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Abstract

For a given closed two-form, we introduce the cone Yang-Mills functional which is a

Yang-Mills-type functional for a pair (A,B), a connection one-form A and a scalar B taking

value in the adjoint representation of a Lie group. The functional arises naturally from

dimensionally reducing the Yang-Mills functional over the fiber of a circle bundle with the

two-form being the Euler class. We write down the Euler-Lagrange equations of the func-

tional and present some of the properties of its critical solutions, especially in comparison

with Yang-Mills solutions. We show that a special class of three-dimensional solutions sat-

isfy a duality condition which generalizes the Bogomolny monopole equations. Moreover, we

analyze the zero solutions of the cone Yang-Mills functional and give an algebraic classifica-

tion characterizing principal bundles that carry such cone-flat solutions when the two-form

is non-degenerate.
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1 Introduction

Let (Mm, g) be a Riemannian manifold and P a principal G-bundle over M . For simplicity, we

will assume that the Lie group G is compact and a subgroup of SO(N).

In this paper, we study a Yang-Mills type functional that involves a pair (A,B), with A ∈
Ω1(M,AdP ) being the connection one-form and B ∈ Ω0(M,AdP ) a section of the associated

adjoint bundle AdP , and also a two-form ζ ∈ Ω2(M) that is d-closed. We shall call this

functional the cone Yang-Mills functional and it is defined by

ScYM (A,B) = ∥FA + ζB∥2 + ∥dAB∥2

= cG

∫
M

tr [(FA + ζB) ∧ ∗(FA + ζB) + dAB ∧ ∗dAB] , (1.1)

where FA = dA+ A ∧ A is the curvature, dAB = dB + [A,B] is the covariant derivative of B,

and in the second line, we have inserted the Killing form of the Lie group G which for SO(N)

and SU(N) is given by the trace times a constant dependent on N , denoted by cG. The critical

points of the functional are solutions of the associated Euler-Lagrange equations

d∗A(FA + ζB) + [B, dAB] = 0 , (1.2)

ζ∗(FA + ζB) + d∗AdAB = 0 , (1.3)

where ζ∗ : Ωk(M) → Ωk−2(M) is the adjoint of the wedging map, ζ∧ , and can be explicitly

expressed as

ζ∗ = (−1)(m−k)k ∗ ζ ∗ . (1.4)

Let us give both a physical and a mathematical motivation for considering the cone Yang-Mills

functional.

For the physical motivation, the cone Yang-Mills functional can be considered as the di-

mensional reduction of the standard Yang-Mills functional over the S1 fiber of a circle bundle,
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π : X → M . Unlike a product space, a circle bundle generically is one where the fiber circle

is non-trivially twisted over M . Such arises for instance in Kaluza-Klein monopole solutions

with a non-vanishing background two-form flux ζ. On any circle bundle X, there exists what

is called a global angular one-form θ which can be locally expressed as θ = dz + a where z

denotes the S1 fiber coordinate and a is the U(1) Kaluza-Klein gauge field. The two-form flux,

ζ = dθ = d(dz + a) = da, is then the background field strength of the U(1) gauge field and

effectively measures the twisting of the S1 fiber.

Now for the dimensional reduction of the Yang-Mills functional over the S1 fiber of the

circle bundle π : X →M , we take the metric to be

gX = π∗gM + θ ⊗ θ , (1.5)

and further require that the local connection one-form (Yang-Mills gauge field) A on X be

invariant under translation of the circle fiber. Such a connection form on X can be expressed

as

A = A+ θ B . (1.6)

Here, both A and B takes values on AdP , and B represents the component of the connection

in the circle direction. Since A is invariant under S1 translation, both A and B only have

dependence on the coordinates of M . The curvature two-form of A (Yang-Mills field strength)

on X then has the following expression:

FA = dA+A ∧A = (FA + ζB) + θ(−dAB) , (1.7)

where we have used dθ = ζ. Comparing with the cone Yang-Mills functional in (1.1), we see that

ScY M = ∥FA∥2 , and therefore, it is just the Yang-Mills functional on X dimensionally reduced

to M over the fiber circle. And we can also interpret the cone Yang-Mills Euler-Lagrange

equations (1.2)-(1.3) as the dimensionally-reduced Yang-Mills equations over the S1 fiber of X.

In physical terms, the cone Yang-Mills functional on M is a Euclidean or Wick-rotated

action, situated in a curved background, with Riemannian metric g:

ScY M (A,B) =

∫
M
cG tr

(
|FA + ζB|2 + |dAB|2

)
dV

=

∫
M
cG tr

(
|FA|2 + |dAB|2 + |ζ|2B2 + 2 ζ∗FAB

)
dV ,
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Figure 1: The mapping cone complex of the d-closed two-form ζ. The complex of elements

Cone∗(ζ) = Ω∗(M)⊕ Ω∗−1(M) arises from the ζ map between two de Rham complexes.

where we have used a simplified notation, e.g. FA ∧ ∗FA = |FA|2dV . The action thus consists

of a Yang-Mills part, an adjoint-valued scalar with a “mass” |ζ| (which may vary over M), and

an interaction term between A and B. Heuristically, the Euler-Lagrange equations of motion

(1.2)-(1.3) can be thought of as a mixing of the Yang-Mills equations with a Klein-Gordon-type

scalar plus an interaction term.

The cone Yang-Mills functional also has a mathematical motivation. In fact, the functional

arises naturally from its relation with a mapping cone complex which we will provide an expla-

nation here. (For a reference on the general mapping cone complex, see for example [11] and

also [3].)

The d-closed two-form ζ ∈ Ω2(M) can be thought of as an operator or a map, by wedge

product between differential forms, i.e. ζ∧ : Ω∗(M) → Ω∗+2(M). If desired, the form ζ can

represent a geometric structure of interest on M , such as a symplectic or hermitian structure,

but generally, the form ζ can be any closed two-form on M . Letting ζ map between two de

Rham chain complexes leads to a mapping cone complex (see Figure 1). The elements of the

mapping cone complex consist of pairs of differential forms:

Conek(ζ) : = Ωk(M)⊕ Ωk−1(M) , k = 0, 1, . . . ,m+ 1 . (1.8)

The differential of the mapping cone complex dC : Conek(ζ) → Conek+1(ζ) is given by

dC Conek(ζ) = dC

(
Ωk ⊕ Ωk−1

)
=
(
dΩk + ζ ∧ Ωk−1

)
⊕−dΩk−1 .

Since the grading of the two components of Conek(ζ) in (1.8) are different, it is useful to

introduce a formal one-form θ to supplement the second component so that we can express a
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cone form as a sum with both components having the same total degree k, i.e.

Conek(ζ) = Ωk ⊕ θ ∧ Ωk−1 . (1.9)

Additionally, it is useful for us to impose that the formal one-form θ satisfy dθ = ζ. For this

will allow us to interpret the cone differential dC simply as the exterior derivative:

dC Conek(ζ) = d
(
Ωk ⊕ θ ∧ Ωk−1

)
=
(
dΩk + ζ ∧ Ωk−1

)
⊕ θ ∧

(
−dΩk−1

)
.

It then becomes self-evident that dC dC = 0 . Moreover, there is a natural product on the cone

space Cone∗(ζ) given by the usual wedge product

Conej(ζ)× Conek(ζ) : =
(
Ωj ⊕ θ ∧ Ωj−1

)
∧
(
Ωk ⊕ θ ∧ Ωk−1

)
=
(
Ωj ∧ Ωk

)
⊕ θ ∧

(
Ωj−1 ∧ Ωk + (−1)jΩj ∧ Ωk−1

)
.

This product satisfies the Leibniz rule with respect to dC . In all, we see that we have a

mapping cone algebra, (Cone∗(ζ), dC ,×), that satisfies the conditions of a differential graded

algebra (DGA).

Now in the presence of the associated adjoint bundle, we should consider the twisted cone

forms:

Conek(ζ)(M,AdP ) = Ωk(M,AdP )⊕ θ ∧ Ωk−1(M,AdP )

which take values on the associated adjoint bundle AdP . In this context, the differential dC

must also be twisted by a cone connection one-form A ∈ Cone1(ζ)(M,AdP )

. . . Conek(ζ)(M,AdP ) Conek+1(ζ)(M,AdP ) Conek+2(ζ)(M,AdP ) . . .
dC+A dC+A dC+A dC+A

where A = A+ θ ∧B , with A ∈ Ω1(M,AdP ) and B ∈ Ω0(M,AdP ). The cone curvature then

takes the form

FA = (dC +A)2 = dCA+A ∧A = (FA + ζB) + θ ∧ (−dAB) , (1.10)

where FA = dA+ A ∧ A. The above twisted complex is only a differential complex if FA = 0.

This requires that the cone curvature FA vanishes, which from (1.10) corresponds to (A,B)
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satisfying what we shall call the cone-flat condition with respect to ζ, or simply just the cone-flat

condition,

FA + ζ B = 0 , dAB = 0 . (1.11)

The cone Yang-Mills functional of (1.1) is then just the normed square of the cone curvature,

∥FA∥2. It is worthwhile to emphasize that this mapping cone perspective only requires that the

two-form ζ ∈ Ω2(M) be d-closed and nothing more. This is in contrast with the dimensional

reduction perspective, where ζ mathematically represents the Euler class of the circle bundle

π : X →M and hence would need to be an element of H2(M,Z).

In this paper, we take an important first step in understanding cone Yang-Mills solutions.

We will show that a subset of the solutions involves Yang-Mills connections. For instance, in

dimension two when M is compact and ζ is taken to be the volume form, the above cone-flat

condition (1.11) implies exactly the two-dimensional Yang-Mills condition

d∗A FA = − ∗ dA ∗ FA = ∗ dAB = 0 , (1.12)

having noted that ∗ ζ = 1. Conversely, in two dimensions, if (A,B) is a cone-Yang-Mills solution

with A also a Yang-Mills connection, then the pair (A,B) must be cone-flat.

In higher dimensions, certain special classes of Yang-Mills connections can be paired with

a scalar B to obtain cone Yang-Mills solutions. In the trivial case where we set ζ = 0, any

Yang-Mills connection A together with a covariantly constant B is trivially a cone Yang-Mills

solutions. When ζ ̸= 0, Yang-Mills connections A such that the curvature two-form satisfy

ζ∗FA = 0 are cone Yang-Mills solutions with B = 0. When ζ is a harmonic form, cone-flat

solutions are always composed of a Yang-Mills connection with an appropriate scalar section

B.

On the other hand, it should be evident that the space of cone Yang-Mills solutions (A,B)

is generally much richer and different from that of Yang-Mills solutions. As we will show in

explicit examples, not all Yang-Mills connection A can be paired with a scalar B to form a

cone Yang-Mills solutions. Conversely, there are also cone Yang-Mills solutions (A,B) where A

is not Yang-Mills. Furthermore, given a cone Yang-Mills solutions (A,B), there may be other

scalars B′ such that (A,B′) remain cone Yang-Mills.

Interestingly, when M is three-dimensional, we are able to write down a Bogomolny-type

condition, that gives a sufficient condition on (A,B) to be a cone Yang-Mills solution. Such a
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condition can be motivated by considering FA as the Yang-Mills curvature on a four-dimensional

circle bundle X and imposing the (anti-)self-dual condition. Then, dimensionally reducing on

the fiber S1 by expressing FA as in (1.10), the (anti-)self-dual condition implies the three-

dimensional condition

FA + ζB = ± ∗ dAB . (1.13)

Notice that if we set ζ = 0, the above equation is just the Bogomolny monopole equation.

Similar to the (anti-)self-dual Yang-Mills condition in four dimensions, (1.13) is a first-order

condition whose solutions solve (1.2)-(1.3) in three dimensions. This duality condition will assist

us in finding non-abelian, cone Yang-Mills solutions. Indeed, we shall give in Section 3.2 an

explicit SU(2) solution of (1.13) that comes from dimensionally reducing the four-dimensional

Taub-NUT gravitational instanton solution.

Concerning the cone-flat condition, we are able to characterize principal bundles that carry

a cone-flat connection, i.e. a pair (A,B) satisfying (1.11), when ζ is a non-degenerate two-form.

This type of cone-flat connections can interestingly be classified similar to Atiyah-Bott’s classifi-

cation of bundles carrying Yang-Mills connections on Riemann surfaces [2]. Our classification of

the cone-flat bundles however depends on the given ζ and the second homotopy group, π2(M).

Theorem 1.1. Let M be a path connected manifold, ζ ∈ Ω2(M) be a non-zero, non-degenerate,

closed two-form, and G be a Lie group. There exists a bijective correspondence between the

following sets:{
isomorphism classes of cone-flat connections

with respect to ζ on G-bundles over M

}
≃

{
conjugacy classes of

homomorphisms ρ : Γ → G

}
,

where Γ is an R/H extension of π1(M) with H ⊂ R being the closure of the group

H :=

{∫
S
ζ
∣∣ S is a representative in π2(M)

}
.

This paper is organized as follows. In Section 2, after a brief description of our nota-

tions/conventions, we proceed to consider the first-order variation of the cone Yang-Mills func-

tional to obtain its Euler-Lagrange equations. We also show that modulo gauge equivalence,

the cone Yang-Mills equations are elliptic and hence has a finite-dimensional solution space

on a closed manifold. We also describe properties of cone Yang-Mills solutions under certain
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conditions for the two-form ζ and structure group G, and especially emphasizing its relation-

ship to Yang-Mills connections. In Section 3, we work out the special case of abelian cone

Yang-Mills solutions in dimension two. We also discuss the three-dimensional Bogomolny-type

monopole condition (1.13) and give an explicit non-trivial SU(2) cone Yang-Mills solutions on

M = R3 −{0}, i.e. the Euclidean space with the origin removed. Finally, in Section 4, we con-

sider bundles that can carry cone-flat solutions when ζ is a non-degenerate, closed two-form,

and prove the classification of cone-flat bundles of Theorem 1.1.
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2 Properties of cone Yang-Mills solutions

2.1 Preliminaries

Let M be a smooth manifold and P be a principal bundle over M . We consider the associated

adjoint bundle AdP equipped with an inner product that is invariant under the adjoint action.

Hence, for arbitrary x, y, z ∈ Ω∗(M,AdP ),

⟨[x, y], z⟩ = ⟨x, [y, z]⟩. (2.1)

We can extend the inner product ⟨−,−⟩ on Ω∗(M,AdP ) to ⟨−,−⟩C on Cone∗(ζ)(M,AdP ) =

Ω∗(M,AdP )⊕ θΩ∗−1(M,AdP ) for a d-closed two-form, ζ ∈ Ω2(M). We do so by setting

⟨η1 + θξ1, η2 + θξ2⟩C = ⟨η1, η2⟩+ ⟨ξ1, ξ2⟩. (2.2)

Note that θ is a formal one-form with property dθ = ζ. When paired with another differential

form, there is a wedge product, θ∧, which for notational simplicity, as in (2.2), we will just

assume without writing out explicitly.

In this paper, we take the inner product on Ω∗(M,AdP ) to be the standard one induced
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from the Riemannian metric g and the Killing form of the Lie group G. Specifically,

⟨η1, η2⟩ = cG

∫
M

tr [η1 ∧ ∗η2] , (2.3)

where the constant cG = N − 2 if G = SO(N). With (2.2) and (2.3), we can also express

⟨−,−⟩C as an integral by introducing the Hodge star operator for cone forms

∗C : Conek(ζ)(M,AdP ) → Conem+1−k(ζ)(M,AdP )

η + θξ 7→ ∗ ξ + θ (−1)|η|∗ η (2.4)

which allows us to write

⟨η1 + θξ1, η2 + θξ2⟩C = cG

∫
M

tr
∂

∂θ
[(η1 + θξ1) ∧ ∗C(η2 + θξ2)] (2.5)

where ∂
∂θ (θξ) = ξ for any ξ ∈ Ω∗(M,AdP ).

Having defined the inner product on Cone∗(ζ)(M,AdP ), we write down the Yang-Mills

functional associated with the cone connection. Given a connection A ∈ Ω1(M,AdP ) and a

section B ∈ Ω0(M,AdP ), we write the cone connection as A = A+ θB ∈ Cone1(ζ)(M,AdP ).

Locally, if we write the usual covariant derivative as dA = d + A, then the cone covariant

derivative is given by DC = d+A = d+ (A+ θB) and the cone curvature takes the form

FA = DCDC = d(A+ θB) + (A+ θB) ∧ (A+ θB)

= (FA + ζB)− θ dAB ,

having used the relation ζ = dθ . The norm squared of the cone curvature is the cone Yang-Mills

functional

ScYM (A+ θB) = ∥FA∥2C = ∥(FA + ζB)− θ dAB∥2C
= ∥FA + ζB∥2 + ∥dAB∥2 .

The zero points of the functional gives the cone-flat condition for the pair (A,B):

FA + ζB = 0, dAB = 0. (2.6)

If satisfying (2.6), we will call the pair (A,B) cone-flat connections with respect to ζ, or often,

just simply cone-flat connections.
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Now to obtain the equations for the critical points of the cone Yang-Mills functional, we

consider the first order variation, (A,B) → (A + tη, B + tξ) where η ∈ Ω1(M,AdP ) and

ξ ∈ Ω0(M,AdP ). For the standard curvature, we find

FA+tη = FA + tdAη + t2η ∧ η ,

where locally, dAη = dη +A ∧ η + η ∧A =: dη + [A, η]. Furthermore, we have

ScYM (A+ tη, B + tξ)

= ∥FA+tη + ζ(B + tξ)∥2 + ∥dA+tη(B + tξ)∥2

= ∥FA + ζB∥2 + ∥dAB∥2 + 2t (⟨FA + ζB, dAη + ζξ⟩+ ⟨dAB, [η,B] + dAξ⟩) + o(t)

= ∥FA∥2C + 2t
(
⟨d∗A(FA + ζB) + [B, dAB], η⟩+ ⟨ζ∗(FA + ζB) + d∗AdAB, ξ⟩

)
+ o(t)

where for dimM = m,

d∗A = (−1)mk+m+1 ∗ dA∗ , (2.7)

and ζ∗ : Ωk(M) → Ωk−2(M) is the adjoint of the ζ∧ map and defined to be

ζ∗ = (−1)(m−k)k ∗ ζ ∗ . (2.8)

Hence, the stationary solutions of the cone Yang-Mills functional satisfy

d∗A(FA + ζB) + [B, dAB] = 0 , (2.9)

ζ∗(FA + ζB) + d∗AdAB = 0 . (2.10)

We will call a pair (A,B) satisfying the above cone Yang-Mills equations (2.9)-(2.10) cone

Yang-Mills connections.

2.2 Elliptic property of the cone Yang-Mills solutions

In this subsection, we shall prove the following theorem.

Theorem 2.1. On a closed manifold M , the space of cone Yang-Mills connections modulo

gauge equivalence is finite-dimensional.

Our proof will follow the same line of arguments as Atiyah-Bott’s proof of the analogous

statement [2, Sec. 4] for the Yang-Mills functional.
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Proof. We compute the linearized variation of the cone Yang-Mills equations. Let (A,B) →
(A+ tη, B + tξ) where η ∈ Ω1(M,AdP ) and ξ ∈ Ω0(M,AdP ) . The linearized variation of the

first cone Yang-Mills equation (2.9) is of the form

d∗A+tη

(
FA+tη + ζ(B + tξ)

)
+ [B + tξ, dA+tη(B + tξ)]

= d∗A(FA + ζB) + [B, dAB] + t
(
d∗AdAη − [B, [B, η]] + d∗A(ζξ) + [B, dAξ]

+ [ξ, dAB] + (−1)m+1 ∗ [η, ∗(FA + ζB)]
)
+ o(t) , (2.11)

and for the second equation (2.10), we find

ζ∗FA+tη + ζ∗
(
ζ(B + tξ)

)
+ d∗A+tηdA+tη(B + tξ)

= ζ∗FA + ζ∗(ζB) + d∗AdAB + t
(
d∗AdAξ + ζ∗(ζξ) + ζ∗dAη − d∗A[B, η]− ∗[η, ∗dAB]

)
+ o(t) .

(2.12)

With (2.11)-(2.12), we see that A + θB + t(η + θξ) + o(t) describes a curve of the critical

points of the cone Yang-Mills functional if and only if{
d∗AdAη − [B, [B, η]] + d∗A(ζξ) + [B, dAξ]

}
+ [ξ, dAB] + (−1)m+1 ∗ [η, ∗(FA + ζB)] = 0 (2.13){

d∗AdAξ + ζ∗(ζξ) + ζ∗dAη − d∗A[B, η]
}
− ∗[η, ∗dAB] = 0 (2.14)

We can write (2.13)-(2.14) more simply in terms of DC , the cone covariant derivative. Lo-

cally, if dA = d+A, then DC = d+ (A+ θB) and

DC(η + θξ) = dAη + ζ ∧ ξ + θ([B, η]− dAξ) ,

which we can express in matrix form as

DC

(
η

ξ

)
=

(
dA ζ∧

[B,−] −dA

)(
η

ξ

)
, (2.15)

and its adjoint with respect to the metric in (2.5) by

D∗
C

(
η

ξ

)
=

(
d∗A −[B,−]

ζ∗ −d∗A

)(
η

ξ

)
. (2.16)

Here, we have noted that the adjoint [B,−]∗ = −[B,−], since for any γ, γ′ ∈ Ωk(M,AdP ), we

have

⟨[B,−]∗(γ), γ′⟩ = ⟨γ, [B, γ′]⟩ = ⟨[γ,B], γ′⟩ = −⟨[B, γ], γ′⟩ ,
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having used the adjoint-invariance property of the inner product (2.1). Now, the composition

D∗
CDC

(
η

ξ

)
=

(
d∗AdA − [B, [B,−]] d∗A(ζ ∧ −) + [B, dA−]

ζ∗dA − d∗A[B,−] d∗AdA + ζ∗(ζ ∧ −)

)(
η

ξ

)

which reproduces exactly the terms within the curly brackets { . . .} in (2.13)-(2.14). The

remaining terms can be expressed as

(−1)m ∗C [ η + θξ , ∗C FC ] = (−1)m ∗C [ η + θξ , ∗C(FA + ζ B − θ dAB)]

= (−1)m ∗C [η + θξ , θ ∗ (FA + ζ B)− ∗dAB]

= (−1)m+1 ∗C {[η, ∗dAB] + θ ([ξ, ∗dAB] + [η, ∗(FA + ζ B)])}

= [ξ, dAB] + (−1)m+1 ∗ [η, ∗(FA + ζ B)]− θ ∗ [η, ∗dAB]

The last equation follows from the relation (−1)m+1 ∗ [ξ, ∗dAB] = [ξ, dAB]. This can be seen

by writing dAB =
∑
µi ⊗ αi and ξ =

∑
ξi ⊗ αi where µi ∈ Ω1(M), ξi ∈ Ω0(M) and {αi} is a

basis of the Lie algebra g = Lie(G). Then

(−1)m+1 ∗ [ξ, ∗dAB] = (−1)m+1
∑

∗[ξi ⊗ αi, (∗µj)⊗ αj ]

= (−1)m+1
∑

∗ ∗ (ξiµj)⊗ [αi, αj ]

=
∑

ξiµj ⊗ [αi, αj ]

= [ξ, dAB] .

In all, the linearized variation condition (2.13)-(2.14) can be expressed concisely as

D∗
CDC(η + θξ) + (−1)m ∗C [ η + θξ , ∗C FC ] = 0 . (2.17)

Now, under a gauge transformation

A+ θB → g(A+ θB)g−1 + gdg−1 = A+ θB − t(DC α) + o(t)

having substituted on the right-hand-side g = etα for α ∈ g. To quotient out a linear varia-

tion that is a gauge transformation, we impose that the deformation satisfy the gauge-fixing

condition

D∗
C(η + θξ) = 0 . (2.18)
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Combining (2.17) with (2.18), the linearized deformation (η + θξ) is characterized by solving

the differential system

(D∗
CDC +DCD

∗
C)(η + θξ) + (−1)m ∗C [ η + θξ , ∗C FC ] = 0 . (2.19)

This is an elliptic system since the cone Laplacian ∆C = D∗
CDC+DCD

∗
C is elliptic. (With (2.15)-

(2.16), it is easily seen that the contribution to the principal symbol of ∆C comes only from the

standard Laplacian d∗d+dd∗ on the diagonal components.) Hence, this implies that the tangent

space of cone Yang-Mills connections modulo gauge equivalence is finite-dimensional.

2.3 Comparison with Yang-Mills solutions

Since the cone Yang-Mills functional is closely related to the Yang-Mills functional, it is natural

to ask about the relationship between their critical points (i.e. solutions). We shall study this

issue starting first with some special cases.

(i) Cone Yang-Mills solutions with B = 0.

Consider first the case of cone Yang-Mills solutions with B = 0. In this setting, the cone

Yang-Mills equations simplify to

d∗AFA = 0 , ζ∗FA = 0 . (2.20)

Hence, cone Yang-Mills solutions with B = 0 are a subset of Yang-Mills solutions satisfying

additionally the second condition of (2.20).

In particular, when M is a Kähler manifold and ζ = ω is the Kähler metric, a hermitian

Yang-Mills connection that satisfies the conditions

F 2,0
A = F 0,2

A = 0 , ωn−1 ∧ FA = 0 ,

is also a cone Yang-Mills solution satisfying (2.20) with B = 0. This is because ω∗FA = 0 is

equivalent to ωn−1 ∧ FA = 0 for a Kähler metric.

(ii) Cone Yang-Mills solutions with ζ = 0.

Another special case is that of setting ζ = 0. Notice first for the zero point of the cone

Yang-Mills functional satisfying the cone-flat condition (2.6), the pair (A,B) is cone-flat if and

only if A is a flat connection (i.e. FA = 0) and dAB = 0. In general, we have the following:

13



Lemma 2.2. Let M be a closed manifold and let ζ = 0. Then (A,B) is a cone Yang-Mills

solution if and only if A is a Yang-Mills connection and dAB = 0.

Proof. When ζ = 0, ζ∗ is a zero map. The second equation of cone Yang-Mills condition (2.10)

becomes just d∗AdAB = 0, which implies dAB = 0 on a compact manifold. The first equation

(2.9) then simplifies to d∗AFA = 0. Hence, Amust be a Yang-Mills connection with B covariantly

constant.

(iii) Cone Yang-Mills solutions when ζ is a harmonic form.

Instead of vanishing, suppose ζ is a harmonic two-form, i.e. dζ = d∗ζ = 0. We can obtain

a similar statement to Lemma 2.2 if we require additionally that the cone Yang-Mills solution

is cone-flat.

Lemma 2.3. Suppose (A,B) is a cone-flat solution, i.e. a zero point of the cone Yang-Mills

functional. If ζ is a harmonic form, then A is a Yang-Mills connection.

Proof. By assumption, we have FA = −ζB and dAB = 0. So

dA ∗ FA = −dA(∗ ζB) = −(d ∗ ζ)B − (−1)m−2(∗ζ)dAB = 0 ,

implying that A is a Yang-Mills connection.

Remark 2.4. When (M2n, ω) is a symplectic manifold and ζ = ω, then a connection satisfying

the curvature condition FA = −ωB such that dAB = 0 is called a symplectically-flat connection

as introduced in [10]. Symplectically-flat connections are Yang-Mills connections with respect

to a compatible metric. This agrees with Lemma 2.3 above since with respect to a compatible

metric, ∗ω = ωn−1/(n− 1)! which implies d∗ω = 0 , i.e. ω is a harmonic form.

(iv) Cone Yang-Mills solutions with connection one-form not Yang-Mills.

Thus far, we have described special cone Yang-Mills solution pairs (A,B) where the connec-

tion part A is Yang-Mills. Such is not the generic case. Below, we shall give a simple cone-flat

solution (A,B) where A is not Yang-Mills. In order not to contradict Lemma 2.3, the ζ in the

example below is not harmonic.
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Example 2.5. Let Σ be a Riemann surface and A′ ∈ Ω1(Σ, AdP ) be a non-flat Yang-Mills

connection on Σ. Let ζ be the volume form of Σ normalized such that the total volume of Σ

is one. Define M to be the three-dimensional circle bundle π : M → Σ with Euler class given

by ζ. Since A′ is Yang-Mills, we can write its curvature as FA′ = ζΦ such that dA′Φ = 0. For

simplicity, we will also use ζ, A′ and Φ to denote their pullbacks on M .

Let θ ∈ Ω1(M) be the global angular one-form of the circle bundle M , i.e. dθ = ζ, and also

let c ∈ R. For A = A′ + c θΦ and B = −(1 + c)Φ on the pullback bundle π∗(AdP ), we find

FA = FA′ + c ζΦ− c θdA′Φ = (1 + c)ζΦ = −ζB ,

and

dAB = −(1 + c)dA′Φ− c(1 + c)θ[Φ,Φ] = 0 ,

that is, (A,B) is a cone-flat solution. However, the connection form A is not Yang-Mills in

general with respect to the volume form on the circle bundle M , dvolM = ζ ∧ θ, since

d∗AFA = ∗ dA ∗ FA = − ∗ dA(θB) = − ∗ ζB = (1 + c)θΦ

which is non-zero unless c = −1. (We have assumed A′ is not a flat connection, and therefore,

FA′ = ζΦ ̸= 0.) Hence, generally, for any c ̸= −1, A is not a Yang-Mills connection.

(v) Yang-Mills connections that can not be a part of a cone Yang-Mills solution.

For a cone Yang-Mills solution, (A,B), we have seen that A need not be a Yang-Mills

connection. In the reverse direction, we can ask if given a Yang-Mills connection A, will there

always exist a B such that (A,B) is a cone Yang-Mills solution? The answer is no, as is shown

in the example below.

Example 2.6. Let M = T 4 = R4/2πZ4 be the 4-torus described by identifications xi ∼
xi + 2πni for i = 1, 2, 3, 4 and ni ∈ Z. Let ζ = dx1 ∧ dx2 + dx3 ∧ dx4. We will take the

Riemannian metric to be

g = (dx1)
2 + (dx2)

2 +
1

f
(dx3)

2 + f (dx4)
2

where f =
3 + 2 sin 2x2 cosx3

1− 1
2 sin 2x2 cosx3

.

Consider a principal U(1) bundle over M with the circle coordinate identified by

y ∼ y + 2πn5 − n1x3
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for n5 ∈ Z. The global connection one-form on the U(1) bundle can be taken to be

A = dy +
1

2π
x1 dx3 +

1

4π
sin 2x2 sinx3 dx1.

The curvature two-form is then given by

FA = dA = − 1

2π
cos 2x2 sinx3 dx1 ∧ dx2 +

1

2π
(1− 1

2
sin 2x2 cosx3)dx1 ∧ dx3 .

Moreover,

d ∗ FA =
1

2π
d

[
− cos 2x2 sinx3 dx3 ∧ dx4 − (1− 1

2
sin 2x2 cosx3)f dx2 ∧ dx4

]
=

1

2π
d [− cos 2x2 sinx3 dx3 ∧ dx4 − (3 + 2 sin 2x2 cosx3)dx2 ∧ dx4] = 0 .

Thus, FA satisfies the abelian Yang-Mills equation. However, there does not exist a function

B on T 4 such that (A,B) satisfy the cone Yang-Mills equations (2.9)-(2.10). Equation (2.9)

implies in the abelian case d∗(FA+ ζB) = 0 . But since we know already d∗FA = 0 , this means

B is required to satisfy

0 = d ∗ (ζB) = d(ζB) = ζ ∧ dB . (2.21)

With ζ being a non-degenerate 2-form, (2.21) gives the condition dB = 0.

However, imposing the second cone Yang-Mills equation (2.10) results in a contradiction.

For if dB = 0, (2.10) reduces to the condition ζ∗FA + ζ∗ζB = 0. This implies in particular

B =
1

2
ζ∗ζB = −1

2
ζ∗FA =

1

4π
cos 2x2 sinx3 , (2.22)

and clearly, dB ̸= 0, which contradicts the condition from (2.21). Hence, there is no B that

can satisfy the cone Yang-Mills equations.

2.4 Uniqueness of cone Yang-Mills solutions for a fixed connection

In general, given an arbitrary connection A, there does not exist a B that would make (A,B) a

cone Yang-Mills solution. To illustrate this in a simple example, letM be a closed manifold and

ζ = 0 . Then by Lemma 2.2, we know that A must be a Yang-Mills connection and dAB = 0 .

Hence, there exists no B that would give a cone Yang-Mills solution if A is not Yang-Mills.

However, it is interesting to ask that given a cone Yang-Mills solution (A,B), how many

different B’s with A fixed would also be a cone Yang-Mills solution? In the case of ζ = 0 and
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M closed, if (A,B) is a cone Yang-Mills solution, then so are all (A,B+Φ) with dAΦ = 0. For

ζ ̸= 0, we are able to obtain results in two special cases. First, for two dimensions and suppose

A is a Yang-Mills connection, then we have the following:

Proposition 2.7. Suppose M is a closed Riemann surface and ζ is its volume form. For

each Yang-Mills connection A, there exists a unique B such that (A,B) is a cone Yang-Mills

solution. In fact, such a pair (A,B) is always cone-flat.

Proof. Since A is a Yang-Mills connection on a Riemann surface, FA = ζΦ with dAΦ = 0. So

we can choose B = −Φ and then (A,B) is a cone-flat solution. We will show below that this is

the unique cone Yang-Mills solution for a fixed A, a Yang-Mills connection.

Generally, suppose (A,B) is a cone Yang-Mills solution. As ζ is a volume form, the condition

ζ∗(FA + ζB) + d∗AdAB = 0 becomes

Φ +B + d∗AdAB = 0 . (2.23)

Let dA act on both sides. This implies dAB = −dAd∗AdAB, and therefore,

⟨dAB, dAd∗AdAB⟩ = −∥dAB∥2 ≤ 0 .

On the other hand,

⟨dAB, dAd∗AdAB⟩ = ⟨d∗AdAB, d∗AdAB⟩ = ∥d∗AdAB∥2 ≥ 0.

So ⟨dAB, dAd∗AdAB⟩ has to vanish. It follows that ∥dAB∥2 = 0, which implies, dAB = 0, and

by (2.23), B = −Φ. So such B is unique when A is Yang-Mills.

Another special case where we can constrain B is when ζ is the symplectic form on a

symplectic manifold. If the structure group is abelian, then B must be unique.

Proposition 2.8. Suppose A is a connection on the associated adjoint bundle AdP over a

symplectic manifold (M2n, ω) and the Riemannian metric is compatible with ω. Take ζ = ω.

Then there is at most one B that satisfies [B, dAB] = 0 and such that (A,B) is a cone Yang-

Mills solution. In particular, if the structure group is abelian, there is at most one cone Yang-

Mills solution pair (A,B) for any given connection A.

Proof. Let dimM = 2n. With respect to a compatible metric, ∗ ζ = ∗ω = 1
(n−1)!ω

n−1, and

ζ∗ζ = n
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Suppose both (A,B1) and (A,B2) are cone Yang-Mills solutions. Assume also [B1, dAB1] =

[B2, dAB2] = 0 which is identically true when the structure group is abelian. Then (2.9)-(2.10)

imply for B1,

− ∗ dA(∗FA +
1

(n− 1)!
ωn−1B1) = 0 ,

ζ∗FA + nB1 + d∗AdAB1 = 0 ,

and B2 satisfies identical equations. So by the first equation, we have

ωn−1 ∧ dAB1 = ωn−1 ∧ dAB2.

It follows that dAB1 = dAB2 because ωn−1 : Ω1(M) → Ω2n−1(M) is an isomorphism. With

this, the second equation becomes

n(B1 −B2) = d∗AdA(B2 −B1) = 0 ,

which implies, B1 = B2.

The above proposition avoids considering the term [B, dAB]. If [B, dAB] = 0 holds true for

all cone Yang-Mills solutions (A,B), then we would have obtained the uniqueness of B when

ζ is the symplectic structure. But as we shall see in Example 3.2 in the next section, a cone

Yang-Mills solution in general need not satisfy [B, dAB] = 0.

3 Special solutions of the cone Yang-Mills functional

3.1 Two-dimensional solutions with abelian gauge group

Consider cone Yang-Mills solutions on a closed Riemann surface with abelian structure group.

In this case, the Euler-Lagrange equations reduce to

d∗(FA + ζB) = 0 , (3.1)

ζ∗(FA + ζB) + d∗dB = 0 . (3.2)

The first equation (3.1) implies that ∗(FA + ζB) is a constant c. So we can assume that

FA + ζB = c ω , (3.3)
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where ω is the volume form of M . By Hodge decomposition, we can write

ζ = c′ω + dd∗(fω) = c′ω − d ∗ df ,

where c′ is a constant and f is a function on M .

For any function ϕ on M , we have

⟨ϕ, ζ∗(FA + ζB)⟩ = ⟨ζϕ, (FA + ζB)⟩ = ⟨ϕ(c′ω − d ∗ df), c ω⟩

=

∫
M
cϕ(c′ω − d ∗ df)

=

∫
M
cc′ϕω −

∫
M
d(cϕ ∗ df) +

∫
M
c dϕ ∧ ∗ df

= ⟨ϕ, cc′⟩+ ⟨dϕ, c df⟩

= ⟨ϕ, cc′ + c d∗df⟩

and therefore,

ζ∗(FA + ζB) = cc′ + c d∗df . (3.4)

Plugging this into (3.2), we find that cc′ is a d∗-exact constant; hence, cc′ must be zero.

If c′ ̸= 0, then c must vanish and then FA + ζB = 0. By (3.2), d∗dB = 0 which implies

dB = 0 since M is closed. Thus, we have obtained the following statement.

Proposition 3.1. Suppose M is a closed Riemann surface, ζ is a non-exact two-form on M ,

and the structure group is abelian. Then all cone Yang-Mills solutions are cone-flat.

Now we consider the case c′ = 0, that is, ζ = −d ∗ df is a d-exact form. Together, (3.2) and

(3.4) imply d∗d(cf + B) = 0, and so cf + B is a constant. We can thus write B = −cf + c′′

for some constant c′′. Hence, by (3.3), FA = c ω − ζB = c ω + (c′′ − cf)d ∗ df . Therefore, we

find that the constants c and c′′ parametrize the cone Yang-Mills solutions. And finally, in the

special case where f = 0, i.e. ζ vanishes, the critical points must satisfy FA = c ω and B = c′′.

3.2 Three-dimensional solutions from duality relations

Recall in four dimensions, there are special Yang-Mills solutions that satisfy the first-order self-

dual/anti-self-dual conditions, ∗FA = ±FA . The intuition that cone Yang-Mills functional can

be interpreted as a dimensional reduction of the Yang-Mills functional suggests an analogous
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duality condition ∗C FA = ±FA over 3-manifolds, where FA = (FA + ζB) − θdAB. With the

∗C acting on Conek(ζ) given by (2.4), we have

∗C FA = ∗C [(FA + ζB)− θdAB]

= ∗(−dAB) + θ [∗(FA + ζB)] .

Hence, we find that ∗C FA = ∓FA implies

FA + ζB = ± ∗ dAB (3.5)

Note that when ζ = 0, the condition becomes the Bogomolny monopole equations.

We will show that a solution of (3.5) is automatically a solution of the cone Yang-Mills

equations in two different ways. First, we can check directly that (3.5) implies the cone Yang-

Mills equations (2.9)-(2.10). Applying d∗A to (3.5), we find the following:

d∗A(FA + ζB) = ± d∗A ∗ dAB

= ± ∗ dAdAB = ± ∗ [FA, B]

= [(dAB − ζB), B] = [dAB,B]

where we have used the three-dimensional relations ∗∗ = 1 , and d∗A = (−1)k ∗ dA ∗ acting on a

k-form. The above implies the first cone Yang-Mills equation (2.9), d∗A(FA+ζB)+[B, dAB] = 0 .

Furthermore, it also follows from (3.5) that

d∗AdAB = − ∗ dA(∗ dAB) = ∓ ∗ dA(FA + ζB)

= ∓ ∗ ζ ∧ dAB = ∓ ∗ ζ ∗ (∗dAB)

= −ζ∗(FA + ζB)

which implies the second cone Yang-Mills equation (2.10), ζ∗(FA + ζB) + d∗AdAB = 0 .

In the second method, analogous to the standard Yang-Mills instanton argument, we can

express the three-dimensional cone Yang-Mills functional in the following manner:

∥FA∥2C =

∫
M
cG tr[(FA + ζB) ∧ ∗(FA + ζB) + dAB ∧ ∗ dAB)]

=

∫
M
cG tr [(FA + ζB ∓ ∗ dAB) ∧ ∗(FA + ζB ∓ ∗ dAB)] ± 2

∫
M
cG tr [(FA + ζB) ∧ dAB]

≥ ± 2

∫
M
cG tr [(FA + ζB) ∧ dAB] . (3.6)
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The equality holds only when FA + ζB = ± ∗ dAB. Importantly, the bounding integral is a

boundary term

Q =

∫
M
cG tr [(FA + ζB) ∧ dAB] =

∫
M
cG tr

[
d

(
FAB +

1

2
ζ B2

)
− (dAFA)B + ζ ∧B[A,B]

]
=

∫
∂M

cG tr

[
FAB +

1

2
ζ B2

]
(3.7)

which is the action of a two-dimensional topological BF -type theory. We note that any in-

finitesimal local variation of (A,B) away from the boundary does not affect the bound. Hence,

FA + ζB = ± ∗ dAB must be a critical point of the cone Yang-Mills functional.

The duality-type condition of (3.5) helps simplify the search for cone Yang-Mills solutions

in three dimensions. Notably, it is first-order and hence more tractable compared with the

second-order cone Yang-Mills equations (2.9)-(2.10). As mentioned, when ζ = 0, the condition

becomes the Bogomolny equations and then the known three-dimensional Bogomolny-Prasad-

Sommerfeld (BPS) monopole solutions are trivially cone Yang-Mills solutions with Q of (3.7)

being proportional to the magnetic monopole charge (for a review, see [9]). More generally, for

ζ ̸= 0, we can look for self-dual/anti-self-dual Yang-Mills instanton solutions in four dimensions

on spaces that can be described as a circle bundle over a three-manifold. If the four-dimensional

Yang-Mills instanton solutions are invariant under the S1 circle action, then we can dimension-

ally reduce over the circle and obtain solutions that satisfy (3.5). We give such an example

below coming from the Taub-NUT gravitational instanton.

Example 3.2. The Taub-NUT gravitational instanton solution can be thought of as a self-dual

Yang-Mills solutions of a tangent bundle with structure group SU(2) ⊂ SO(4). With a point

removed, the four-dimensional space can be considered as a circle bundle, S1 → X → R3 −{0}
(see, for example, the description in [5]). Dimensionally reducing this solution leads to a non-

abelian cone Yang-Mills solution on M = R3 − {0} satisfying (3.5).

We start with the Taub-NUT metric written in Gibbons-Hawking form:

ds2TN = e2ϕ
(
(dx1)2 + (dx2)2 + (dx3)2

)
+ e−2ϕθ2 , (3.8)

where e2ϕ = 1+ 2/r is a positive function on R3 − {0} with r2 = (x1)2 + (x2)2 + (x3)2 and the

d-closed two-form ζ is defined to be

ζ = dθ = ± ∗0 d(e2ϕ)
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= ± ϵijk ∂kϕ e
2ϕ dxi ∧ dxj (3.9)

with ∗0 being the Euclidean Hodge star on M = R3 − {0}. The requirement that dζ = 0 gives

the following condition on ϕ on R3 − {0}:

3∑
k=1

[
∂2kϕ+ 2(∂kϕ)

2
]
= 0 . (3.10)

For the Taub-NUT metric in (3.8), we have the following basis of moving frame (i.e. or-

thonormal frame) of 1-forms

ei = eϕdxi i = 1, 2, 3 , and e4 = e−ϕθ .

These result in the following connection 1-forms (for a reference, see [8])

ωi
j = −ωj

i = e−ϕ
(
−∂iϕ ej + ∂jϕ e

i ∓ ϵijk∂kϕ e
4
)

(3.11)

ωi
4 = −ω4

i = e−ϕ
(
±ϵijk∂jϕ ek + ∂iϕ e

4
)

(3.12)

which satisfy the torsionless condition der + ωr
s ∧ es = 0. (Regarding indices, we will let the

indices i, j, k, l, p, q take values in the set {1, 2, 3} and r, s, t, u take values in the set {1, 2, 3, 4}.)
Notice that these connection 1-forms are also anti-self-dual/self-dual in the sense that

ωrs = ∓ 1

2
ϵrstu ωtu .

Hence, the structure group of the bundle reduces to an SU(2) subgroup of SO(4). It can be

checked that the resulting Taub-NUT curvature two-form Rr
s = dωr

s+ω
r
t∧ωt

s is correspond-

ingly anti-self-dual/self-dual.

Now to perform a dimensional reduction, we take the metric on X to be

ds2X = e2ϕds2TN = e4ϕ
(
(dx1)2 + (dx2)2 + (dx3)2

)
+ θ2 , (3.13)

conformally scaled by the e2ϕ factor in order match the desired metric form of ds2X = ds2M + θ2

as in (1.5). We note that the four-dimensional Yang-Mills anti-self-dual/self-dual curvature

equation is invariant under an overall conformal scaling of the metric. Therefore, for the

cone pair (A,B) on M = R3 − {0}, we can just read off from (3.11)-(3.12) by setting Ar
s =

(A+ θB)rs = ωr
s . We find

Ai
j = −Aj

i = −∂iϕdxi + ∂jϕdx
j , Bi

j = −Bj
i = ∓ ϵijke

−2ϕ∂kϕ , (3.14)
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Ai
4 = −A4

i = ± ϵijk∂jϕdx
k , Bi

4 = −B4
i = e−2ϕ∂iϕ . (3.15)

These lead to the following:

(FA)
i
j = −∂i∂kϕ dxk ∧ dxj + ∂j∂kϕ dx

k ∧ dxi − ϵiklϵjpq ∂kϕ∂pϕ dx
l ∧ dxq

+ ∂iϕ∂kϕ dx
k ∧ dxj − ∂jϕ∂kϕ dx

k ∧ dxi − (∂kϕ)
2dxi ∧ dxj ,

(FA)
i
4 = ±

(
∂iϕ ϵjkl∂jϕ dx

k ∧ dxl − ϵijk∂j∂lϕ dx
k ∧ dxl

)
,

(dAB)ij = ± e−2ϕ
[
2 ϵijk ∂kϕ∂lϕ dx

l − ϵijk∂k∂lϕ dx
l + 2 (∂iϕ ϵjkl − ∂jϕ ϵikl) ∂kϕ dx

l
]
,

(dAB)i4 = e−2ϕ
(
−4 ∂iϕ∂jϕ dx

j + 2(∂jϕ)
2dxi + ∂i∂jϕ dx

j
)
.

With (3.9)-(3.10), it can be straightforwardly checked that the above solution satisfies FA+ζB =

± ∗ dAB where the Hodge star is defined with respect to the three-dimensional metric

ds2M = e4ϕ
(
(dx1)2 + (dx2)2 + (dx3)2

)
.

Hence, (A,B) as defined in (3.14)-(3.15) gives us a highly non-trivial, non-abelian solution of

the cone Yang-Mills equations. Moreover, for this solution, it can be checked that [B, dAB] ̸= 0.

Remark 3.3. We can consider dimensionally reducing the three-dimensional duality condition

∗C FA = ∓FA over another circle down to a two-dimensional manifold N . For the metric,

we will assume ds2M = ds2N + χ2 where χ is the global connection one-form (i.e. the global

angular form) of the circle bundle M over N . The dimensionally reduced three-dimensional

local connection can then be expressed as A+χb where A ∈ Ω1(N,AdP ) and b ∈ Ω0(N,AdP ).

The three-dimensional cone curvature then takes the form

FA = FA+χb + ζB − θdA+χbB = FA + ζB + (dχ)b− χdAb− θdAB − θχ[b, B] ,

with

∗C FA = θχ [∗ (FA + ζB + (dχ)b)]− θ ∗ dAb+ χ ∗ dAB − ∗[b, B] .

The condition ∗C FA = ∓FA then implies the following two equations:

FA + ζB + (dχ)b = ± ∗ [b, B] , (3.16)

∗ dAB = ± dAb . (3.17)

In the case where the circle is trivially fibered over N , then we can set dχ = 0. Moreover, when

ζ = dχ = 0 , the above equations become equivalent to Hitchin’s equations.
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4 Classification of cone-flat bundles with respect to a non-

degenerate two-form

In this section, we study the question what bundles can carry a pair (A,B) satisfying the

cone-flat condition:

FA + ζB = 0 , dAB = 0 . (4.1)

Now if ζ = 0, the cone-flat condition reduces to (1) FA = 0, i.e. A is a flat connection, and

(2) dAB = 0, that is, B is a covariantly constant section. Since we can always set B = 0, the

ζ = 0 cone-flat bundles are just the usual flat bundles, and flat bundles are well-known to be

classified by the conjugacy classes of homomorphisms from π1(M) to the structure group G of

the fiber bundle (see, for example [6]). As the classification for the ζ = 0 case is well-understood,

we will in the following always assume that ζ ̸= 0.

To simplify our consideration, we will additionally assume that ζ is a non-degenerate two-

form. Being d-closed and non-degenerate, ζ is then a symplectic structure andM must be even-

dimensional. Additionally, ζ being non-degenerate leads to two simplifications in considering

cone-flat pairs (A,B). First, non-degeneracy ensures that ζ nowhere vanishes, and hence, the

first cone-flat equation FA = −ζB, implies B is determined by the connection A. Second, the

second cone-flat equation dAB = 0 is automatically satisfied and redundant when dimM ≥ 4.

For the first cone-flat equation together with the Bianchi identity imply

dAFA = −ζ ∧ dAB = 0 . (4.2)

If ζ is non-degenerate and dimM ≥ 4, then (4.2) implies dAB = 0 . In all, ζ is non-degenerate

simplifies our consideration of cone-flat pairs (A,B) to checking only that that the curvature

is proportional to ζ, i.e. FA = −ζ B, and only if dimM = 2, we need to also check that the

resulting B is covariantly constant.

WhenM is a two-dimensional Riemann surface, ζ being non-degenerate implies that it is the

product of a nowhere vanishing function times the volume form. If we take ζ to be the volume

form, then we saw in (1.12) that the cone-flat condition (4.1) becomes equivalent to the Yang-

Mills equation for A with B = − ∗ FA. Concerning Yang-Mills connections in two dimensions,

Atiyah-Bott [2, Theorem 6.7] gave a classification of principal bundles over Riemann surfaces

that carry a Yang-Mills connection. So we ask whether Atiyah-Bott’s classification of Yang-

Mills bundles in two dimensions can be extended to cone-flat bundles in dimM = 2n ≥ 2 with
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respect to a closed, non-degenerate two-form ζ. Indeed, we obtain the following for principal

bundles which generalizes Atiyah-Bott’s result.

Theorem 4.1. Let M be a path connected manifold, ζ ∈ Ω2(M) be a non-zero, non-degenerate,

closed two-form, and G be a Lie group. There exists a bijective correspondence between the

following sets:{
isomorphism classes of cone-flat connections

with respect to ζ on G-bundles over M

}
≃

{
conjugacy classes of

homomorphisms ρ : Γ → G

}
,

where Γ is an R/H extension of π1(M) with H ⊂ R being the closure of the group

H :=

{∫
S
ζ
∣∣ S is a representative in π2(M)

}
. (4.3)

As in the theorem, we will assume in the remainder of this section thatM is path-connected.

We can give a more explicit description of Γ in terms of path spaces. To do so, we first introduce

some notations.

Denote by Ψ(M) the path space consisting of equivalence classes of closed, piecewise smooth

paths on M . Two paths α1, α2 : [0, 1] → M are considered to be equivalent in Ψ(M) if they

have the same image and orientation. Specifically, α1 and α2 are equivalent if there exists a

piecewise smooth increasing function ϕ : [0, 1] → [0, 1] with ϕ(0) = 0 and ϕ(1) = 1 such that

α2 = α1 ◦ ϕ.

For two paths α1, α2 : [0, 1] → M such that α1(1) = α2(0), we define their multiplication

by concatenation:

(α2α1)(s) =

α1(2s), s ∈ [0, 12 ] ,

α2(2s− 1), s ∈ [12 , 1] .

A connected subpath of a path is also a path. We define

α(t)(s) = α(s t) , t ∈ [0, 1] .

which is a one-parameter family of subpaths, parametrized by t, all with the same starting

point α(0), and ending point being at α(t).

The following subsets of Ψ(M) will be of interest:
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• Ψb
a(M) be the space of paths from a base point a ∈M to another point b ∈M .

• Ψa
a(M) be the semigroup in Ψ(M) that consists of loops with base point a.

• Ψa
a,0(M) be the subsemigroup of Ψa

a(M) that consists of contractible loops.

• Ψa
a,ζ(M) be the subsemigroup of Ψa

a,0(M) that consists of loops which are the boundary

of some disk (contractible 2-chain with proper orientation) D in M satisfying
∫
D ζ = 0.

Quotienting them leads to the following spaces:

1. Ψa
a(M)/Ψa

a,0(M) = π1(M) is the fundamental group where the identity element is the

equivalence class of the constant path at a, and the inverse reverses the path orientation,

i.e. α−1(s) = α(1− s) .

2. Ψa
a,0(M)/Ψa

a,ζ(M) ∼= R/H. As ζ ̸= 0, for any real number c there exists a contractible

loop γ that is the boundary of some disk D such that
∫
D ζ = c. So Ψa

a,0(M)/Ψa
a,ζ(M) is

equivalent to a quotient group R/H by the identification of a loop γ 7→ [
∫
D ζ ], where

H =

{∫
S
ζ
∣∣ S is a representative in π2(M)

}
.

The group H comes from noting that it is possible that the sum of two contractible

curves ∂D1 + ∂D2 can come from the vanishing boundary of a two-sphere formed by two

hemisphere disks, D1 and D2, glued together at the equator such that ∂D1 = −∂D2.

3. Ψa
a(M)/Ψa

a,ζ(M) =: Γ . This is the extension of π1(M) by R/H that appears in the

statement of the theorem. In the case where H is dense and thus R/H is not a Lie group,

Γ = π1(M).

Explicitly, there are three possibilities for H. Let H+ be the subset of H with positive

numbers.

Case 1. When H+ is empty, H = 0 and R/H = R. In this case, Γ = Ψa
a(M)/Ψa

a,ζ(M) is

an R-extension of π1(M). (For instance, this occurs for any Riemann surface Σg with genus

g ≥ 1, since then π2(Σg) = 0 .)

Case 2. When H+ has a minimal number, H ≃ Z and R/H ≃ S1. In this case Γ =

Ψa
a(M)/Ψa

a,ζ(M) is an S1-extension of π1(M). (This occurs for Riemann surface of genus g = 0

and ζ is not an exact form.)
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Case 3. When H+ is non-empty and has no minimal number, H is dense in R and R/H
is not a Lie group. In this case, Γ = π1(M). This case is impossible when c ζ is an integral

cohomology class for some number c ̸= 0.

We now proceed to prove the classification theorem Theorem 4.1. Our proof will be similar

to that given by Morrison [7] for Yang-Mills bundles in the two-dimensional case.

We will first consider the case that R/H is a Lie group. By the discussion above, Γ =

Ψa
a(M)/Ψa

a,ζ(M) is either an R or an S1 extension of π1(M).

Proof for Case 1 and 2: R/H = R or S1.

Step 1. Given a homomorphism ρ : Ψa
a(M)/Ψa

a,ζ(M) → G, construct a corresponding principal

G-bundle Pρ with a connection Aρ .

Let Ψa(M) be the space of classes of paths starting at a ∈ M , where any two paths δ1, δ2

are identified if δ1(1) = δ2(1) and (δ2)
−1δ1 ∈ Ψa

a,ζ(M). Notice that Ψa(M) is a principal bundle

over M . The projection to the base space M , τ : Ψa(M) → M , is given by δ 7→ δ(1), and its

structure group is Γ = Ψa
a(M)/Ψa

a,ζ(M), since any element γ ∈ Ψa
a(M)/Ψa

a,ζ(M) can act on

δ ∈ Ψa(M) on the right by δ 7→ δγ.

Given a homomorphism ρ : Γ → G, we define the principal G-bundle Pρ as an associated

G-bundle to Ψa(M):

Pρ := Ψa(M)×ρ G = (Ψa(M)×G)
/
(δγ, g) ∼ (δ, ρ(γ)g)

where γ ∈ Γ = Ψa
a(M)/Ψa

a,ζ(M). To denote the equivalence class, we use the bracket to denote

a point u = [δ, g] ∈ Pρ. Note that G acts on Pρ by [δ, g]h = [δ, gh] for h ∈ G.

To define a connection on a principal bundle, recall that there are two ways to do so. We

can define a connection on Pρ either as a horizontal subspace, Hu ⊂ (TPρ)u at all u ∈ Pρ, or as

a one-form Aρ ∈ Ω1(Pρ, g). They are related by Hu = kerAρ

∣∣
u
. On Pρ, we define a horizontal

distribution by defining the horizontal lifts for any path α on M as follows. Given an arbitrary

point [δ, g] ∈ (Pρ)α(0) on the fiber of base point α(0) = δ(1) ∈ M , we define the horizontal lift

of α starting from [δ, g] ∈ Pρ by α̃(t) = [α(t)δ, g] where α(t) denotes the one-parameter family

of paths within α starting at α(0) and ending at α(t). It is straightforward to check that this

construction is well-defined and satisfies the G invariance condition for a connection on Pρ. We

will not need to explicitly write down Aρ as a one-form in order to check that Aρ satisfies the

cone-flat condition. We will instead express the curvature in terms of the holonomy group.
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Step 2. Verify that the connection Aρ is cone-flat, that is, FAρ = −ζBρ such that Bρ is

covariantly constant.

Lemma 4.2. The connection Aρ constructed above is cone-flat.

Proof. Let p ∈ M be an arbitrary point and v1, v2 ∈ TpM be arbitrary linearly independent

vectors. Suppose ζ(v1, v2) = c ̸= 0. By Darboux’s theorem, we can find a local coordinate

system {x1, . . . , xm} such that v1 = ∂
∂x1

, v2 = ∂
∂x2

, and ζ = c dx1 ∧ dx2 + ζ̄, where ζ̄ =

dx3 ∧ dx4 + . . . , if dimM ≥ 4. Let Dt be an infinitesimal parallelogram spanned by
√
tv1 and

√
tv2 in the local coordinate system, and γt = ∂Dt be its boundary. Then we have

∫
Dt
ζ = c t.

At arbitrary [δ, g] ∈ Pρ on the fiber of p, let vH1 and vH2 be the horizontal lift of v1 and v2,

respectively. Then the curvature

FAρ

(
vH1 , v

H
2

)
=

∂

∂t
hol (γt)

∣∣∣
t=0

.

Here, hol (γt) ∈ G denotes the holonomy along γt at [δ, g].

On the other hand,

[δ, g]hol (γt) = [γtδ, g] = [δ(δ−1γtδ), g] =
[
δ, g
(
g−1ρ

(
δ−1γtδ

)
g
)]
.

This implies

hol (γt) = g−1ρ
(
δ−1γtδ

)
g .

Note that δ−1γtδ is contractible and its base point is a ∈ M , i.e. δ−1γtδ ∈ Ψa
a,0(M). We can

express δ−1γtδ = exp(c t ξ), where ξ is an element of the Lie algebra of Ψa
a(M)/Ψa

a,ζ(M) that

generates the subgroup Ψa
a,0(M)/Ψa

a,ζ(M) ∼= R/H and
∫
Dt
ζ = ζ(v1, v2) t = c t ∈ R/H. Note

that ξ is independent of the choice of v1 and v2. We thus find at p ∈M

FAρ

(
vH1 , v

H
2

)
=

∂

∂t
hol (γt)

∣∣∣
t=0

= cAdg−1dρ(ξ) = ζ(v1, v2)Adg−1dρ(ξ) = −ζ(v1, v2)Bρ ,

where dρ maps the Lie algebra of Γ into g = Lie(G). It is clear that Bρ as obtained above is

covariantly constant as it is a constant when evaluated along horizontally lifted curves.

Thus far, we have assumed ζ(v1, v2) ̸= 0. If however ζ(v1, v2) = 0 which may occur in

dimM ≥ 4, then we can find a local coordinate system {x1, . . . , xm} such that v1 = ∂
∂x1

,

v2 =
∂

∂x3
, and ζ = dx1∧dx2+dx3∧dx4+ ζ̄, where ζ̄, if non-zero, is generated by other dxi∧dxj

locally. The proof goes through as above but with c set to zero.
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Step 3. Show that the morphism ρ 7→ (Pρ, Aρ) is invariant under conjugation.

Lemma 4.3. Suppose ρ and ρ̄ are conjugate homomorphisms from Γ = Ψa
a(M)/Ψa

a,ζ(M) to G,

and also, (Pρ, Aρ) and (Pρ̄, Aρ̄) are principal bundles with cone-flat connections constructed as

above. Then (Pρ, Aρ) and (Pρ̄, Aρ̄) are equivalent.

Proof. Suppose ρ and ρ̄ are conjugate, i.e. ρ̄ = g0ρg
−1
0 for some g0 ∈ G. We consider the

automorphism on Ψa(M) × G given by (δ, g) 7→ (δ, g0g). This automorphism induces the

desired bundle isomorphism

f : Ψa(M)×ρ G −→ Ψa(M)×ρ̄ G

(δγ, g) ∼ (δ, ρ(γ)g) 7→ (δγ, g0g) ∼ (δ, ρ̄(γ)g0g) = (δ, g0ρ(γ)g)

where the second line shows the map on the equivalence class for all γ ∈ Γ = Ψa
a(M)/Ψa

a,ζ(M).

Now to show f∗Aρ̄ = Aρ, let [δ, g]ρ ∈ Ψa(M)×ρG and α onM be an arbitrary path starting

at α(0) = δ(1). As described in Step 1 in defining Aρ, the horizontal lift of α starting at [δ, g]ρ

is defined as α̃ρ(t) = [α(t)δ, g]ρ. Likewise, the horizontal lift of α starting at f
(
[δ, g]ρ

)
= [δ, g0g]ρ̄

is defined as α̃ρ̄(t) = [α(t)δ, g0g]ρ̄. Clearly, we have α̃ρ̄(t) = f ◦ α̃ρ(t), which implies f∗ sends

horizontal vectors to horizontal vectors as desired.

By this lemma, given any conjugacy classes [ρ] of the homomorphisms from Ψa
a(M)/Ψa

a,ζ(M)

to G, there is a corresponding G-bundle Pρ with a cone-flat connection Aρ. It remains to show

that this correspondence is bijective.

Step 4. The morphism [ρ] 7→ (Pρ, Aρ) is injective.

Lemma 4.4. Let ρ, ρ̄ : Ψa
a(M)/Ψa

a,ζ(M) → G. If (Pρ, Aρ) and (Pρ̄, Aρ̄) are equivalent, then ρ

and ρ̄ are conjugate.

Proof. Suppose f : Pρ → Pρ̄ is a G-bundle isomorphism and f∗Aρ̄ = Aρ. Let us define

h : Ψa(M) → G such that

f
(
[δ, e]ρ

)
= [δ, e]ρ̄h(δ)

where δ ∈ Ψa(M) and e is the identity of G. Then, for each γ ∈ Ψa
a(M)/Ψa

a,ζ(M), we have

[δ, e]ρ̄h(δ)ρ(γ) = f
(
[δ, e]ρ

)
ρ(γ) = f

(
[δ, e]ρρ(γ)

)
= f

(
[δγ, e]ρ

)
= [δγ, e]ρ̄h(δγ) = [δ, e]ρ̄ρ̄(γ)h(δγ) .
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This implies ρ(γ) = h(δ)−1ρ̄(γ)h(δγ). We will prove that h is a constant.

For arbitrary δ ∈ Ψa(M), let δ(t) denote the t-parametrized subpaths of δ starting at δ(0) = a

and ending at δ(t). By the construction of the connections, [δ(t), e]ρ and [δ(t), e]ρ̄ are horizontal

paths on Pρ and Pρ̄ , respectively. The projection of these two paths on M are exactly δ(t). By

the definition of h, we have

f
(
[δ(t), e]ρ

)
= [δ(t), e]ρ̄h(δ(t)) . (4.4)

On the other hand, since f∗Aρ̄ = Aρ, f
(
[δ(t), e]ρ

)
is a horizontal lift of δ(t) on Pρ̄ passing through

f
(
[δ(0), e]ρ

)
. As horizontal subspaces are invariant under right G-action, [δ(t), e]ρ̄h(δ(0)) is also

a horizontal lift of δ(t) on Pρ̄ passing through [δ(0), e]ρ̄h(δ(0)) = f
(
[δ(0), e]ρ

)
. Therefore, we have

f
(
[δ(t), e]ρ

)
= [δ(t), e]ρ̄h(δ(0)) . (4.5)

Comparing (4.4)-(4.5), we have h(δ(t)) = h(δ(0)) for all t ∈ [0, 1]. This implies h(δ(t)) is equal to

h acting on the constant path at a. So h is a constant, and therefore, ρ and ρ̄ are conjugate.

Step 5. The morphism [ρ] 7→ (Pρ, Aρ) is surjective.

The following lemma leads to surjectivity. It also holds when R/H is not a Lie group, which

we will discuss later.

Lemma 4.5. Let π : P → M be a principal G-bundle, and let A be a cone-flat connection on

P with curvature FA = −ζB. Then there exists ξ ∈ g such that for any contractible loop γ

starting at a ∈ M and any oriented disk D in M with ∂D = γ (∂D and γ also have the same

orientation), the holonomy along γ is

hol(γ) = exp
[( ∫

D
ζ
)
ξ
]
.

Proof. Take a point u0 ∈ P on the fiber of a ∈M . Consider the holonomy bundle

P̂ = {u ∈ P | there exists a horizontal curve δ̃ such that δ̃(0) = u0, δ̃(1) = u}.

P̂ is a principal bundle over M , and its structure group Ĝ is the holonomy group of P at u0.

Let Â be the restriction of A on P̂ . By the holonomy theorem of Ambrose-Singer [1], the Lie

algebra of Ĝ is

ĝ = span
{
FÂ

(
vH1 , v

H
2

) ∣∣ vH1 , vH2 are horizontal vectors at u for some u ∈ P̂
}
.
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By assumption, FA = −ζB, or more precisely FA = −(π∗ζ)B. Since B is covariantly constant,

it is equal to some ξ ∈ ĝ at any point in P̂ . Hence, FÂ

(
vH1 , v

H
2

)
∈ Rξ. So ĝ is 1-dimensional

and abelian. Then Â = −θ ⊗ ξ for some θ ∈ Ω1(P̂ ) and dθ = π̂∗ζ, where π̂ : P̂ → M is the

projection.

For an arbitrary contractible loop γ and a disk D such that ∂D = γ, there exists a con-

tractible neighborhood U ⊂ M of D. Then P̂ |U = U × Ĝ is trivial. Let σ : U → P̂ |U be a

local section and ψ : P̂ |U → U × Ĝ be a trivialization such that ψ ◦ σ(p) = (p, e) for p ∈ M .

Then (ψ−1)∗Â = (−σ∗θ ⊗ ξ, 0) + (0,MCĜ), where MCĜ : TĜ → ĝ is the Maurer-Cartan form

of Ĝ sending a vector to the corresponding invariant vector field. Observe that d(σ∗θ) = ζ.

The horizontal lift γ̃ of γ with γ̃(0) = σ(a) satisfies ψ ◦ γ̃(t) = (γ(t), g(t)) with g(t) ∈ Ĝ and

g(0) = e. With the horizontal vectors in the kernel space of the connection one-form, we have

0 = Â
(
γ̃′(t)

)∣∣∣
γ(t0)

= (ψ−1∗Â)
(
γ′(t), 0

)∣∣∣(
γ(t0),g(t0)

) + (ψ−1∗Â)
(
0, g′(t)

)∣∣∣(
γ(t0),g(t0)

)
= −(σ∗θ)

(
γ′(t)

)
· ξ
∣∣∣
γ(t0)

+MCĜ

(
g′(t)

)∣∣∣
g(t0)

.

Hence, we find

g(t0) = exp
[( ∫ t0

0
(σ∗θ)

(
γ′(t)

)
dt
)
ξ
]
,

and the holonomy along γ is

hol(γ) = g(1) = exp
[( ∫

γ
σ∗θ

)
ξ
]
= exp

[( ∫
D
ζ
)
ξ
]
.

Now we proceed to prove surjectivity.

Lemma 4.6. Let π : P → M be a principal G-bundle with a cone-flat connection A with

respect to ζ. Then there exists a homomorphism ρ : Ψa
a(M)/Ψa

a,ζ(M) → G such that (Pρ, Aρ)

and (P,A) are equivalent.

Proof. For any contractible loop γ ∈ Ψa
a,ζ(M) and a disk D such that ∂D = γ, it follows from

the definition of Ψa
a,ζ(M) that

∫
D ζ = 0. By Lemma 4.5, the holonomy along γ in (P,A) is

given by hol(γ) = exp
[( ∫

D ζ
)
ξ
]
= e. Hence, we define the following homomorphism:

ρ : Ψa
a(M)/Ψa

a,ζ(M) → G, γ 7→ ρ(γ) = hol(γ) . (4.6)
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We will show that the resulting (Pρ, Aρ) is equivalent to (P,A). We start by defining a G-bundle

isomorphism between the two principal bundles.

Given [δ, g] ∈ Pρ, let δ̃ be the horizontal lift of δ in P with δ̃(0) = u0. We define

f : Pρ → P, [δ, g] 7→ δ̃(1) g . (4.7)

Note that the definition of f utilizes the horizontal lift determined by the connection A in P .

Let us show that this map is well-defined. Suppose [δ1, g1] and [δ2, g2] represent the same class

in Pρ. Then there must exists a γ0 ∈ Ψa
a(M)/Ψa

a,ζ(M) such that

(δ1, g1) = (δ2γ0, ρ(γ
−1
0 )g2) ∼ (δ2, g2) . (4.8)

Thus, γ−1
0 δ−1

2 δ1 ∈ Ψa
a,ζ(M), and its holonomy in (P,A) is trivial according to Lemma 4.5.

Moreover, we have

hol(δ−1
2 δ1) = hol(γ0) = ρ(γ0) , (4.9)

where the last equality follows from our definition of ρ in (4.6). Now let δ̃1 and δ̃2 denote the

horizontal lift in (P,A) of δ1 and δ2, respectively, starting at u0. Since δ̃1 and the horizontal lift

of δ2γ0 = δ2(δ
−1
2 δ1) starting at u0 have the same ending point, so does δ̃1 and the horizontal lift

of δ2 starting at u0 ·hol(γ0). Hence, the ending points of δ̃1 and δ̃2 satisfy δ̃1(1) = δ̃2(1) ·hol(γ0).
Together with (4.7)-(4.9), we find

f ([δ1, g1]) = δ̃1(1) g1 = δ̃2(1)ρ(γ0) g1 = δ̃2(1) g2 = f([δ2, g2]) .

Hence, f is well-defined. It is also straightforward to check that f is a G-bundle isomorphism.

Finally, we check that the definition of Aρ described earlier in Step 1 is consistent with

f∗A = Aρ. For [δ, g] ∈ Pρ and an arbitrary path α on M such that α(0) = δ(1), the horizontal

lift of α at [δ, g] is α̃(t) = [α(t)δ, g]. Here again, α(t) is the subpath of α starting at α(0) and

ending at α(t). Notice that f
(
[α(t)δ, g]

)
= (α̃(t)δ)(1) g is the ending point of the path on P

that is the horizontal lift of α(t) in (P,A) starting at f ([δ, g]) = δ̃(1) g. Clearly then, f ◦ α̃
is a horizontal path on (P,A). Hence, f∗ sends horizontal vectors to horizontal vectors, and

therefore, f∗(A) = Aρ.

Combining the lemmas above, we have proved that [ρ] 7→ (Pρ, Aρ) is an isomorphism.

Proof for Case 3: R/H is not a Lie group
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We now turn to the case when R/H is not a Lie group. In this case, H+ is non-empty and

has no minimal number.

Lemma 4.7. When H+ is non-empty and has no minimal number, a cone-flat connection is

a flat connection.

Proof. By Lemma 4.5, there exists some ξ ∈ g such that for any contractible loop γ and disk

D with ∂D = γ, we have hol(γ) = exp
[( ∫

D ζ
)
ξ
]
.

Let us show that ξ must be zero. For if ξ ̸= 0, then there exists some small enough t0

such that for any 0 < t < t0 , exp(t ξ) ̸= e the identity element of G. Now since H+ has no

minimal number, there exists a closed sphere S ⊂ M such that
∫
S ζ = t for some 0 < t < t0.

Let γ be a constant loop at some point p ∈ S, and D = S \{p} . Then ∂D = γ so that

hol(γ) = exp
[( ∫

D ζ
)
ξ
]
. But hol(γ) = e as γ is the identity loop. On the other hand,∫

D ζ =
∫
S ζ = t , and therefore, exp(t ξ) = e, which gives a contradiction. Thus, we conclude

that ξ is zero.

With ξ = 0, the holonomy of any contractible loop is trivial. Hence, the curvature vanishes

and the connection is flat.

The classification of G-bundles with flat connections can be represented by the conjugacy

classes of homomorphisms from π1(M) → G (c.f. [6, Theorem 2.9]). So we have proved Theorem

4.1 in this case. This completes the proof of the theorem.

We point out that the classification of cone-flat bundles generally depends on the choice of

ζ. In Theorem 4.1, the ζ dependence explicitly appears in the definition of H in (4.3). Below,

we will work out the classification and demonstrate its dependence on ζ in the simple example

of U(1) bundles over the four-dimensional torus M = T 4.

Example 4.8. We describe T 4 as R4/ ∼, with the identification (x1, x2, x3, x4) ∼ (x1+ a, x2+

b, x3 + c, x4 + d) where a, b, c, d ∈ Z, and U(1) as {z ∈ C | |z| = 1}. Let

ζ = c1 dx1 ∧ dx2 + c2 dx3 ∧ dx4

be a closed 2-form with c1, c2 ∈ R\{0}. By Theorem 4.1, the equivalent classes of U(1) bundles

with a cone-flat connection are in 1-1 correspondence with homomorphisms ρ : Γ → U(1),

where Γ = Ψa
a(M)/Ψa

a,ζ(M).
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Since π2(T
4) is trivial, Γ is an R-extension of π1(T

4). To describe its group structure

explicitly, let ai for i = 1, 2, 3, 4 be the straight line path in R4 starting at the origin and ending

at the point where the i-th coordinate, xi = 1 , and xj = 0 for j ̸= i . When projected to T 4,

{a1, a2, a3, a4} become the generators of π1(T
4). Although π1(T

4) is abelian, the elements of

{a1, a2, a3, a4} may no longer commute in Γ.

For a contractible loop b, there is an oriented disk D such that ∂D = b and ∂D has the

same orientation as b. Let |b| =
∫
D ζ, and we note that |b| is independent of the choice of D.

Now recall that Γ = Ψa
a(M)/Ψa

a,ζ(M) is a quotient of loops by contractible ones whose integral,

|b| =
∫
D ζ = 0 . Moreover, contractible loops b and b′ would represent different classes in Γ

if and only if |b| ≠ |b′|. So, a class of contractible loops b ∈ Γ can be represented by the real

number |b|.

On T 4 then, we can think of Γ as being generated by {a1, a2, a3, a4, |b|}, with multiplication

defined by

ai|b| = |b|ai |b′b| = |b|+ |b′| .

However, a−1
j a−1

i ajai can represent some non-trivial class of a contractible loop. Specifically,

we have

|a−1
2 a−1

1 a2a1| = c1,

|a−1
4 a−1

3 a4a3| = c2,

|a−1
j a−1

i ajai| = 0, for other i, j,

Now, the possible homomorphisms of ρ : Γ → U(1) is dependent on whether c1
c2

∈ Q. Since

U(1) is abelian,

ρ(c1) = ρ(a−1
2 )ρ(a−1

1 )ρ(a2)ρ(a1) = ρ(a2)
−1ρ(a2)ρ(a1)

−1ρ(a1) = 1.

Similarly ρ(c2) = 1, so ρ(pc1 + qc2) = 1 for any p, q ∈ Z.

When c1
c2

∈ Q, {(pc1 + qc2) | p, q ∈ Z} has a minimal positive number c0. Then ρ(b) must

have the form e
2πi

n|b|
c0 for some n ∈ Z. In this case, the Euler class of the circle bundle is n

c0
ζ,

and the choice of ρ(ai) for i = 1, . . . , 4 determines the connection.

When c1
c2
/∈ Q, {(pc1+ qc2) | p, q ∈ Z} is dense in R. So ρ(b) must be 1 for any |b| ∈ R. Thus,

the classification is only dependent on ρ(ai), and becomes equivalent to the classification of flat
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connections. Actually, the Euler class in this case is c ζ for some c ∈ R. But the Euler class is

an integral class, and hence, the only possible c is 0, i.e. every cone-flat connection is flat.

Remark 4.9. WhenM is simply-connected, the Hurewicz homomorphism π2(M) → H2(M,Z)
is surjective. Assuming ζ is not d-exact, H is discrete if and only if there exists some non-

zero constant c such that c[ζ] ∈ H2(M,Z). Therefore, if such c exists, then Γ = R/Z and

the classification of isomorphism classes of cone-flat connections on G-bundles is given by the

conjugacy classes of Hom(S1, G). If such c does not exist, then Γ is trivial and then there does

not exist non-trivial cone-flat connections.

As an application of this observation, let M be simply-connected and closed. If M is also a

projective manifold, then we can choose ζ to be the Kähler form which is an integral class, and

so, ζ ∈ H2(M,Z). The isomorphism classes of cone-flat connections on G-bundles is then given

by the conjugacy classes of Hom(S1, G). If however M is a non-projective Kähler manifold and

we still let ζ be the Kähler form, then there is no non-zero constant c such that c[ζ] ∈ H2(M,Z)
(see, for a reference, [4, Corollary 5.3.3]) and the isomorphism classes of cone-flat connections

would be trivial.
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