤ y2 ≤ l +Rn and any Ej = Ej,ω,[l+k−Rn,l+k+Rn],

|P[l−Rn,y1],Ej ,ωP[y2,l+Rn],Ej ,ω| ≤ e
(γ(Ej)+ε)(2Rn+1).

Proof. By choosing N so that Lemma 10 holds for n > N , we are led to consider three
cases:

(1) l −Rn + n
K ≤ y1 ≤ y2 ≤ l +Rn − n

K ,
(2) l −Rn + n

K ≤ y1 ≤ l +Rn, while l +Rn − n
K ≤ y2 ≤ l +Rn,

(3) l −Rn ≤ y1 ≤ l −Rn + n
K and l +Rn − n

K ≤ y2 ≤ l +Rn.

In the first case, Lemma 5 immediately yields:

|P[l−Rn,y1],Ej ,ωP[y2,l+Rn],Ej ,ω| ≤ e
(γ(Ej+ε)(2Rn+1).

In the second case, we have |P[y2,l+Rn],Ej ,ω| ≤ M̃
n
K , while Lemma 5 gives

|P[l−Rn,y1],Ej ,ω| ≤ e
(γ(Ej)+ε)(y1−l+Rn)).

By our choice of K, M̃
1
K ≤ e

v
2 ≤ e(γ(Ej)+ε), so we again obtain the desired result.

Finally, in the third case, |P[l−Rn,y1],Ej ,ωP[y2,l+Rn],Ej ,ω| ≤ M̃
2n
K ≤ e(γ(Ej+ε)(2Rn+1)

(again by our choice of K). �

7. Spectral Localization

Theorem 4. There is N such that if n > N , Qn ≤ k < Qn+1, and ω ∈ Jl,n,ε, with a
generalized eigenfunction ψω,E satisfying either

(1) nr,ω = l, or
(2) |ψω(l)| ≥ 1

2

then l + k is (γ(E)− 8ε0, Rn, E, ω)-regular.

Proof. Choose N so that Lemma 9 and Lemma 11 hold and

1

2mL(Ĩ)
√

2Rn
e(γ(Ej)−ε+η0−δ0)(2Rn) > e(γ(Ej)+ε)(2Rn)

for n > N . This can be done since η0 − δ0 − ε > ε.
For n > N , we obtain the conclusion of the theorem. For if l + k was not (γ(E) −

8ε0, n, E, ω)-regular, then by Lemma 9

|P[l+k−Rn,y1],Ej ,ωP[y2,l+k+Rn],Ej ,ω| ≥ e
(γ(Ej−ε)+(η0−δ0))(2Rn+1).

On the other hand, by Lemma 11, we have

|P[l+k−Rn,y1],Ej ,ωP[y2,l+k+Rn],Ej ,ω| ≤ e
(γ(Ej+ε)(2Rn+1).



14 EXPONENTIAL DYNAMICAL LOCALIZATION FOR RANDOM WORD MODELS

Our choice of N in the first line of the proof yields a contradiction and completes the
argument.

�
We are now ready to give the proof of Theorem 1.
Again, Rn and Qn are the scales from Lemma 2.

Proof. By Lemma 10, P[J0,n,ε eventually ] = 1. Thus, we obtain Ω̃ with P[Ω̃] = 1 and

for ω ∈ Ω̃, there is N(ω) such that for n > N(ω), ω ∈ J0,n,ε.
Since the spectral measures are supported by the set of generalized eigenvalues (e.g.

[12]), it suffices to show for all ω ∈ Ω̃, every generalized eigenfunction with generalized
eigenvalue E ∈ I is in fact an l2(Z) eigenfunction which decays exponentially.

Fix an ω in Ω̃ and let ψ = ψω,E be a generalized eigenfunction for Hω with generalized
eigenvalue E. Using (7) from section 4 and the bounds established on Rn and Qn
from Lemma 2, it suffices to show that there is N(ω) such that for n > N(ω), if
Qn ≤ k < Qn+1, then k is (γ(E) − 8ε0, Rn, E, ω)-regular. We may assume ψ(0) 6= 0,
and moreover, by rescaling ψ, |ψ(0)| ≥ 1

2 . Choose N so that the conclusions of theorem
3 hold. Additionally, we may choose N(ω) such that for n > N(ω), ω ∈ J0,n,ε. For
n > max{N,N(ω)}, the hypotheses of Theorem 4 are met, and hence k is (γ(E) −
8ε0, Rn, E, ω)-regular.

�

8. Exponential Dynamical Localization

The strategy used in this section follows [9] with appropriate modifications needed to
deal with the fact that single-step transfer matrices were not used in the large deviation
estimates. In particular, the randomness in the conclusion of Theorem 4 will need to
be accounted for.

The following lemma was shown in [15] and we state a version below suitable for
obtaining EDL on the interval I.

Let uk,ω denote an orthonormal basis of eigenvectors for Ran(PI(Hω)).

Lemma 12. [15] Suppose there is C̃ > 0 and γ̃ > 0 such that for any s, l ∈ Z,

E

 ∑
nr,ω=l

|uk,ω(s)|2
 ≤ C̃e−γ̃|s−l|.

Then there are C > 0 and γ > 0 such that for any p, q ∈ Z,

E[sup
t∈R
|〈δp, PI(Hω)eitHωδq〉|] ≤ C(|p− q|+ 1)e−γ|p−q|.

By Lemma 12, Theorem 2 follows from Theorem 5.

Theorem 5. There is C̃ > 0 and γ̃ > 0 such that for any s,l ∈ Z,

E

 ∑
nr,ω=l

|uk,ω(s)|2
 ≤ C̃e−γ̃|s−l|.
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Proof. Fix s, l ∈ Z and fix 0 < c < v − 8ε. Choose N so that Theorem 4 holds and for
n > N

e(v−8ε)3m ≤ e(v−8ε−c)n. (24)

There are two cases to consider:

(1) s− l − 1 > 2(N + 1)(〈L〉 − ε) + 2m,
(2) s− l − 1 ≤ 2(N + 1)(〈L〉 − ε) + 2m.

In the first case, we assume s − l − 1 is even as the proof is similar when it is odd.
Now suppose nr,ω = l and Qj ≤ s < Qj+1, and ω ∈ Jl, j

2
,ε, then using Theorem 4 and

(7) (from section 2),

|ur,ω(s)| ≤ 2|ur,ω(l)|e−(γ(Er,ω)−8ε)Rj (25)

≤ 2|ur,ω(l)|e−(v−8ε)Rj . (26)

By orthonormality, ∑
nr,ω=l

|ur,ω(s)|2 ≤
∑
nr,ω=l

|ur,ω(l)|2e−(v−8ε)2Rj (27)

≤
∑
nr,ω=l

e−(v−8ε)2Rj . (28)

We need to replace the randomness in the exponent above with an estimate that
depends only on the point s. Note that j > 2N and if A denotes the set of j ∈ Z so
that Qj ≤ s < Qj+1, then A is finite.

Using the bounds on Rn and Qn established in Lemma 2, we have:

(1) Rj ≥ j(〈L〉 − ε)−m
(2) Qj ≥ j(〈L〉 − ε) + 2m.

Thus, since s = l + k with Qj ≤ k < Qj+1, by our choice of c and N ,

∑
nr,ω=l

e−(v−8ε)2Rj ≤
∑
nr,ω=l

e−(v−8ε)j(〈L〉−ε)−m

≤
∑
nr,ω=l

e−c(s−l−1).

Finally, and letting J =
⋃
j∈A Jl, j

2
,ε and using the estimate provided by Theorem 4

on P[Jl, j
2
,ε],

E

 ∑
nr,ω=l

|uk,ω|2
 = E

 ∑
nr,ω=l

|ur,ω|2χJ +
∑
nr,ω=l

|ur,ω|2χJc

 (29)

≤ Ce−c|s−l−1| + Ce−η̃|s−l−1|. (30)

In the second case, again by orthonormality, E

 ∑
nr,ω=l

|ur,ω(s)|2
 ≤ 1.
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By letting γ̃ = min{c, η̃} and choosing C̃ > 0 to be sufficiently large, we obtain:

E

 ∑
nr,ω=l

|ur,ω(s)|2
 ≤ C̃e−γ̃|s−l|, as desired.

�

9. Acknowledgments

This research was partially supported by DMS-1901462. I would also like to thank
Svetlana Jitomirskaya for presenting me with the problem that led to this work as well
as for spending her time discussing various issues with me.

References

[1] Michael Aizenman, Jeffrey H. Schenker, Roland M. Friedrich, and Dirk Hundertmark. Finite-
volume fractional-moment criteriafor anderson localization. Communications in Mathematical
Physics, 224:219–253, 2001.
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