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Abstract. We give an expository overview of the cohomologies of differential
forms on symplectic manifolds found in recent years. The linear symplectic

operators that the cohomologies are associated with suggest a new approach
towards symplectic analysis.

1. Introduction

A symplectic manifold (M2n, ω) is a manifold of even dimensions, 2n, equipped
with a symplectic structure, that is, a differential two-form ω which is both non-
degenerate (i.e. ωn > 0) and d-closed.

A noted property of symplectic manifolds is the Darboux Theorem, which states
that locally around any point on the symplectic manifold, the symplectic structure,
ω, is diffeomorphic to the standard symplectic structure on R2n,

ω = dx1 ∧ dx2 + dx3 ∧ dx4 + . . .+ dx2n−1 ∧ dx2n .

Since, locally, a symplectic manifold looks just like R2n, symplectic invariants are
global in nature. Many symplectic invariants studied today are based on pseudo-
holomorphic curves, for instance, Floer homology theories and Gromov-Witten in-
variants.

This paper will describe a search for symplectic invariants from the perspective
of standard geometric analysis. That is, we will be seeking invariants that are
discerned from the study of solutions of partial differential equations on manifolds.
It is an interesting to consider whether the powerful analytic tools of geometric
analysis (see for example [24, 10]) can have direct, useful applications in symplectic
geometry. To make use of them, one should have a good intuition of what types
of equations to analyze. The pdes in geometric analysis can be linear or non-linear
and involve functions or sometimes also tensors or differential forms. Certainly
the simplest-type of pdes to analyze are the linear ones on functions involving the
standard Laplacian operator, ∆. For instance,

• the Laplace equation (∆φ = 0);

• the heat equation (∂tφ = ∆φ);

• eigenvalues of the Laplacian (∆φ = λφ).
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Methods for studying linear equations are often useful for non-linear analysis
as well. It is thus the focus of this review to consider linear partial differential
equations on symplectic manifolds. We will first describe the search for Laplacian-
type operators that are dependent on the symplectic structure.

1.1. Laplacians for Symplectic Manifolds? For any smooth manifold, the
standard Laplacian takes the form

∆ = dd∗ + d∗d

where d∗ is the adjoint operator of d and is defined with respect to some metric.
Just considering the space of solutions, we know that the dim ker ∆ gives us the
Betti numbers, a basic topological invariant. So a naive question is the following:
Can we modify ∆→ ∆ω to incorporate the symplectic structure ω in some way? If
∆ω has sufficiently good properties, then dim ker ∆ω could perhaps result in useful
symplectic invariants.

Such an idea has a long history and dates back to the work of Ehresmann
and Libermann from the late 1940s [5, 11]. They made the following observation:
The usual Laplacian on a Riemannian manifold (M, g) involves the symmetric,
metric two-tensor g, while a symplectic manifold (M,ω) involves the two-form ω
instead. Why not just replace g → ω in ∆ which would give a “Laplacian” operator
dependent on ω?

Straightforwardly, in ∆ = dd∗ + d∗d, the metric g appears in the definition of
the adjoint operator d∗, defined by the standard inner product:

(A,A′) =

∫
M

A ∧ ∗A′ =

∫
M

gi1j1gi2j2 . . . gikjkAi1i2...ikA
′
j1j2...jk

(1.1)

for A,A′ ∈ Ωk(M), the space of differential k-forms. With respect to this inner
product, the adjoint d∗ satisfies the condition, (dA,A′) = (A, d∗A′). Therefore, to
define a symplectic adjoint, we would just replace g with ω in (1.1). We end up
with the following product

(A,A′)ω =

∫
M

(ω−1)i1j1(ω−1)i2j2 . . . (ω−1)ikjkAi1i2...ikA
′
j1j2...jk

(1.2)

This suggests defining the “symplectic adjoint” of d, which we will label by dΛ, to
satisfy (dA,A′)ω = (A, dΛA′)ω. (In the literature, such a symplectic adjoint is also
commonly denoted by δ.)

Let us briefly take stock of whether this simple idea of replacing g by ω makes
sense. For one, since ω is skew-symmetric, i.e. ωij = −ωji , this means that
(A,A′)ω = −(A′, A)ω when A and A′ are of odd degree. The product hence can not
be a standard inner product as it is neither symmetric nor positive. But regardless,
the symplectic adjoint, dΛ, is clearly a linear operator that (i) depends on ω and
(ii) squares to zero, i.e. dΛdΛ = 0.

Proceeding onward, by replacing d∗ with dΛ, we have arrived at a suggested
symplectic Laplacian

∆ = dd∗ + d∗d −→ ∆ω = ddΛ + dΛd

As Ehresmann and Libermann noted in their original work, it is not hard to show
dΛd = −ddΛ, and this would immediately imply that ∆ω = 0 . So this first early
attempt of a symplectic Laplacian unfortunately did not have an auspicious start.
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However, the notion of a linear symplectic adjoint operator still has its appeal.
So instead of dealing with the trivial Laplacian ∆ω, follow-up works focused on
analyzing symplectic “harmonic forms” which satisfy

dA = 0 , dΛA = 0 .(1.3)

Harmonic forms are of course important objects in Hodge theory. Recall for instance
that there exists a unique harmonic form in each de Rham cohomology class. Under
the topic of what is sometimes called “symplectic Hodge theory,” the question of
interest is whether there exist solutions to the above system (1.3) in each de Rham
cohomology class. In fact, there is no uniqueness or existence property in general,
except for a certain of class of symplectic manifolds that satisfy the hard Lefschetz
condition. (See [3, 12, 23, 13, 8] for work in this direction.)

1.2. Symplectic Equations from Physics. So if not the Laplacian ∆ω,
then what other equations should we study? Historically, physics has been a good
source for equations that shed light to interesting mathematics. For example, the
wave equation, the heat equation, Ricci flow equations, all have physical applica-
tions or originated from physics. This leads to the following question for symplectic
manifolds: Are there any physical partial differential equations that involve the sym-
plectic structure?

Of course, there are a number of physical equations defined on Kähler manifolds,
that have been widely studied in recent years, e.g. Kähler-Einstein equations and
Hermitian Yang-Mills equations. A particular useful system of equations that we
will consider here is the one written down about a decade ago within the context
of Type IIA string theory [7, 17, 21]. This system of equations is defined on a
six-dimensional symplectic manifold M6, that need not be Kähler, but must have
an SU(3) structure. (A higher dimensional analogue of the system can be found in
[9].) To define the system, let (M6, ω,Ω, g) where Ω is a a non-vanishing (3, 0)-form
which defines an almost complex structure on M6. Also, (ω,Ω) satisfy the SU(3)
structure equations:

ω ∧ Ω = 0 ,
√
−1 Ω ∧ Ω = 8e2f ω

3

3!
.(1.4)

The differential system then consists of the following equations:

dω = 0

dRe Ω = 0 ,(1.5)

(ddΛ)∗(e−f Re Ω) = ∗ρL ,(1.6)

where ρL is the Poincaré dual of some configuration of wrapped special Lagrangian
submanifolds on M . We note that if in (1.5), the condition is instead dΩ = 0,
which implies that the compatible almost complex structure on M6 given by Ω is
integrable, then the system reduces to requiring that ω be compatible to the Kähler
Calabi-Yau metric.

Upon closer examination, the above symplectic system, in particular equations
(1.5) and (1.6), seem to share very close resemblance to Maxwell’s equations. Re-
call that the Maxwell equations are the fundamental equations of electricity and
magnetism and can be expressed simply in terms of a curvature two-form F . On
a four-dimensional Riemannian manifold (M4, g), the Maxwell equations take the
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form

dF = 0

d∗F = ∗ρe
where ρe is the Poincaré dual of some configuration of electric charges. Heuristi-
cally, and neglecting the factor e−f in (1.5), the Type IIA symplectic system and
the Maxwell equations are notably similar if we make the following identifications
between the two:

d ←→ d

(ddΛ)∗ ←→ d∗(1.7)

Re Ω ←→ F

ρL ←→ ρe

Such a similarity is especially noteworthy given the close relation between
Maxwell’s equations and de Rham harmonic forms. For consider the solution space
of the Maxwell system for a fixed charge configuration. This can be analyzed by
applying the variation F −→ F +δF while keeping the charged configuration fixed,
i.e. δρe = 0. This results in the following conditions:

d (δF ) = 0 , d∗(δF ) = 0 ,(1.8)

which are together the harmonicity condition associated with the degree-two de
Rham cohomology

H2(M4) =
ker d ∩ Ω2(M4)

im d ∩ Ω2(M4)
.

Hence, dimH2(M4), i.e. the second Betti number, gives the dimension of the
solution space of F for a fixed charge configuration.

In analogy with the Maxwell equations, Tseng-Yau [21] observed that a subset
of infinitesimal deformations of δRe Ω in the Type IIA symplectic system with fixed
special Lagrangian configuration (i.e. δρL = 0) satisfy the the following conditions

d (δRe Ω) = 0 , (ddΛ)∗(δRe Ω) = 0 .(1.9)

These equations no doubt resemble those of (1.8) especially under the identifications
of (1.7). But could they also be suggestive that the δRe Ω deformations are also a
type of harmonic form in some sense? By this, we mean that δF satisfying (1.8)
are also the zero solutions of the de Rham Laplacian ∆ = dd∗ + d∗d. But if (1.9)
also represents a harmonic condition, then we may expect that the corresponding
Laplacian (which should be self-adjoint) is given by

∆d+dΛ = (ddΛ)(ddΛ)∗ + d∗d(1.10)

This in fact is an interesting symplectic Laplacian. Clearly, the above fourth-order
operator ∆d+dΛ is dependent on the symplectic structure ω. It is also by con-
struction self-adjoint with respect to the standard inner product on forms of (1.1).
But most importantly, we can study the symbol of the operator ∆d+dΛ . And in
fact, it can be checked that the symbol is a positive operator on [Λ3T ∗M ]0. (The
subindex ‘0’ here denotes the subspace of the cotangent space of three-forms that
are annihilated by the wedge product of ω. This is the relevant space to consider as
we should require that δRe Ω satisfies the first algebraic condition in (1.4).) With
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Riemannian (M, g) Complex (M2n, J, g) Symplectic (M2n, ω, g)

Ωk Ωk = ⊕Ap,q Ωk = ⊕ ωr ∧ P s

d d = ∂ + ∂ d = ∂+ + ω ∧ ∂−

∆ = dd∗ + d∗d ∆∂ = ∂∂
∗

+ ∂
∗
∂ ∆+,∆−,∆++,∆−−

Table 1. A comparison of Riemannian, complex and symplectic analysis.

this symbol being positive, it is possible to further show that the solution space
∆d+dΛ δRe Ω = 0 is finite-dimensional.

We can certainly take our analogy with the Maxwell equations further. Since
∆ is associated with the de Rham cohomology, is the symplectic Laplacian ∆d+dΛ

also associated to some cohomology? The cohomology suggested by the analogy is

PH(M) =
ker d ∩ Ω3

0

im ddΛ ∩ Ω3
0

,

and as we shall see shortly, PH(M) is in fact a finite-dimensional cohomology
associated with the Laplacian ∆d+dΛ [19, 22].

In the above, what we have is the beginning of a novel symplectic analysis of dif-
ferential forms: We have found a distinctive Laplacian and associated cohomology,
both of which are explicitly dependent on ω.

At this point, there are many natural questions to follow up on. For instance,

• Is there a fundamental framework underlying the symplectic Laplacian
and cohomology? In particular, are they related to a differential graded
algebra?

• Can we use symplectic Laplacians to obtain invariants for symplectic man-
ifolds?

• Are there other symplectic Laplacians and cohomologies of differential
forms that we can write down?

In fact, we now know that there are a number of symplectic elliptic Laplacians
and associated cohomologies. And the analysis of them share many similarities
with standard Riemannian and complex analysis. In the following, we will describe
these cohomologies and Laplacians and some of their properties. More details can
be found in a series of paper [19, 20, 18, 16, 22].

2. Analysis of Forms on Symplectic Manifolds

Similar to the analysis on complex manifolds, one should expect that analysis
of differential forms on symplectic manifolds should have its own special features.
To motivate them, we will describe some of the peculiarities of symplectic analysis
in analogy with Riemannian and complex analysis. As an example, see Table 1.

2.1. Form Decomposition in the Presence of ω. In complex geometry,
the complex structure ensures the existence of holomorphic coordinates. Hence, a
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differential k-form can be standardly decomposed into holomorphic/anti-holomorphic
(p, q)-components:

Ωk = ⊕k=p+q A
p,q .

On a symplectic manifold, the symplectic structure, ω, is a differential two-
form. So it is natural to decompose or express forms in terms of powers of ω. For
example, for a generic six-form, we would write

A6 = B6 + ω ∧B4 + ω2 ∧B2 + ω3 ∧B0 ,

where {B6, B4, B2, B0} are primitive forms. Here, primitive forms are those forms
which are in some sense “orthogonal” to ω, i.e. you can not extract out a symplectic
form from them. Specifically, we say that a form is primitive, Bs ∈ P s(M) for
s = 0, 1, 2, . . . , n if it vanishes under the contraction with ω−1. In the symplectic
context then, we have the decomposition

Ωk = ⊕k=2r+s ω
r ∧ P s .(2.1)

Writing forms in this way, as a polynomial of ω, is called the Lefschetz decomposi-
tion of differential forms.

Now, such a decomposition in powers of ω suggests a natural filtration of forms.
For any k-form Ak ∈ Ωk, we can apply a projection that keeps only terms up to
the ωp order. In particular, for a differential k-form that is Lefschetz decomposed,
we define the projection operator Πp for p = 0, 1, . . . , n as follows:

Ak = Bk + ω ∧Bk−2 + ω2 ∧Bk−4 + ω3 ∧Bk−6 + . . . ,

Π0Ak = Bk ,

Π1Ak = Bk + ω ∧Bk−2 ,

Π2Ak = Bk + ω ∧Bk−2 + ω2 ∧Bk−4 ,

...

ΠpAk = Bk + ω ∧Bk−2 + ω2 ∧Bk−4 + . . .+ ωp ∧Bk−2p .

Such a projected space F pΩk(M) := ΠpΩk(M) ⊂ Ωk(M) is called the space of
p-filtered forms [18]. The index p in F pΩk(M) = ΠpΩk(M) which ranges from 0 to
n parametrizes a natural filtration

P∗ = F 0Ω∗ ⊂ . . . ⊂ F pΩ∗ ⊂ F p+1Ω∗ ⊂ . . . ⊂ FnΩ∗ = Ω∗

that interpolates from the space of primitive forms P to the space of all differential
forms Ω.

2.2. First-Order Symplectic Differential Operators. We turn now to
differential operators. The basic building blocks of differential operators on complex
manifolds are the Dolbeault operators, (∂, ∂). They arise naturally when applying
the exterior differential on a (p, q)-form

dAp,q −→ Ap+1,q ⊕Ap,q+1

Projecting the action of d onto each of the two components on the right gives the
decomposition d = ∂ + ∂.

For symplectic geometry, we can also find natural first-order differential oper-
ators in a similar way. With the Lefschetz decomposition (2.1), we let the exterior
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derivative act on an element of ωr ∧ Ps. Since ω is symplectic (i.e. dω = 0), we
have

d(wr ∧Bs) = ωr ∧ d(Bs) .

Acting on primitive forms, it can be shown that Lefschetz decomposition of a prim-
itive form acted upon by an exterior derivative only has two components

dBs = Bs+1 + ω ∧Bs−1 .

Thus, projecting onto the two components on the right, we find two natural linear
operators [20]

∂+ : ωr ∧ Ps → ωrPs+1 , ∂− : ωr ∧ Ps → ωr ∧ Ps−1 ,

resulting in the decomposition of the exterior derivative

d = ∂+ + ω ∧ ∂− .(2.2)

It further follows from d2 = 0 that

(∂+)2 = (∂−)2 = 0 , ω ∧ ∂+∂− = −ω ∧ ∂−∂+ .

Hence, (∂+, ∂−) share similar properties with those of the Dolbeault operators
(∂, ∂).

In fact, (∂+, ∂−) can be used to build an elliptic differential complex:

0
∂+ // P0

∂+ // P1
∂+ // . . .

∂+ // Pn−1
∂+ // Pn

∂+∂−

��
0 P0

∂−oo P1
∂−oo . . .

∂−oo Pn−1
∂−oo Pn

∂−oo

(2.3)

The four-dimensional (n = 2) version of this primitive complex was written down
by R.T. Smith [15] back in 1976. Tseng-Yau [19] and also M. Eastwood and his
collaborators [2, 4] independently wrote down the above complex more recently.

It turns out that this elliptic complex for primitive form is only the special p = 0
case of elliptic complexes for more general p-filtered forms F pΩ for p = 0, 1, . . . , n
as found by Tsai-Tseng-Yau [18]:

0
d+ // F pΩ0

d+ // F pΩ1
d+ // . . .

d+ // F pΩn+p−1
d+ // F pΩn+p

∂+∂−

��
0 F pΩ0

d−oo F pΩ1
d−oo . . .

d−oo F pΩn+p−1
d−oo F pΩn+p

d−oo

where (d+, d−) are first-order linear operators defined such that d± : F pΩk −→
F pΩk±1 and also (d+)2 = (d−)2 = 0. They are in some sense generalizations of
(∂+, ∂−) since (d+, d−) = (∂+, ∂−) when acting on primitive forms. (See [18] for
more details.)

For simplicity, we will in the following, focus mostly on the p = 0 primitive
case.
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2.3. Symplectic Laplacians and Cohomologies. Associated with the p-
filtered elliptic complex above are four distinct finite-dimensional cohomologies and
Laplacians for p-filtered forms. Specifically, for the elliptic complex of (2.3), we have
the following p = 0 primitive cohomologies

PH(M) = {PH0
+, PH

1
+, . . . , PH

n
+, PH

n
−, . . . , PH

1
−, PH

0
−}

where

PHk
+(M) =

ker ∂+ ∩ Pk

im ∂+ ∩ Pk
, PHk

−(M) =
ker ∂− ∩ Pk

im ∂− ∩ Pk
,(2.4)

for k = 0, 1, . . . , n− 1, and,

PHn
+(M) =

ker ∂+∂− ∩ Pn

im ∂+ ∩ Pn
, PHn

−(M) =
ker ∂− ∩ Pn

im ∂+∂− ∩ Pn
.(2.5)

Certainly, their dimensions represent new symplectic invariants especially for non-
Kähler symplectic manifolds. Furthermore, they provide us with the following
symplectic elliptic Laplacians associated with the cohomologies:

∆+ = ∂∗+∂+ + ∂+∂
∗
+ , ∆− = ∂∗−∂− + ∂−∂

∗
− ,(2.6)

∆++ = (∂+∂−)∗∂+∂− + (∂+∂
∗
+)2 , ∆−− = ∂+∂−(∂+∂−)∗ + (∂∗−∂−)2 .(2.7)

The two second-order Laplacians, ∆+ and ∆−, look very similar to the standard
De Rham Laplacian. In fact, one may quickly obtain them by replacing (d, d∗) in
the standard Laplacian with (∂+, ∂

∗
+) and (∂−, ∂

∗
−), respectively. The fourth-order

ones ∆++ and ∆−− are non-standard. They are associated with the middle part of
the elliptic complex in (2.3). For these fourth-order Laplacians, the squaring of the
second term, (∂+∂

∗
+) and (∂∗−∂−), ensures that the principal symbols are positive,

and not just the symbol as in the case of the Laplacian in (1.10).

3. Analysis on Symplectic Manifolds with Boundary

A basic setting in considering analysis is to study the local properties of the
operators and the differential forms which they act upon within some open or closed
region. If the region has a boundary, it would be most advantageous to impose some
boundary conditions on the differential forms. A good boundary condition can be
very useful as it can for instance ensures that no boundary integral contributions
arise when doing integration by parts. Thus, a fundamental question for these
novel symplectic operators (∂+, ∂−, ∂+∂−) is whether there are natural boundary
conditions that we can impose on differential forms when working in regions with
boundary?

In [22], we studied this issue of boundary conditions within the general setting
of symplectic manifolds with a smooth boundary, i.e. ∂M 6= 0. Symplectic mani-
folds with boundary appear in many different contexts in symplectic geometry, for
instance, in the study of symplectic filling and symplectic cobordisms of contact
manifolds. Indeed, we found symplectic analogues of the standard Dirichlet and
Neumann boundary conditions commonly used for the d and ∂ operators. More-
over, natural boundary conditions for the second-order operators ∂+∂− were also
found. These symplectic boundary conditions are very useful; for instance, they
are needed to establish Hodge decomposition of forms and also define “relative”
cohomology of forms with respect to the boundary ∂M . We will describe these
boundary conditions below.
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3.1. Standard Dirichlet and Neumann Boundary Condition. To be-
gin, let us first review the usual Dirichlet and Neumann boundary conditions on
differential forms. In our discussion of boundary conditions, we will make extensive
use of the local boundary defining function which we denote by ρ. Specifically,
ρ = 0 on ∂M and dρ 6= 0 is dual to the inward normal vector ~n.

The well-known Dirichlet (D) boundary condition on a function f ∈ Ω0 is the
requirement that f |∂M = 0. But more generally, the Dirichlet boundary condition
for a k-form η ∈ Ωk can be expressed simply in terms of the symbol of the exterior
derivative d, i.e. σd(dρ) η |∂M = 0. Alternatively, this implies

(D) σd(dρ) η |∂M = dρ ∧ η |∂M = d(ρ η) |∂M = 0 .(3.1)

Notice that the Dirichlet condition on forms requires that a form with only compo-
nents in the tangential directions of ∂M vanishes on the boundary. The Neumann
(N) boundary condition can be defined in a similar way using the adjoint operator
d∗:

(N) σd∗(dρ) η |∂M = ι~n η |∂M = d∗(ρ η) |∂M = 0 .(3.2)

Let us mention here several desirable properties of the Dirichlet and Neumann
boundary conditions:

(1) For both Dirichlet and Neumann boundary conditions, the boundary con-
tributions vanishes:

(dη, ξ)− (η, d∗ξ) =

∫
∂M

〈σd(dρ) η, ξ〉 dS = −
∫
∂M

〈η, σd∗(dρ) ξ〉 dS .

(2) The Dirichlet and Neumann boundary conditions are preserved under the
operation of d and d∗, respectively:

η ∈ D =⇒ dη ∈ D ,

η ∈ N =⇒ d∗η ∈ N .

(3) The boundary conditions play an essential role in establishing the Hodge
decompositions of forms on manifolds with boundary [6, 14]. The Hodge
decompositions in turn implies the finite-dimensionality of the absolute
and relative cohomologies on M :

Hk(M) =
ker d ∩ Ωk

im d ∩ Ωk
∼= Hk

N (M) (absolute)

Hk(M,∂M) =
ker d ∩ Ωk

D

im d ∩ Ωk
D

∼= Hk
D(M) (relative)

where Ωk
D denotes the space of k-forms with Dirichlet boundary condition

and Hk
N and Hk

D(M) are the space of harmonic fields of degree k that sat-
isfy Neumann and Dirichlet boundary conditions, respectively. Recall also
that there is a natural pairing duality between the absolute and relative
cohomologies on manifolds with boundary:

Hk(M) ∼= H2n−k(M,∂M) .
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3.2. Symplectic Boundary Conditions on Forms. Are there boundary
conditions for the symplectic operators (∂+, ∂−, ∂+∂−) with similar properties as
the Dirichlet and Neumann boundary conditions for the exterior derivative d?

It turns out there are. As we saw in (3.1) and (3.2), Dirichlet and Neumann
boundary conditions on forms are defined by d and d∗, respectively. Naively, if we
replace (d, d∗) with (∂+, ∂

∗
+) in the definitions of Dirichlet and Neumann bound-

ary conditions, we obtain the following Dirichlet- and Neumann-type boundary
conditions:

(D+) σ∂+
(dρ) η |∂M = ∂+(ρ η) |∂M = 0 ,

(N+) σ∂∗
+

(dρ) η |∂M = ∂∗+(ρ η) |∂M = 0 .

Similarly for ∂−, we can define

(D−) σ∂−(dρ) η |∂M = ∂−(ρ η) |∂M = 0 ,

(N−) σ∂∗
−

(dρ) η |∂M = ∂∗−(ρ η) |∂M = 0 .

If these symplectic boundary conditions are defined on primitive forms, β ∈ P k for
k = 0, 1, . . . , n−1, then they also have the good properties stated above for standard
Dirichlet and Neumann boundary conditions. Specifically, for β, λ ∈ P k(M) and
k = 0, 1, . . . , n− 1,

(1) No boundary contribution:

(∂+β, λ)− (β, ∂∗+λ) =

∫
∂M

〈σ∂+(dρ)β, λ〉 dS =−
∫
∂M

〈β, σ∂∗
+

(dρ)λ〉 dS ,

(∂−β, λ)− (β, ∂∗−λ) =

∫
∂M

〈σ∂−(dρ)β, λ〉 dS =−
∫
∂M

〈β, σ∂∗
−

(dρ)λ〉 dS .

(2) Boundary condition is preserved:

β ∈ D+ =⇒ ∂+β ∈ D+ , β ∈ D− =⇒ ∂−β ∈ D− ,
β ∈ N+ =⇒ ∂∗+β ∈ N+ , β ∈ N− =⇒ ∂∗−β ∈ N− .

(3) There are also Hodge decompositions of primitive forms. They imply the
finite dimensionality of the absolute and relative primitive cohomologies:

PHk
+(M) =

ker ∂+ ∩ P k

im ∂+ ∩ P k
∼= PHk

+,N+
(M) (absolute)

PHk
−(M) =

ker ∂+ ∩ P k

im ∂+ ∩ P k
∼= PHk

−,N−
(M) (absolute)

PHk
+(M,∂M) =

ker ∂+ ∩ P k
D+

im ∂+ ∩ P k
D+

∼= PHk
+,D+

(M) (relative)

PHk
−(M,∂M) =

ker ∂+ ∩ P k
D−

im ∂+ ∩ P k
D−

∼= PHk
−,D−

(M) (relative)

where the subscript {D+, N+, D−, N−} denotes imposing the boundary
condition on the space of primitive forms P k(M). Also, for instance,
PHk

+,N+
(M) denotes the space of primitive harmonic fields with (N+)

boundary condition, i.e. β ∈ P k
N+

such that ∂+β = ∂∗+β = 0. The other
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three harmonic spaces – PHk
−,N−

(M), PHk
+,D+

(M), PHk
−,D−

(M) – are

similarly defined. Interestingly, there is also pairing dualities:

PHk
+(M) ∼= PHk

−(M,∂M) ,

PHk
−(M) ∼= PHk

+(M,∂M) .

Now concerning primitive forms of middle degree, k = n, the symplectic coho-
mology as in (2.5) involves the ∂+∂− operator. This is no doubt unusual. Indeed,
just replacing d → ∂+∂− and d∗ → (∂+∂−)∗ in the definition of the (D) and (N)
boundary conditions is not sufficient to obtain the above three properties when
the degree of the primitive form k = n. In [22], we were able to define boundary
conditions D++ and N−− that impose an additionally first-order differential equa-
tion on β ∈ Pn(M). These novel boundary conditions lead to properties analogous
to the three listed above for the {D+, N+, D−, N−} boundary conditions. (As the
definition for {D++, N−−} requires the introduction of additional terminology and
notations, we will refer the reader to [22] for further details.) It is nevertheless
worthwhile to point out that the symplectic Hodge decompositions of Property (3)
above require showing that certain boundary value problems are elliptic. In the
k = n case, they lead to interesting elliptic boundary value problems such as the
following system:

∆++ β =
[
(∂+∂−)∗(∂+∂−) + (∂+∂

∗
+)2
]
β = λ , on M

β ∈ D++ ,

∂+(ρ ∂∗+β) = 0 ,

∂+(ρ ∂∗+∂+∂
∗
+β) = 0 ,

on ∂M

for β, λ ∈ Pn(M).

3.3. Example: M = B3 × T 3. To conclude this section, let us mention that
the symplectic cohomologies of primitive forms are computable in many instances.
Especially, if the de Rham cohomology ring is understood, then the symplectic
cohomologies can be easily computed by means of Lefschetz maps as described
in [18, 22]. One can also compute the cohomologies with respect to different
symplectic structures on a manifold. For instance, let us very briefly describe the
cohomology on a six-dimensional manifold, M = B3 × T 3, that is the product of a
unit ball in R3 with a three torus:

(x1, x2, x3, y1, y2, y3) ∼ (x1, x2, x3, y1 + a, y2 + b, y3 + c) ,

with a, b, c ∈ Z and x2
1 + x2

2 + x2
3 ≤ 1. The boundary is

∂M = S2 × T 3 : {x2
1 + x2

2 + x2
3 = 1} .

We can consider two distinct different symplectic (Kähler) forms:

(1) A symplectic structure that is non-trivial in H2(M).

ω1 = dx1 ∧ dx2 + dy1 ∧ dy2 + dy3 ∧ dx3 ;

(2) A symplectic structure that is trivial in H2(M)

ω2 = dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 ,

since ω2 = dα where α =
∑
xidyi.

Interestingly, PHk
+(M,ω1) � PHk

+(M,ω2) for k = 1, 2, 3 . (For details see [22].)
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4. Developing Further Symplectic Analysis

Clearly, symplectic manifolds have their own distinctive building blocks of linear
differential operators, (∂+, ∂−, ∂+∂−), to write down systems of partial differential
equations. As we have seen, these linear symplectic operators have many properties
that are analogous to those of the standard exterior derivative operator, d. This is
suggestive of developing a symplectic analysis based on (∂+, ∂−, ∂+∂−).

There are certainly some significant challenges in pursuing a symplectic analysis
of these operators. The first relates to the fact that interesting analysis for them
takes place on forms of degree one or greater. The analysis on the function case,
which is the the most approachable and widely studied case in geometric analysis,
is not so interesting. We note that acting on any function, f ,

d f = ∂+f + ω ∧ ∂−f ,
and hence, ∂+f = d f and ∆+f = ∆f . This implies that symplectic invariants lie
within forms of degree one or higher.

Furthermore, there do not seem to be any simplifying coordinate system anal-
ogous to the holomorphic and anti-holomorphic coordinates of complex analysis to
simplify the calculations on symplectic manifolds. In complex analysis, with local
{zi, zi} coordinates, we can for instance write the Dolbeault operator rather simply

as ∂ = dzi ⊗
∂

∂zi
. On symplectic manifolds, we have at best the Darboux coordi-

nates {dxi, dyi} with ω =
∑

dxi ∧ dyi. However, the operators (∂+, ∂−) take on
the following form:

∂+ = Π0 d = Π0

[
dxi

∂

∂xi
+ dyi

∂

∂yi

]
,

∂− =

[
1

2
(ω−1)iji∂xi

i∂yj

]
d ,

∂+∂− = dΛd ,

which are not as easy to work with.
Despite these challenges, Tanaka-Tseng [16] have recently provided a note-

worthy insight that strongly suggests that developing this new symplectic analysis
will be fruitful. Interestingly, their work shows that symplectic analysis involving
(∂+, ∂−, ∂+∂−) on (M2n, ω) are directly related to the Riemannian analysis on a
higher odd-dimensional sphere bundle over M . In particular, for the primitive p = 0
case, we can consider

S1 // E

��
(M2n, ω)

where the Euler class e(E) = ω and we have assumed [ω] ∈ H2(M,Z). Tanaka-
Tseng observed that the data of E comes from two sources only: (i) M2n ; (ii)
twist of the fiber given by ω. This implies in particular that the topology of the
(2n+1)-dimensional E should reflect the symplectic geometry of (M2n, ω) [16]. We
have shown some of the relations in Table 2. For instance, the de Rham differential
graded algebra on E is now known to be “equivalent” to the symplectic algebra of
primitive forms of Tsai-Tseng-Yau [18] on M . Such relations between E and M
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Analysis of (E, gE , d) ←→ Analysis of (M2n, ω, g, d′)

H(E) ∼= PH(M)

(Ω, d,∧) DGA ∼ (F , d′,×,m3) A∞-algebra

contact homology ∼ genus zero Gromov-Witten

... ∼
...

Geometric Analysis on E ←→ Symplectic Analysis on (M2n, ω)

Table 2. Comparing the analysis on a symplectic manifold (M,ω)
with the associated circle bundle E over M where the Euler class of
E is ω The linear symplectic operators on M are grouped together
and labelled by d′ = (∂+, ∂−, ∂+∂−) in the table.

also extends to the quantum level. From the work of Bourgeois [1], the data of the
contact homology of E corresponds to the genus zero Gromov-Witten invariants
on M . In short, we should expect that geometrical analytical relations on the odd-
dimensional sphere bundle E based on the exterior derivative d will have analogous
symplectic analytical relations on M involving (∂+, ∂−, ∂+∂−).
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