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Odd sphere bundles, symplectic manifolds,
and their intersection theory

Hiro Lee Tanaka and Li-Sheng Tseng

We introduce and investigate a new perspective which relates in-
variants of a symplectic manifold to topological invariants of cer-
tain odd-dimensional sphere bundles over the symplectic manifold.
Specifically, we show that the novel symplectic A∞-algebras of dif-
ferential forms recently found by Tsai-Tseng-Yau are in fact equiv-
alent to the standard de Rham differential graded algebra of the
odd sphere bundles when the cohomology class of the symplec-
tic form is integral. As applications of this equivalence, we deduce
for a closed symplectic manifold that Tsai-Tseng-Yau’s symplectic
A∞-algebras satisfy the Calabi-Yau property and argue that they
can be used to define an intersection theory for cycles built from
coisotropic/isotropic submanifolds. We further demonstrate that
these symplectic A∞-algebras satisfy several functorial properties
and lay the groundwork for addressing Weinstein functoriality.
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1. Introduction

Recently, Tsai-Tseng-Yau [16] introduced a family of algebras of differen-
tial forms for any symplectic manifold M . These algebras—denoted Fp(M),
with parameter p taking integral values from zero to dimM/2—have sev-
eral notable properties. First, each Fp(M) is an A∞-algebra. Second, the
differential of the algebra consists of both first- and second-order differential
operators, while the product interestingly involves derivatives. Finally, their
cohomologies, F pH∗(M), are all finite-dimensional—they were named the
p-filtered cohomologies of M for short [16]. These filtered cohomology rings
can vary with the symplectic structure ω [18, 16]. The filtered cohomologies
also have physical applications. In fact, they arise naturally when consid-
ering mirror symmetry of non-Kähler manifolds; in particular, they appear
in the deformation theory of type IIA supersymmetric string solutions that
are non-Kähler symplectic [19, 14].

In this paper, we equate the algebras Fp (in the A∞-algebra sense) to
a standard de Rham differential graded algebra—not on the original sym-
plectic manifold M , but on certain odd-dimensional sphere bundles over M .
This equivalence turns out to give a simple, topological description of Fp,
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and makes manifest several useful properties of Fp (including some functorial

properties).

We can motivate the existence of such an alternative description for Fp

on (M2n, ω) from a broader point of view. For a symplectic manifold M , the

symplectic structure and its powers constitute a distinguished set of forms:

{
ω, ω2, . . . , ωn

}
∈ Ω∗(M) .

Special forms also arise in geometry as representatives of characteristic

classes of bundles over M . Assuming ω is also in an integral cohomology

class, it is then natural to combine these two types of forms by considering

bundles over M with characteristic classes given by powers of ω.

Explicitly, for the distinguished two-form ω, consider the line bundle

L over M with c1 = (1/2π)ω. This L is the well-known prequantum line

bundle in geometric quantization, and has an associated circle bundle with

Euler class e = ω. More generally, for the 2(p + 1)-form ωp+1, we have the

associated direct sum vector bundle L⊕ p+1, and we will focus in particular

on the associated closed S2p+1 bundle over M :

S2p+1 Ep

(M2n, ω)

(1)

with its Euler class given by ωp+1. Given that Ep is built from M and the

symplectic form ω, and nothing more, one can ask how the topology of Ep

relates to the symplectic geometry of M2n:

Topological data of Ep

?
Symplectic data of (M2n, ω)

Specifically,

(1) What symplectic data are encoded in the topology of the odd sphere

bundle Ep?

(2) Can we use the topology of these sphere bundles to gain new insights

into the known symplectic invariants on (M2n, ω)?

In this paper, we begin to address such questions by analyzing the coho-

mology and the differential topology of Ep. First, the real cohomology of the
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sphere bundle—equivalently, its de Rham cohomology—is well-known to fit
into the Gysin sequence:

H∗(Ep)

H∗(M)
∧ωp+1

H∗+2p+2(M)

(2)

where again ωp+1 is the Euler class of Ep. This exact triangle identifies
H∗(Ep) non-canonically as the direct sum of kernels and cokernels of the
ωp+1 map between the de Rham cohomologies of M . Strikingly, exactly the
same triangle diagram also appeared in [16] for the symplectic p-filtered
cohomologies of differential forms, F pH∗(M); so we can conclude from (2)
that

H∗(Ep) ∼= coker[ωp+1 : H∗(M) → H∗(M)]⊕ ker[ωp+1 : H∗(M) → H∗(M)]

(3)

∼= F pH∗(M) .

Beyond the cohomology of Ep, we can also consider the de Rham algebra
of Ep. When [ω] is integral, a standard application of the Čech-de Rham
double complex shows that

Ω•(Ep) � Cone(ωp+1)

where Cone(ωp+1) is the mapping cone of the map between de Rham chain
complexes:

∧ωp+1 : Ω•(M)[−2p− 2] → Ω•(M) .

We refer the interested reader to the proof in the Appendix.
The cone algebra Cone(ωp+1) can be endowed with the structure of a

commutative differential graded algebra (cdga). It is also well-defined for
any ω whether integral or not. At first glance, this cone cdga is very differ-
ent from the A∞-algebra Fp, but both fit into the same long exact sequence
of cohomology groups (hence have isomorphic cohomology). This raises the
question whether Fp and Cone(ωp+1) represent two distinct symplectic al-
gebras on (M,ω). We prove that they are in fact equivalent:

Theorem 1.1. For each p, there exists a natural equivalence of A∞-algebras

Fp � Cone(ωp+1) .
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Here, naturality is with respect to smooth immersions f : M → M ′ such that
dimM = dimM ′ and f∗ω′ = ω.

Moreover, this equivalence suggests that Fp should come with a non-
degenerate pairing whenM is compact—after all, when [ω] is integral, Ω(Ep)
has a non-degenerate pairing by Poincaré Duality. To that end, we prove:

Theorem 1.2. Each A∞-algebra Fp is Calabi-Yau whenever M is compact.

In other words, each Fp admits a cyclically invariant pairing, and this
theorem holds for all symplectic structures on M .

Remark 1.3. In introducing the sphere bundles, we needed to assume [ω]
is integral. However, the above theorems hold for any ω. In particular, the
content of Theorem 1.2 is twofold: We exhibit the Calabi-Yau property in
the absence of a sphere bundle, and we also write an explicit Calabi-Yau
structure making the dependence on ω transparent. As a bonus, when [ω] is
integral, we verify that the motivating Poincaré duality pairing on E is com-
patible with the pairing we construct (via the equivalence of Theorem 1.1).

At this point, two natural questions arise from these theorems.
First: Is there an intersection theory associated to each Fp? After all,

common examples of Calabi-Yau algebras are differential forms on compact,
oriented manifolds, where the Calabi-Yau pairing encodes the intersection
theory of oriented submanifolds. Since the sequence of Calabi-Yau algebras
Fp depends on the choice of ω, an answer to our question amounts to looking
for an intersection theory tailored to symplectic manifolds—and one not
involving holomorphic curve theory.

In Section 5, we begin to interpret the intersection pairing when ω is
an integral cohomology class and p = 0. The interpretation is as follows:
Consider the contact circle bundle E associated to the line bundle classified
by ω. Given an isotropic I inside M , one can lift I to a section Ĩ of E
because ω|I = 0. As it turns out, isotropics naturally pair with coisotropics
C ⊂ M , but C may have some non-trivial, symplectic boundary. (This is a
manifestation of the fact that the Poincaré dual form of C may not be closed
under the de Rham differential.) Regardless, our work suggests that C lifts
to a submanifold C̃ ⊂ E in the circle bundle which no longer has boundary.
Then the intersection of Ĩ with C̃—given by the usual intersection pairing
on E—is the Calabi-Yau pairing on F0 .

Remark 1.4. While the above theorems imply that the symplectic A∞-
algebras Fp are only invariants of the cohomology class of ω, and not ω itself
(see Corollary 6.2), the geometric construction of the intersection pairing
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involves knowledge of ω itself. In particular, this construction suggests that
one should further contemplate whether the differential geometry (rather
than the topology) of the odd sphere bundle induced by ω encodes symplectic
data of M . As an example, in the p = 0 case, the circle bundle has a contact
structure, θ, such that ω = dθ. Hence, one can study this contact geometry in
relation to the symplectic geometry of the base. And as shown by Bourgeois
[2], the contact homology of the circle bundle Ep=0 relates directly to the
genus zero Gromov-Witten invariants on (M,ω).

Second: What formal properties do the Fp satisfy? For instance, what
kinds of symplectic morphisms induce maps between them?

We prove that the algebras Fp enjoy several formal properties in Sec-
tion 6. For instance, since there are natural quotient maps Cone(ωp+1) →
Cone(ωp), one obtains a sequence of A∞-algebra maps that go in a reverse
direction to the filtration that defines Fp:

(4) . . . → Fp → Fp−1 → . . . → F0.

Using the equivalence of Theorem 1.1 to render Fp a commutative (and
not just A∞) algebra, this sequence of algebra maps suggests that the Fp

can be given a simple interpretation in terms of derived geometry—they
encode higher order neighborhoods around the subvariety of Spec(Ω(M))
determined by ω.

Furthermore, we begin to develop the functorial properties of the as-
signment M 	→ Cone(ω•). For instance, this assignment is functorial with
respect to maps f : M → M ′ such that f∗ω = ω′. Moreover, the assign-
ment M 	→ Fp(M) forms a sheaf of cdgas on the site of symplectic manifolds
with smooth, open embeddings that are symplectomorphisms onto their im-
ages. Finally, we begin to see the seeds of Weinstein functoriality: For any
Lagrangian submanifold L ⊂ (M1 × M2,−ω1 ⊕ ω2), one can define a cdga
ConeL(ω

p+1) receiving an algebra map from each of the ConeMi
(ωp+1)—in

particular, each Lagrangian correspondence defines a bimodule for the alge-
bras Fp(Mi). It will be a subject of later work to show that this assignment
sends Lagrangian correspondences to tensor products of bimodules.
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2. Recollections

Here we recall the constructions and results from [17], [18], [16]. This will al-

low us to set some notation, and to recall the A∞-operations for the algebras

Fp. (Here, p can be any integer between 0 and n, inclusive.)

Notation: We will often denote a cochain complex simply by a letter

such as Ω, referring to its degree k part by Ωk. To emphasize that a cochain

complex is graded, we will also write Ω• instead of Ω. Finally, when a cochain

complex such as Fp or Ω depends on a choice of manifold M , we may write

Ω(M) to indicate the dependence on M ; for brevity and space, we will

usually make the dependence on M implicit and simply write Ω.

2.1. Form decomposition

Fix a 2n-dimensional symplectic manifold (M2n, ω). Since ω defines an iso-

morphism between 1-forms and vector fields, ω itself is identified with a

bivector field (the Poisson bivector field), under this isomorphism. There

are three basic operations on de Rham forms on M :

(1) L : Ωk → Ωk+2 sends η 	→ ω ∧ η.

(2) Λ : Ωk → Ωk−2 sends a k-form η to the interior product with the

Poisson bivector field.

(3) H : Ωk → Ωk sends a k-form η to (n− k)η.

Together, {L,Λ, H} generate an sl2 Lie algebra acting on forms. The

highest weight forms under this action are called primitive forms, whose

space we shall denote by P •. If βk ∈ P k is a primitive k-form, then its

interior product with the Poisson bivector field vanishes, i.e. Λβk = 0. As

usual with sl2 representations, any k-form ηk ∈ Ωk can be expressed as a

sum of primitive forms wedged with powers of ω:

ηk =
∑

k=2j+s

Ljβs = βk + Lβk−2 + . . .+ Lpβk−2p + . . .
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This Lefschetz decomposition of Ω• can be arranged in a “pyramid” dia-
gram as shown in Figure 1. (This can be compared to the well-known (p, q)
“diamond” of forms on complex manifolds.) Associated with this Lefschetz
decomposition, we define four more operations:

(4) L−p: the negative power of L with p > 0. Roughly, it is the “inverse”
of Lp and removes ωp from each term of the decomposition. Explicitly,

L−pηk =
∑

k=2j+s

L−pLjβs = βk−2p + Lβk−2p−2 + . . .

(5) ∗r : the natural reflection action about the central axis of the pyramid
diagram in Figure 1. The operation is explicitly defined on each term
of the Lefschetz decomposition by

(5) ∗r (Ljβs) = Ln−j−sβs .

It is worthwhile to note that in terms of ∗r,

L−p = ∗r Lp ∗r ,

that is, L−p is the ∗r conjugate of Lp. Also, acting on Ω, we have
∗r Ωk = Ω2n−k as expected.

(6) Πp: a projection operator that keeps only terms up to the pth power
of ω in the Lefschetz decomposition:

(6) Πpηk =

p∑
j=0

Ljβs = βk + . . .+ Lpβk−2p

Alternatively, Πp can be defined as

Πp = 1− Lp+1 ◦ L−(p+1).

(7) Πp∗: the ∗r conjugate of Πp defined by

Πp∗ = ∗rΠp∗r = 1− L−(p+1) ◦ Lp+1.

The decomposition by powers of ω allows us to group together forms
that contain terms only up to certain powers of ω.

Definition 2.1. Define the space of p-filtered k-forms to be

F pΩk := ΠpΩk
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Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8 Ω9 Ω10

−−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−

P 5

P 4 LP 4

P 3 LP 3 L2P 3

P 2 LP 2 L2P 2 L3P 2

P 1 LP 1 L2P 1 L3P 1 L4P 1

P 0 LP 0 L2P 0 L3P 0 L4P 0 L5P 0

Figure 1: The decomposition of forms into a “pyramid” diagram in dimension
2n = 10. Note that there is a natural reflection symmetry action about the
Ωn=5 column. This is the ∗r action defined in (5). To illustrate filtered forms,
we have bold-faced those elements in F pΩ for p = 2 here.

for p ∈ {0, 1, . . . , n}.
The filtered F pΩk spaces give us a natural filtration of Ωk:

P k := F 0Ωk ⊂ F 1Ωk ⊂ F 2Ωk ⊂ . . . ⊂ FnΩk = Ωk.

Note that the 0-filtered forms are precisely primitive forms, and that FnΩk =
Ωk.

Lemma 2.2. The following are equivalent conditions for p-filtered forms:

(i) αk ∈ F pΩk ;
(ii) Λp+1αk = 0 (or equivalently, L−(p+1)αk = 0) ;
(iii) Ln+p+1−kαk = 0 ;
(iv) Lp+1∗rαk = 0 .

Remark 2.3. The F pΩk space is only non-zero for k = 0, 1, . . . , (n + p) .
See Figure 1.

2.2. The cochain complex F•
p

There are natural differential operators (d+, d−) that map between p-filtered
forms. We recall the key ingredients here:

1. On symplectic manifolds, the exterior differential has a natural decom-
position

d = ∂+ + ω ∧ ∂− .
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where ∂+ : LjP s → LjP s+1 and ∂− : LjP s → LjP s−1. Note in par-
ticular when j = 0, ∂+ and ∂− map primitive forms into primitive
forms. The pair of operators (∂+, ∂−) are analogous to the Dolbeault
operators on complex manifolds. They square to zero (∂2

+ = ∂2
− = 0),

commute with L ([L, ∂+] = [L,L∂−] = 0), and also graded commute
after applying L: L∂+∂− = −L∂−∂+.

2. On p-filtered forms, we can define two natural linear operators:

d+ = Πp ◦ d ,(7)

d− = ∗r d ∗r ,(8)

such that d+ : F pΩk → F pΩk+1 and d− : F pΩk → F pΩk−1. Both
operators square to zero ((d+)

2 = (d−)2 = 0). In fact, when acting
on primitive forms, d±P k = ∂±P k. Furthermore, (d+, d−) is related to
(∂+, ∂−) by

d− = ∂− + ∂+L
−1

(∂+∂−)d+ = d−(∂+∂−) = 0

The differentials (d+, d−, ∂+∂−) can be used to write down an elliptic
complex for F pΩ•:

Theorem 2.4. [Section 3 of [16]] The differential complex

0 −→ F pΩ0 d+−→ F pΩ1 d+−→ . . .
d+−→ F pΩn+p ∂+∂−−−−→

∂+∂−−−−→ F pΩn+p d−−→ F pΩn+p−1 d−−→ . . .
d−−→ F pΩ0 −→ 0

is elliptic for all p ∈ {0, 1, . . . , n}.
As a corollary of the ellipticity of the complex, the associated filtered

cohomologies labelled by

F pH = {F pH0
+, . . . , F

pHn+p
+ , F pHn+p

− , . . . , F pH0
−}

are all finite-dimensional on a closed symplectic manifold and also have
Hodge theory associated to them.

The cochain complex Fp is defined following the elliptic complex:

Fp =
(
F pΩ0 d+−→ . . .

d+−→ F pΩn+p −∂+∂−−−−−→(9)

−∂+∂−−−−−→ F pΩn+p −d−−−−→ F pΩn+p−1 −d−−−−→ . . .
−d−−−−→ F pΩ0

)
.
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As vector spaces F pΩk = F pΩk. The extra bar is only inserted to distinguish
the second set of F pΩ• in the complex from the first. Also, the additional
minus signs in some of the differentials are needed to satisfy the A∞ relations
described below. At times, we will denote F•

p simply as F•, with

F j =

⎧⎪⎨
⎪⎩
F pΩj j ≤ n

F pΩ2n+2p+1−j j ≥ n+ p+ 1

0 j < 0, j > 2n+ 2p+ 1.

The notation here is that F pΩk has degree 2n+ 2p+ 1− k in this complex,
while F pΩk has degree k. If ambiguity may arise whether a p-filtered k-form
is an element of Fk or F2n+2p+1−k, we will add a bar and write αk ∈ F pΩk

to denote an element in F2n+2p+1−k.

2.3. The A∞-algebra structure

We use the sign convention that a series of operations

ml : F ⊗ l → F [2− l]

satisfies the A∞ relations if and only if∑
(−1)r+stmr+t+1(id⊗ r ⊗ ms ⊗ id⊗ t) = 0 .

As an example, if ml = 0 for l ≥ 3, then the data (F , (ml)) define an
ordinary differential graded algebra (dga).

The m2 operation.

1. For a1 ∈ F pΩk1 = Fk1
p , a2 ∈ F pΩk2 = Fk2

p , and k1 + k2 ≤ n + p , we
set

m2(a1, a2) = Πp(a1 ∧ a2)

where Πp is the projection to the p-filtered components defined above.
2. For a1 ∈ F pΩk1 = Fk1

p , a2 ∈ F pΩk2 = Fk2
p , and k1 + k2 > n + p ,

define

DL(a1, a2) = −dL−(p+1)(a1 ∧ a2)

+ (L−(p+1)da1) ∧ a2 + (−1)ja1 ∧ (L−(p+1)da2).

Then,

m2(a1, a2) = Πp ∗r (DL(a1, a2)).
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In other words, the m2 operation measures the difference between the
action of dL−(p+1) and the derivation of L−(p+1)d on the wedge prod-
uct of filtered forms. (It then picks out the p-filtered part of the ∗r
reflection.)

3. For a1 ∈ F pΩk1 = Fk1
p and a2 ∈ F pΩk2 = F2n+2p+1−k2

p , we set

m2(a1, a2) = (−1)k1 ∗r (a1 ∧ (∗ra2)).

4. For a1 ∈ F pΩk1 = F2n+2p+1−k1
p and a2 ∈ F pΩk2 = Fk2

p , we set

m2(a1, a2) = ∗r ((∗ra1) ∧ a2) .

This implies that m2 is graded commutative:

m2(a1, a2) = (−1)a1a2m2(a2, a1).

5. And for degree reasons, if a1 ∈ F pΩk1 and a2 ∈ F pΩk2 , then

m2(a1, a2) = 0 .

The m3 operation. Let ai ∈ Fki
p . We set

m3(a1, a2, a3)=

⎧⎪⎨
⎪⎩
Πp∗r

[
a1 ∧ L−(p+1)(a2 ∧ a3) k1 + k2 + k3 ≥ n+ p+ 2 ,

−L−(p+1)(a1∧a2)∧a3
]

with k1, k2, k3 ≤ n+ p

0 otherwise

The higher ml operations. We set ml = 0 for all l ≥ 4.
From [16], we have the following:

Theorem 2.5 (Section 5 of [16]). For any symplectic manifold M of dimen-
sion 2n and any integer p with 0 ≤ p ≤ n, the operations ml endow Fp(M)
with the structure of an A∞-algebra.

3. Equivalence of algebras

3.1. Definition of C

Let f : X → Y be a map of cochain complexes. In homological algebra, the
natural notion of quotient is the cone, or mapping cone of f . It is defined to
be the cochain complex

Y ⊕X[1], d(y ⊕ x) = dy + f(x)⊕−dx.
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Finally, a commutative differential graded algebra, or cdga, is a commutative
algebra in the category of cochain complexes. Explicitly, a cdga is a cochain
complex A = (A, d) together with a map of cochain complexes

m2 : A⊗A → A

which is associative, and which satisfies graded commutativity:

m2(a, b) = (−1)|a| |b|m2(b, a).

Note that m2 is a map of cochain complexes if and only if it satisfies the
Leibniz rule:

dm2(a, b) = m2(da, b) + (−1)|a|m2(a, db).

A map of cdgas is a map of cochain complexes f : A → B such that f ◦m2 =
m2 ◦ f ⊗ f .

Remark 3.1. Given any commutative ring R, and an element x, one has
the map of R-modules

R
x−→ R

and one can define the quotient R-module R/xR; this also has a commu-
tative ring structure. In fact, the two-term complex above–often known as
the Koszul complex of x—is a derived enhancement of the quotient module
R/xR. In what follows, we consider the case of R = Ω•(M), the de Rham
complex of differential forms on a symplectic manifold M . Our element x
is some power of ω.1 So, heuristically, C should be thought of as a derived
enhancement of “R/xR.”

Consider the degree 0 map

ωp+1 : Ω(M)[−2p− 2]
∧ωp+1

−−−−→ Ω(M).

Then Cone(ωp) has in degree k the vector space

Ωk(M)⊕ θΩk−2p−1(M)

where θ is a formal element of degree 2p+ 1. This has differential

dC(η ⊕ θξ) = (dη + ωp+1ξ)⊕− θ dξ.

This cochain complex has another description endowing it with an obvious
cdga structure:

1In fact, the discussion holds for any even-degree, closed differential form on M .
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Definition 3.2. We define C to be the cdga obtained from Ω(M) by freely
attaching a degree 2p + 1 variable θ satisfying dθ − ωp+1 = 0. Note that ω
and p are implicit in writing C.
Remark 3.3. The variable θ is a formal degree 2p+ 1 variable, and we are
imposing the relation dθ = ωp+1 in the cone cdga; in particular, we do not
make any exactness assumption on ωp+1 as a form on M .

Thinking of the cdga C as an A∞-algebra, we will let m1
C and m2

C denote
its differential and its multiplication, respectively, whilemk

C = 0 for all k ≥ 3.
Explicitly:

m2
C
(
(η ⊕ θη′)⊗ (ξ ⊕ θξ′)

)
= (η⊕θη′)∧(ξ⊕θξ′) = η∧ξ⊕θ(η′∧ξ+(−1)ηη∧ξ′).

3.2. C is equivalent to F

Throughout this section we fix an integer 0 ≤ p ≤ n. The dependence of
C and F on this choice is implicit. Furthermore, the indices j and k take
integral values j ∈ {0, 1, . . . , 2n+ 2p+ 1} and k ∈ {0, 1, . . . , n+ p}.

We shall write any p-filtered form α ∈ F pΩk as

αk = βk + ωβk−2 + . . .+ ωpβk−2p

where each βi ∈ P i is a primitive form of degree i.

Let us first make the observation that

Ck = Ωk ⊕ θΩk−2p−1

C2n+2p+1−k = Ω2n+2p+1−k ⊕ θΩ2n−k =
(
∗r Ωk−2p−1

)
⊕ θ

(
∗rΩk

)

making use of the relation ∗rΩk(M) = Ω2n−k(M) for any integer k. The
above implies Ck ∼= C2n+2p+1−k as expected. Following this, we can write for
any Ck ∈ Ck

Ck = (αk + ωp+1βk−2p−2 + . . .) + θ2p+1(αk−2p−1 + ωp+1βk−4p−3 + . . .) ,

(10)

and for any C2n+2p+1−k ∈ C2n+2p+1−k

C2n+2p+1−k = ∗r(αk−2p−1 + ωp+1βk−4p−3 + . . .)(11)

+ θ2p+1 ∗r (αk + ωp+1βk−2p−2 + . . .) .
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If we further replace the αk−2p−1 terms in (10)-(11) above with its Lefschetz
decomposed form

αk−2p−1 = βk−2p−1 + ωβk−2p−3 + . . .+ ωpβk−2p ,

then we find the relation

Ck ∼= C2n+2p+1−k ∼=

⎛
⎝ ⊕

0≤j≤k−2p−1

P j

⎞
⎠ ⊕ F pΩk

Therefore, the maps

Ck 	→ (β0, . . . , βk−2p−1, αk)(12)

C2n+2p+1−k 	→ (β0, . . . , βk−2p−1, αk)(13)

are isomorphisms of R vector spaces. This gives another representation of
elements in Cj .

We now define a pair of maps (f, g) that relates C and F .

Definition 3.4. In terms of (10)-(11), we define

f : Cj → F j

Cj 	→
{

αj j ≤ n+ p,

−(αk +Πp∗ωpdαk−2p−1) j ≥ n+ p+ 1, j=2n+ 2p+ 1− k,

where Πp∗ωpdαk−2p−1 = ωp∂+βk−2p−1, and

g : F j → Cj

αk 	→
{
αk − θ2p+1L

−(p+1)dαk j ≤ n+ p, k = j,

− θ2p+1 ∗r αk j ≥ n+ p+ 1, k = 2n+ 2p+ 1− j,

where L−(p+1)dαk = ∂−βk−2p .

A pictorial description of the f and g maps is given in Figure 2 and
Figure 3, respectively. Alternatively, we can also express the maps in terms
of the decomposition in (12)-(13). We can write f : Cj → F j as

f : (β0, . . . , βk−2p−1, αk) 	→

⎧⎪⎨
⎪⎩
αk j ≤ n+ p, k = j

−(αk + ωp∂+βk−2p−1) j ≥ n+ p+ 1,

k = 2n+ 2p+ 1− j

(14)
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d Cn+p
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d Cn+p+1

−(αn+p+ωp∂+βn−p−1)
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. . .
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. . .
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F pΩk
−d−
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Figure 2: The map f : C → F . The maps are expressed in terms of the
decomposition in (10)-(11).

. . .
d Ck d

. . .
d Cn+p d Cn+p+1 d

. . .
d C2n+2p+1−k d

. . .

. . .
d+

F pΩk

αk−θ∂−βk−2p

d+

. . .
d+

F pΩn+p

ωpβn−p−θ∂−βn−p

−∂+∂−
F pΩn+p

−θβn−p

−d−
. . .

−d−
F pΩk

−θ∗rαk

−d−
. . .

Figure 3: The map g : F → C. In the maps above, we use the notation
βk−2p = L−pαk , and for the two maps in the middle, we have applied the

relation F pΩn+p = F pΩn+p = LpPn−p.

and g : F j → Cj as

g : αk 	→
{
(0, . . . ,−L−(p+1)dαk, αk) j ≤ n+ p, k = j

(0, . . . , 0,−αk) j ≥ n+ p+ 1, k = 2n+ 2p+ 1− j

(15)

Lemma 3.5. The maps f : C → F and g : F → C are chain maps, i.e.

dF f = f dC , dC g = g dF .

Proof. The lemma is proved by direct calculation. We first compute

dF fCj=

⎧⎪⎨
⎪⎩
d+αj j < n+ p

−ωp∂+∂−βj−2p j = n+ p

d−αk−ωp∂+∂−βk−2p−1 j =2n+ 2p+ 1− k > n+ p, k ≤ n+ p

(16)

To compute fdC , we consider first the case j < n+ p. We have

dCCj = (d+αj + ωp+1(∂−βj−2p + ∂+βj−2p−2) + . . .)
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+ ωp+1(αj−2p−1 + ωp+1βj+4p−3 + . . .)

− θ2p+1d(αj−2p−1 + ωp+1βj+4p−3 + . . .)

It then follows that f dC Cj = d+αj . When j = n + p, the above equation
becomes

dCCn+p = ωp+1(∂−βn−p + ∂+βn−p−2 + βn−p−1) +O(ω) . . .)

− θ2p+1d(αn−p−1 + ωp+1βn+3p−3 + . . .)

Notice that θ2p+1dαn−p−1=θ2p+1(∂+βn−p−1+O(ω))=θ2p+1∗r(ωp∂+βn−p−1+
O(ωp+1)). Hence, we obtain

f dCCn+p = −[−ωp∂+βn−p−1 + ωp∂+(∂−βn−p + βn−p−1)] = −ωp∂+∂−βn−p .

Now for j > n+ p, let j = 2n+ 2p+ 1− k where 0 ≤ k ≤ n+ p. Then

dCCj = ωn+2p+2−k(∂−βk−2p−1 + ∂+βk−2p−3 + βk−2p−2 +O(ω))

− θ2p+1L
n−k+1

[
(∂−βk + ∂+βk−2) + . . .

− ωp(∂−βk−2p + ∂+βk−2p−2) + . . .
]

This gives the desired result

f dC C2n+2p+1−k = −(−d−αk − ωp∂+βk−2p−2 + ωp∂+(∂−βk−2p−1 + βk−2p−2)

= d−αk − ωp∂+∂−βk−2p−1

The calculation for the g map is straightforward. It can be easily checked
that for αk ∈ Fk,

dC g(αk) = d+αk + θ2p+1∂+∂−βk−2p = g dF (αk) ,

and for αk ∈ F2n+2p+1−k,

dC g(αk) = θ2p+1∗r d−ᾱk = g dF (ᾱk)

It is straightforward to check that f g = idF . Hence, we may wonder
whether g f admits a chain homotopy to the identity on C.
Definition 3.6. We define G : Cj → Cj−1 as follows. For any η ∈ Ωj and
ξ ∈ Ωj−2p−1, let

G(η + θ ∧ ξ) := Lpξ + θL−(p+1)η.
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In terms of the decomposition (12)-(13), G : Cj → Cj−1 acts by sending
the element (β0, . . . , βk−2p−1, αk) to⎧⎪⎨

⎪⎩
(β0, . . . , βk−2p−2, ω

pβk−2p−1) j ≤ n+ p, k = j

(β0, . . . , βk−2p−1, αk) j = n+ p+ 1, k = n+ p

(β0, . . . , βk−2p−1, L
−pαk, 0) j > n+ p+ 1, k = 2n+ 2p+ 1− j

where by convention β−1 = 0.

Making use of G, we have the following result:

Lemma 3.7. The inclusion g : F → C and the maps f and G exhibit F as
a strong deformation retract of C:

f g = idF , idC −g f = dCG+GdC .

In particular, both f and g are quasi-isomorphisms and H∗(F) ∼= H∗(C).

Proof of Lemma 3.7. As mentioned, the proof of the first relation fg = idF
follows directly from the definition of the maps. For the second relation,
consider first for Cj=k with 0 ≤ k ≤ n+ p. For the lefthand side, we have

(gf)Ck = αk − θ2p+1∂−βk−2p

(idC −gf)Ck = (ωp+1βk−2p−2 + . . .)

+ θ2p+1(∂−βk−2p + αk−2p−1 + ωp+1βk−4p−3 + . . .)

For the righthand side, we have

GCk=ωp(αk−2p−1+ωp+1βk−4p−3+. . .) + θ2p+1(βk−2p−2+ωβk−2p−4+. . .)

dCGCk=ωpd(αk−2p−1+ωp+1βk−4p−3+. . .) + ωp+1(βk−2p−2+ωβk−2p−4+. . .)

− θ2p+1d(βk−2p−2 + . . .)

GdCCk=−ωpd(αk−2p−1 + ωp+1βk+4p−3 + . . .)

+θ2p+1

[
∂−βk−2p+d(βk−2p−2 + . . .)+(αk−2p−1+ωp+1βk+4p−3+. . .)

]
which results in

(dCG+GdC)Ck = ωp+1(βk−2p−2 + ωβk−2p−4 + . . .)

+ θ2p+1(∂−βk−2p + αk−2p−1 + ωp+1βk+4p−3 + . . .)

which matches exactly with the lefthand side.
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We now check the case for Cj=2n+2p+1−k with 0 ≤ k ≤ n + p. For the

lefthand side, we have

gfC2n+2p+1−k = θ2p+1 ∗r (αk + ωp∂+βk−2p−1)

(idC −gf)C2n+2p+1−k = ωn+2p+1−k(αk−2p−1 + ωp+1βk−4p−3 + . . .)

+ θ2p+1 ∗r (−ωp∂+βk−2p−1 + ωp+1βk−2p−2 + . . .)

For the righthand side, we have

GC2n+2p+1−k = ωn−k+p(αk + ωp+1βk−2p−2 + . . .)

+ θ2p+1ω
n−p+k(αk−2p−1 + ωp+1βk−4p−3 + . . .)

dCGC2n+2p+1−k = ωn−k+pd(αk + ωp+1βk−2p−2 + . . .)

+ ωn−k+2p+1(αk−2p−1 + ωp+1βk−4p−3 + . . . )

− θ2p+1ω
n+p−kd(αk−2p−1 + ωp+1βk−4p−3 + . . .)

dCC2n+2p+1−k = ωn+2p+1−k
[
d(αk−2p−1 + ωp+1βk−4p−3+. . .)−∂+βk−2p−1

]
+ ωn−k+p+1(ωp+1βk−2p−2 + . . .)

− θ2p+1ω
n−kd(αk + ωp+1βk−2p−2 + . . .)

GdCC2n+2p+1−k =−ωn−k+pd(αk + ωp+1βk−2p−2 + . . .)

+ θ2p+1ω
n−k+p+1(βk−2p−2 + . . .)

+ θ2p+1ω
n+p−k

[
d(αk−2p−1 + ωp+1βk−4p−3+ . . .)

− ∂+βk−2p−1

]
Note that in the righthand side of the third equation, we have used the

property that Lp+1∗rαk = 0 and also added the term −ωn+2p+1−k∂+βk−2p−1

since it is identically zero. The above equations give the result

dCG+GdC = ωn−k+2p+1(αk−2p−1 + ωp+1βk−4p−3 + . . . )

+ θ2p+1ω
n−k

[
−ωp∂+βk−2p−1 + (ωp+1βk−2p−2 + . . .)

]
which is exactly the lefthand side.

Though f and g are chain maps, they are clearly not compatible with the

product structure of the algebras C and F . For instance, it is not difficult

to see that for generic a1, a2 ∈ F , g m2
F (a1 ⊗ a2) �= m2

C(ga1 ⊗ ga2). So

we treat the cdga C as an A∞-algebra. Recall that a sequence of maps
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gl : F⊗l → C[1 − l] with l = 1, 2, . . . is called an A∞ map if the following

equations are satisfied (see for example Section 3.4 of [12]):

∑
r+s+t=n

(−1)r+st gl(1⊗r ⊗ms
F ⊗ 1⊗t) =

∑
i1+...+iq=n

(−1)umq
C(g

i1 ⊗ . . . giq), n ≥ 1

(17)

where l = r + 1 + t and the sign on the right-hand side is given by

u = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + . . .+ 2(iq−2 − 1) + (iq−1 − 1).

Theorem 3.8. The sequence of maps gl : F⊗l → C[1− l] given by

1. g1 = g,

2. g2 = −θ2p+1L
−(p+1)m2

C(g
1 ⊗ g1),

3. gl = 0 for all l ≥ 3.

defines an A∞-algebra map F → C.

We will give the proof of this theorem in the next subsection. For now,

we observe the following:

Proof of Theorem 1.1. Since the map g is an quasi-isomorphism, Theorem 3.8

gives the equivalence Fp � Cone(ωp+1) as A∞-algebras. Moreover, one has

an equivalence of cdgas Cone(ωp+1) � Ω(Ep) from Theorem A.1 of the

Appendix, which of course is also an equivalence of A∞-algebras. Now it

remains to prove that the maps gl are natural with respect to immersions

f : M → M ′ with dimM = dimM ′ and f∗ω′ = ω. This is clear for the

definition of g = g1 in Definition 3.4, which is compatible with pull-back of

forms, and likewise for g2 as defined in Theorem 3.8. (Note that the dimen-

sion restriction and the f∗ω′ = ω condition guarantee that f∗(L′α) = Lf∗α,
and likewise f∗(∗′rα) = ∗rf∗(α).)

3.3. Proof of Theorem 3.8

For the proof, we will make use of a few useful formulas gather together in

Lemma 3.9. Below, the bracket [, ] denotes the standard graded commutator.

Lemma 3.9. Let η, ξ be forms on M with |ξ| = |η|− (2p+1). The following

hold:
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1.

[m1
C , θL

−(p+1)](η + θξ) =

ωp+1L−(p+1)η − θ
(
[d, L−(p+1)]η − L−(p+1)ωp+1ξ

)
.

2.

[d, L−(p+1)]η =

{
−L(p+1)dΠpη |η| ≤ n+ p

Πp∗dL−(p+1)η |η| > n+ p

3. The g2 operation on any a1, a2 ∈ F can be expressed as

g2(a1, a2) =

{
−θL−(p+1)(a1 ∧ a2) |a1|, |a2| < n+ p

0 otherwise

Proof of Lemma 3.9. (1): We have

m1
C(θL

−(p+1))(η + θξ) = m1
C(θL

−(p+1)η) = ωL−(p+1)η − θdL−(p+1)η

and

θL−(p+1)m1
C(η + θξ) = θL−(p+1)(dη + ωξ − θdξ)

= θ(L−(p+1)dη + L−(p+1)ωξ).

The result follows.

(2): Decomposing

η = αk + ωp+1βk−2p−2 + . . .

we have that

dL−(p+1)η = d(βk−2p−2+. . .) = ∂+βk−2p−2+ω(∂−βk−2p−2+∂+βk−2p−4)+. . .

while

L−(p+1)dη = L−(p+1)(. . .+ ωp+1(∂−βk−2p + ∂+βk−2p−2) + . . .)

so we have

[d, L−(p+1)]η = −∂−βk−2p

which is equal to −L−(p+1)dΠpη by definition of Πp.
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When |η| > n+ p, let |η| = n+ p+ r, with r > 0. Then,

(dL−(p+1) − L−(p+1)d)η

= (dL−(p+1) − L−(p+1)d)(ωp+rβn−p−r + ωp+r+1βn−p−r−2 + . . .)

= d(ωr−1βn−p−r + ωrβn−p−r−2 + . . .)

− L−(p+1)(ωp+r+1(∂−βn−p−r + ∂+βn−p−r−2) + . . .)

= ωr−1∂+βn−p−r

which is what we claimed.
(3): By definition, we have that g2 = −θL−(p+1)m2

C(g
1 ⊗ g1). Note that

if any term of m2
C(g

1 ⊗ g1) has a factor of θ in it, the operation θL−(p+1)

renders it zero since θ ∧ θ = 0 in C. On the other hand, g1a for a ∈ F has a
term without a θ only when |a| < n+ p.

Proof of Theorem 3.8. We need to show that the sequence of maps gl :
F⊗l → C[1− l] satisfy the A∞ map condition of (17)∑
r+s+t=n

(−1)r+st gl(1⊗r ⊗ms
F ⊗ 1⊗t) =

∑
i1+...+iq=n

(−1)umq
C(g

i1 ⊗ . . . giq), n ≥ 1

where l = r + 1 + t and the sign on the right-hand side is given by

u = (q − 1)(i1 − 1) + (q − 2)(i2 − 1) + . . .+ 2(iq−2 − 1) + (iq−1 − 1).

Noting that mk
C = 0 for k ≥ 3 and mk

F = 0 for k ≥ 4, and further, that
gk = 0 for k ≥ 3, (17) becomes the following four equations:

m1
C g

1 =g1m1
F(n=1)

m1
C g

2 + g2(m1
F ⊗ 1 + 1⊗m1

F ) +m2
C(g

1 ⊗ g1) =g1m2
F(n=2)

g2(1⊗m2
F −m2

F ⊗ 1) +m2
C(g

1 ⊗ g2 − g2 ⊗ g1) =g1m3
F(n=3)

g2(1⊗m3
F +m3

F ⊗ 1) +m2
C(g

2 ⊗ g2) =0 .(n=4)

The n = 1 equation. We verified g = g1 is a chain map in the proof of
Lemma 3.5.

The n = 2 equation. We first simplify the expression involving g2

terms:

m1
Cg

2 + g2(m1
F ⊗ 1 + 1⊗m1

F )

(18)

= m1
C(−θL−(p+1)m2

C(g
1⊗ g1))+(−θL−(p+1)m2

C(g
1⊗ g1))(m1

F ⊗ 1+1⊗m1
F )
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= −m1
C(θL

−(p+1))m2
C(g

1⊗ g1)+(−θL−(p+1)m2
C)(m

1
C ⊗ 1 + 1⊗m1

C)(g
1⊗ g1)

= −m1
C(θL

−(p+1))m2
C(g

1 ⊗ g1)− (θL−(p+1)m1
Cm

2
C)(g

1 ⊗ g1)

= −
(
m1

C(θL
−(p+1)) + θL−(p+1)m1

C

)
m2

C(g
1 ⊗ g1)

= −[m1
C , θL

−(p+1)]m2
C(g

1 ⊗ g1) .

We have used that g1 is a chain map, and that the operations m1
C and m2

C
satisfy the Leibniz rule. So the left-hand side of the n = 2 equation becomes

m1
Cg

2 + g2(m1
F ⊗ 1+1⊗m1

F ) +m2
C(g

1 ⊗ g1)(19)

=
(
−[m1

C , θL
−(p+1)] + 1

)
m2

C(g
1 ⊗ g1) .

Let a1, a2 be elements of F . Let us write

m2
C(g

1 ⊗ g1)(a1 ⊗ a2) = η + θ ξ.

Then, by Lemma 3.9(1), we find(
m1

Cg
2 + g2(m1

F ⊗ 1 + 1⊗m1
F ) +m2

C(g
1 ⊗ g1)

)
(a1 ⊗ a2)

=
(
−[m1

C , θL
−(p+1)] + 1

)
(η + θξ)

= (1− ωp+1L−(p+1))η + θ
(
[d, L−(p+1)]η + (1− L−(p+1)ωp+1)ξ

)

= Πpη + θ
(
[d, L−(p+1)]η +Πp∗ξ

)
.

(20)

The expression for η and ξ are found by calculating m2
C(g

1 ⊗ g1)(a1 ⊗ a2)
explicitly. Recalling the definitions of g1 in Definition 3.4, we find that
m2

C(g
1 ⊗ g1)(a1 ⊗ a2) equals⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1∧a2−θ(L−(p+1)da1∧a2+(−1)a1a1∧L−(p+1)da2) |a1|, |a2| ≤ n+ p

−θ((−1)a1a1 ∧ ∗ra2) |a1|≤n+p, |a2|>n+p

−θ(∗ra1) ∧ a2 |a1|>n+p, |a2|≤n+p

0 |a1|, |a2| > n+ p.

We can now read off the expression for η and ξ and substitute them into
(20). In the case of |a1|, |a2| ≤ n, we have

η = a1 ∧ a2 , ξ = −L−(p+1)da1 ∧ a2 − (−1)a1a1 ∧ L−(p+1)da2 .(21)
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Using Lemma 3.9(2), we find in this case that

Πpη + θ
(
[d, L−(p+1)]η +Πp∗ξ

)

=

⎧⎪⎨
⎪⎩
Πp(a1 ∧ a2)− L−(p+1)dΠp(a1 ∧ a2) |a1|+ |a2| ≤ n+ p

θΠp∗[dL−(p+1)(a1 ∧ a2) |a1|+ |a2| > n+ p

−(L−(p+1)da1) ∧ a2 − (−1)a1a1 ∧ L−(p+1)da2
]

The other three cases in (20) are straightforward. All in all, we find that the
left-hand side of the n = 2 condition matches exactly the right-hand side
(using the definition of m2

F in Section 2.3) given by

g1m2
F (a1 ⊗ a2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Πp(a1 ∧ a2)− θL−(p+1)dΠp(a1 ∧ a2) |a1|+ |a2| ≤ n+ p

−θΠp∗(−dL−(p+1)(a1 ∧ a2) |a1|+ |a2| > n+ p

+L−(p+1)da1∧a2 + (−1)a1a1∧L−(p+1)da2) with |a1|, |a2| ≤ n+ p

−θΠp∗((−1)a1a1 ∧ ∗ra2) |a1|≤ n+ p, |a2|>n+ p

−θΠp∗(∗ra1 ∧ a2) |a1|> n+ p, |a2|≤n+ p

0 |a1|, |a2| > n+ p

The n = 3 equation. Let a1, a2, a3 be elements of F . Consider first the
left-hand side of the equation:

[g2(1⊗m2
F −m2

F ⊗ 1) +m2
C(g

1 ⊗ g2 − g2 ⊗ g1)](a1 ⊗ a2 ⊗ a3) .

Notice that each term vanishes unless |a1|, |a2|, |a3| ≤ n + p. For the first
term, this is due to Lemma 3.9(3). For the second term, since the g2 map
contains a θ, a θ in the g1 map term would result in a null m2

C . This forces
the element which g1 acts on to have degree less than or equal to n + p.
Hence, we only need to consider the case where |a1|, |a2|, |a3| ≤ n + p. We
note that this is a necessary condition for m3

F (a1⊗a2⊗a3) to be non-trivial.
For the first term, we have

g2(1⊗m2
F −m2

F ⊗ 1)(a1 ⊗ a2 ⊗ a3)

= −θL−(p+1)m2
C
[
a1 ⊗ (m2

F (a2 ⊗ a3))−m2
F (a1 ⊗ a2)⊗ a3

]
= −θL−(p+1) [a1 ∧Πp(a2 ∧ a3)−Πp(a1 ∧ a2) ∧ a3]

= −θL−(p+1)Lp+1
[
a1 ∧ L−(p+1)(a2 ∧ a3)− L−(p+1)(a1 ∧ a2) ∧ a3

]
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where in the third line, we omitted the term including θ in the m2
F , and in

the third line, we used the identity Πp = 1− Lp+1L−(p+1).
For the second term, we have

m2
C(g

1 ⊗ g2 − g2 ⊗ g1)(a1 ⊗ a2 ⊗ a3)

= m2
C

[
g1 ⊗ (−θL−(p+1))m2

C(g
1 ⊗ g1)

− (−θL−(p+1))m2
C(g

1 ⊗ g1)⊗ g1
]
(a1 ⊗ a2 ⊗ a3)

= −θ
[
a1 ∧ L−(p+1)(a2 ∧ a3)− L−(p+1)(a1 ∧ a2) ∧ a3

]
Combining the two expressions, we find for the left-hand side of the equation

[g2(1⊗m2
F −m2

F ⊗ 1) +m2
C(g

1 ⊗ g2 − g2 ⊗ g1)](a1 ⊗ a2 ⊗ a3)

= −θ(1− L−(p+1)Lp+1)
[
a1 ∧ L−(p+1)(a2 ∧ a3)− L−(p+1)(a1 ∧ a2) ∧ a3

]
= −θΠp∗

[
a1 ∧ L−(p+1)(a2 ∧ a3)− L−(p+1)(a1 ∧ a2) ∧ a3

]
= g1m3

F (a1 ⊗ a2 ⊗ a3)

The n = 4 equation. This equation is satisfied because every term is
identically zero. To wit:

• g2(1⊗m3
F +m3

F ⊗ 1) is zero for the following reason: m3
F is non-zero

only when m3
F outputs an element of degree ≥ n + p + 1. Thus, by

Lemma 3.9(3), g2(1⊗m3
F ) and g2(m3

F ⊗ 1) are both identically zero.
• By definition, the output of g2 involves a θ, an odd degree form. Thus,
m2

C(g
2 ⊗ g2) vanishes since it involves the wedge product of θ with

itself.

Notation: To simplify notation, we will also refer the family of A∞
maps {gl} as g in the sections following.

4. Calabi-Yau structure on F

What we call a Calabi-Yau structure follows the terminology of [4], though
this notion has also been called a proper Calabi-Yau structure [7], a right
Calabi-Yau structure [3], and a “symplectic structure on a formal pointed
dg-manifold” [13].2

2This is to contrast it with a different notion of Calabi-Yau-ness, which has
been called a smooth Calabi-Yau structure [7] and a left Calabi-Yau structure [3]
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Definition 4.1. An A∞-algebra A over a base ring k, together with a bi-
linear map

〈 , 〉 : A⊗A → k[−D]

is called Calabi-Yau of dimension D if

• The pairing is non-degenerate on cohomology,
• 〈a, b〉 = (−1)|a||b|〈b, a〉, and
• 〈 , 〉 satisfies the cyclic symmetry equation
(22)
〈ml(a1, . . . , al), al+1〉 = (−1)l+|a1|(|a2|+...+|al+1|)〈ml(a2, . . . , al+1), a1〉.

Example 4.2. Let X be a compact oriented manifold of dimension D.
Then the cdga Ω(X) can be given the structure of a Calabi-Yau algebra of
dimension D by the following pairing:

η ⊗ ξ 	→
∫
X
η ∧ ξ.

Note that if η and ξ do not have complementary degree, the integral vanishes.

Remark 4.3. Calabi-Yau algebras were first defined by Kontsevich to for-
malize properties of DbCoh of a smooth Calabi-Yau variety. It is a the-
orem of Costello [4] that Calabi-Yau algebras, and Calabi-Yau categories
more generally, define a topological CFT. For further discussion, see also
Ginzburg [8], and the work of Brav-Dyckerhoff [3] generalizing the notion to
relative Calabi-Yau structures.

If our symplectic manifold M is compact and [ω] is an integral class
in cohomology, then C is also a Calabi-Yau algebra. This is because the
mapping cone Cone(ωp+1) can be identified (as a cdga) with the minimal
model for the the cdga Ω(Ep)—the differential forms on the total space Ep

of the sphere bundle associated to ωp+1. (See Theorem A.1.) Furthermore,
since ω is symplectic, Ep comes with an orientation. If M is compact, so is
E, hence Example 4.2 implies that Ω(Ep) � C is Calabi-Yau.

The algebra equivalence of C and F however holds for all ω regardless
of its integrality. Since the Calabi-Yau property is algebraic in nature, it is

elsewhere. A category or algebra may be smoothly Calabi-Yau but not properly
Calabi-Yau and vice versa; the distinction is important, for instance, as these dif-
ferent structures gives rise to two-dimensional field theories that are only partially
defined, and the class of cobordisms on which the field theories are defined differs
by the type of Calabi-Yau-ness one equips onto the category. We refer the reader
to Section 6 of [7] for a more thorough account.
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reasonable to expect that whether F exhibits the Calabi-Yau property or
not should not depend on the integrality of [ω]. Indeed, we can prove directly
on M that F is a Calabi-Yau algebra for all compact (M2n, ω).

To define the pairing on F , we make use of the map Fp → R[−2(n +
p)− 1)] given by

F pΩ0 ∗r−→ Ω2n(M)

∫
M−−→ R.

For degree reasons, this map is zero on all other degree components of F .
The map gives us a natural pairing for F .

Definition 4.4 (The Calabi-Yau structure on F). Define the pairing on F
by the composition

F ⊗ F

〈 , 〉

m2

F∫
M

∗r

R[−2(n+ p)− 1)].

Explicitly, for a1 ∈ F pΩk and a2 ∈ F pΩk,
(23)

〈a1, a2〉 =
∫
M

∗r[m2(a1, a2)] =

∫
M
(−1)ka1∧∗r a2 =

∫
M

∗r a2 ∧a1 = 〈a2, a1〉.

Remark 4.5. Note that m2 is already graded-commutative, so the second
condition of Definition 4.1 is automatically satisfied. It is also worth noting
that if a1 ∈ F pΩk1 and a2 ∈ F pΩk2 , we must have that k2 = 2n+ 2p+ 1−
k1 if 〈a1, a2〉 is non-zero. In this case, |a1||a2| = 0 mod 2, and therefore,
〈a1, a2〉 = 〈a2, a1〉 as consistent with (23).

The pairing (23) defined on F is in fact compatible to the Calabi-Yau
pairing 〈 , 〉C on C induced from Ω(E) when ω is integral. In this case, we
have the following commutative diagram:

F ⊗ F
−〈 , 〉

g⊗ g

C ⊗ C
〈 , 〉C

R[−2(n+ p)− 1]

To verify this, consider αk ∈ Fk and α′
k ∈ F2n+2p+1−k of complementary

degrees. Recalling the definition of the chain map g in Definition 3.4, we
have
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〈gαk, gα
′
k〉C =

∫
Ep

(αk − θ2p+1L
−(p+1)dαk) ∧ (−θ2p+1 ∗r α′

k)

= −
∫
Ep

θ2p+1 ∧ (−1)kαk ∧ ∗rα′
k

= −
∫
M
(−1)kαk ∧ ∗rα′

k = −〈αk, α
′
k〉

where in the last second line, we noted that the equivalence of Cone(ωp+1) �
Ω(Ep) is compatible with the Thom isomorphism for differential forms;
namely, θ represents the Thom class, and for any differential form A on
M , ∫

Ep

θ2p+1 ∧A =

∫
M

A.(24)

We now show that pairing on F satisfy the Calabi-Yau algebra conditions
for any symplectic structure.

Theorem 4.6. Definition 4.4 endows Fp
• with a Calabi-Yau structure of

dimension 2(n+p)+1.

Proof. Non-degeneracy. The non-degeneracy of the pairing (23) on coho-
mology was previously shown in two special cases: (i) for p = 0 and k �= n in
Proposition 3.7 of [18]; (ii) for k = n+ p in Proposition 3.26 of [17]. We will
give the argument here for the remaining cases of k < n + p (which follow
the same techniques as the previous cases).

We make use of a compatible triple, (ω, J, g), introducing a compatible
almost complex structure, J , and the associated Riemannian metric, g, on
(M2n, ω). Since the filtered cohomologies F pH(M) are associated with el-
liptic complexes (see Theorem 2.4), there is an elliptic Laplacian associated
with each cohomology. By Hodge theory, there then exists a unique harmonic
representative for each cohomology class. The harmonic representative for
k < n+ p satisfies the following:

d+ a1 = 0 , d− a2 = 0 ,

d∗+ a1 = 0 , d∗− a2 = 0 .

for a1 ∈ F pΩk and a2 ∈ F pΩk and the adjoint here is defined with respect
to the standard inner product on differential forms

(ηk, ξk) =

∫
M

ηk ∧ ∗ ξk
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where ηk, ξk ∈ Ωk(M) and, ∗ , the Hodge star operator. Let us recall that

the action of the Hodge star on the Lefschetz decomposed element, ωrβs,

where βs ∈ P s(M), is given by (see for example [17])

∗ ωrβs = (−1)s(s+1)/2 r!

(n− r − s)!
ωn−r−sJ βs

where

J =
∑
p,q

(
√
−1 )p−q Πp,q

with Πp,q defined to be the projection of a form into its (p, q) components

with respect to the almost complex structure J . Introducing further the

operator R defined to be

R(ωrβs) := (−1)s(s+1)/2 r!

(n− r − s)!
ωrβs ,

we then have the relation

∗ = ∗rRJ .(25)

We can now express {d+, d−} and their adjoints acting on the space of p-

filtered forms, F pΩ(M), as follows:

d+ = Πp d , d− = ∗r d ∗r ,
d∗+ = − ∗ d ∗ , d∗− = −RJ dRJ .

Now, if a1 ∈ F pΩk(M) is a harmonic representative of F pHk
+(M), then

d−(RJ a1) = ∗r d ∗ a1 = 0 , that is, RJ (a1) represents a cohomology class

of F pHk
−(M). Similarly, if a2 ∈ F pΩk(M) is a harmonic representative of

F pHk
−(M), then RJ (a2) represents a cohomology class of F pHk

+(M). Fi-

nally, to prove non-degeneracy of the pairing (23) on cohomology, choose

a1 to be a non-trivial harmonic representative of F pHk
+(M). Then setting

a2 = RJ a1, we have

〈a1, a2〉 =
∫
M
(−1)ka1 ∧ ∗r a2 = (−1)k

∫
M

a1 ∧ ∗rRJ a1 = (−1)k‖a1‖2 �= 0 ,
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having applied (25). Similarly, for a2 a non-trivial harmonic representative
of F pHk

−(M), we take a1 = RJ a2 and this results in

〈a2, a1〉 =
∫
M
∗r a2 ∧ a1 =

∫
M
∗r a2 ∧RJ a2 =

∫
M
a2 ∧ ∗rRJ a2 = ‖a2‖2 �= 0 ,

thereby proving the non-degeneracy of the pairing on F pHk
±(M) for k <

n+ p.
Symmetry. This is Remark 4.5.
Cyclic symmetry for l = 1. There are two cases that we need to

consider. First, fix a1 ∈ F pΩk−1, a2 ∈ F pΩk and let k ≤ n + p. Then the
cyclic condition (22) becomes:

〈m1a1, a2〉 =
∫
M

∗r a2 ∧ d+a1

=

∫
M

∗r a2 ∧ da1(26)

= (−1)k+1

∫
M

d∗ra2 ∧ a1(27)

= (−1)k
∫
M

∗r(−d−)a2 ∧ a1 = (−1)1+|a1||a2|〈m1a2, a1〉

Here, (26) holds because d+a1 = Πpda1 = da1 − Lp+1L−(p+1)da1, and since
a2 is a p-filtered form, Lp+1∗ra2 = 0. (27) follows from integration by parts.
Note also that |a2| = 2(n+ p) + 1− k and therefore |a1||a2| = k mod 2.

For the second case, let a1, a2 ∈ F pΩn+p. Then,

〈m1a1, a2〉 =
∫
M

∗r(−dΛd)a1 ∧ a2 =

∫
M
(−dΛd)a1 ∧ ∗ra2

= (−1)n+p+1

∫
M

Λda1 ∧ d∗ra2 = (−1)n+p+1

∫
M

da1 ∧ Λd∗ra2

=

∫
M

a1 ∧ dΛd∗ra2 = (−1)1+(n+p)2
∫
M

∗r(−dΛd)a2 ∧ a1

= (−1)1+|a1||a2|〈m1a2, a1〉

where we have noted that ∂+∂− = dΛd which commutes with ∗r, and also,
for any η ∈ Ωk+2 and η′ ∈ Ω2n−k,∫

M
Λη ∧ η′ =

∫
M

η ∧ Λη′(28)
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Cyclic symmetry for l = 2. The relation is

〈m2(a1, a2), a3〉 = (−1)|a1|(|a2|+|a3|)〈m2(a2, a3), a1〉
= 〈a1,m2(a2, a3)〉

Hence, we need to show∫
M

∗r
[
m2

(
a1,m

2(a2, a3)
)
−m2

(
m2(a1, a2), a3

)]
= 0(29)

for |a1| + |a2| + |a3| = 2n + 2p + 1. This follows from integrating the A∞
relations for m3. Explicitly, the A∞ relation relevant here is

m2(1⊗m2)−m2(m2⊗1) = m1(m3)+m3(m1⊗1⊗1+1⊗m1⊗1+1⊗1⊗m1).

Plugging in elements a1, a2, a3, the terms involving m2 on the left-hand side
are precisely those in (29). So we can show instead that∫
M
∗r
{
[m1(m3)+m3(m1⊗ 1⊗ 1+1⊗m1⊗ 1+1⊗ 1⊗m1)](a1⊗ a2 ⊗a3)

}
=0.

Notice that the first term vanishes since m3(a1, a2, a3) ∈ F pΩ1 and therefore∫
M

∗r
[
m1m3(a1, a2, a3)

]
= −

∫
M

∗r d−[m3(a1, a2, a3)]

= −
∫
M

d
[
∗rm3(a1, a2, a3)

]
= 0

by Stokes’s Theorem. For the remaining terms, the only possible non-trivial
contribution of the integrand takes the form

d+a1 ∧ L−(p+1)(a2 ∧ a3)− L−(p+1)(d+a1 ∧ a2) ∧ a3

+ (−1)i
[
a1 ∧ L−(p+1)(d+a2 ∧ a3)− L−(p+1)(a1 ∧ d+a2) ∧ a3

]
(30)

+ (−1)i+j
[
a1 ∧ L−(p+1)(a2 ∧ d+a3)− L−(p+1)(a1 ∧ a2) ∧ d+a3

]
where |a1|, |a2|, |a3| < n + p. In fact, each term above is zero. For instance,
consider the first term in (30). To take account of the L−(p+1) operator, we
can express

αj ∧ αk = ωn+2p+1−i ∧ ηi−2p−1
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where ηi−2p−1 ∈ Ωi−2p−1 and αl ∈ F pΩl. In above, we have used the fact
that i+ j + k = 2n+ 1 and i < n+ p. Then, we have

d+αi ∧ L−(p+1)(αj ∧ αk) = ωn+p−i ∧ d+αi ∧ ηi−2p−1 = 0

by the p-filter condition Ln+p−i(F pΩi+1) = 0. Similar computations for the
other terms show that all the terms in (30) vanish identically.

Cyclic symmetry for l = 3. This follows directly from the definition
of m3 and applying (28). Since ml = 0 for l ≥ 4, this finishes the proof.

Remark 4.7. To any A∞-algebra with a Calabi-Yau structure, one can
associate a two-dimensional topological conformal field theory [4]. The action
of this field theory consists of a standard kinetic term and a potential term
Φ. The potential term is determined by the A∞ structure and takes the form
(see, for example [10])

Φ(x) =

∞∑
l=1

1

l + 1
〈ml(x, x, . . . , x), x〉 ,

where x is a formal sum of elements of the A∞-algebra. For instance, for
the de Rham cdga in dimension D = 3, with x = α1, Φ(x = α1) is the
Chern-Simon functional

Φ(x) =
1

2
〈dα1, α1〉+

1

3
〈α1 ∧ α1, α1〉 .

It is also straightforward to write down the potential for F . For example, in
dimension four and with x = β1 + β2, where βi ∈ F 0Ωi(M), one finds

Φ(x) = 〈m2(β2, β2), β1〉+
1

2
〈m3(β1, β1, β2), β2〉 .

As far as we are aware, such a field theory with primitive forms as fields has
not heretofore appeared in the literature.

5. Homology and intersection when ω is integral

In this section, we will assume ω ∈ H2(M,Z) so that Ep is a smooth man-
ifold. On Ep, there is the standard homology and intersection theory on it.
The equivalence of Ω(Ep) � Fp(M) suggests that there should also be a dual
homology and intersection theory on (M,ω), and one that is distinctively
symplectic in nature. Here, we will provide a description of what such a the-
ory should look like on M . For simplicity, we will focus on the p = 0 case,
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and in this case, the objects involved turn out to be coisotropic and isotropic
spaces on M . Due to its close association with forms, we will use the lan-
guage of currents to describe these spaces. Admittedly, our description here
is somewhat heuristic in nature and will require further investigations which
we plan to pursue in the future.

Since p will be taken to be zero for the most part, we will drop the
subscript label in Ep and Fp for the rest of this section.

5.1. Recollections on currents

Recall that the collection Dm of m-dimensional currents is defined to be the
weak R-linear dual to the space of compactly supported smooth m-forms on
a manifold of dimension d. Given a current ρ, its boundary ∂ρ is defined by
dualizing the de Rham differential:

∂ρ(η) := ρ(dη).

A form of the de Rham theorem (see, for example [9]) states that the result-
ing chain complex of currents

0 → Dd
∂−→ Dd−1

∂−→ . . .
∂−→ D0 → 0 . . .

has homology isomorphic to singular homology, provided that the manifold
M is connected, compact, and oriented:

H∗(D) ∼= H∗(M ;R).

Remark 5.1. Since Dm is a very large vector space, one can often restrict to
smaller subspaces while still retaining the same homology. For example, one
can show that currents that are represented by Lipschitz neighborhood re-
tracts, and whose ∂ are also represented by such, have the same cohomology.
(This follows by observing that both theories satisfy the Eilenberg-Steenrod
axioms; see for instance Federer [6].)

Example 5.2. Note that oriented, compact m-manifolds X ⊂ M (possibly
with boundary) define distributions by sending η 	→

∫
X η. We also note that,

when M is compact and oriented of dimension d, any (d−m)-form ρ defines
a linear map by η 	→

∫
M η ∧ ρ.

Indeed, given any X, one can define its dual current to be represented
by a distributional form ρX such that∫

X
η =

∫
M

η ∧ ρX .
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Here, ρX is a differential form with coefficients in distributions; the distri-
bution coefficient is the Dirac delta function supported on X.

5.2. Homology of primitive currents

Extending to currents the definition of a primitive form defined in Section
2.1, we will call a current primitive if it vanishes under the interior prod-
uct with the Poisson bivector field.. Coisotropic and isotropic subspaces are
related to primitive currents by the following:

Lemma 5.3 (Section 4 of [17]). Let N ⊂ M be an embedded, compact,
oriented submanifold with dual current ρN . Then

(i) ρN is primitive if and only if N is coisotropic;
(ii) ∗rρN is primitive if and only if N is isotropic.

To see how coisotropic and isotropic subspaces both arise in the p = 0
case, we take the cochain complex of (9)

F =
(
P 0 ∂+−→ P 1 ∂+−→ . . .

d+−→ Pn −∂+∂−−−−−→ P̄n −∂−−−−→ P̄n−1 −∂−−−−→ . . .
−∂−−−−→ P̄ 0

)
and make a modification by replacing the “bar” elements F̄ 0Ωk = P̄ k by
∗rP k = ωn−kP k. This results in the following complex:

F̃=
(
P 0 ∂+−→ P 1 ∂+−→ . . .

∂+−→ Pn −∂+∂−−−−−→ ω0Pn −d−−→ ω1Pn−1 −d−−→ . . .
−d−−→ωnP̄ 0

)
.

(31)

Note that ∗r ∂− ∗r = d , which is just the standard exterior derivative when
acting on ωn−kP k forms.

Following the intuition of Lemma 5.3, the first half of F̃ can be roughly
thought of as dual to a complex of coisotropic chains C•; the second half
is dual to a complex of isotropic chains I• since ∗r(ωn−kP k) = P k. In all,
the cochain complex (31) suggests that we seek a putative chain complex of
coisotropic and isotropic currents:

C2n
∂′
−→ C2n−1

∂′
−→ . . .

∂′
−→ Cn

∂′′
−→ In

∂−→ In−1
∂−→ . . .

∂−→ I0.(32)

Here, Ck is the vector space generated by currents supported by coisotropic
chains of dimension k, while Ik is generated by currents supported on isotro-
pic chains of dimension k, with Cn = In = L being the space of Lagrangian
currents. The boundary maps {∂, ∂′′, ∂′} then have the following interpreta-
tions:
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1. ∂ is dual to the exterior derivative, d, and therefore ∂ is just the stan-
dard boundary map. Note that the boundary of an isotropic subspace
is also isotropic.

2. ∂′′ is dual to ∂+∂− = d ◦ ∂−. This is a “boundary” operator mapping
Lagrangians to Lagrangians. One way to understand ∂′′ is to study
first the dual of the operator ∂−. Strikingly, the differential operator
∂− lowers the degree of a current by one and so its dual would need
to increase the dimension of a chain by one. Such a novel operation
can be motivated by noting that for a degree n primitive current, βn,
dβn = ω ∧ (∂−βn) , which dualizes to

∂L = H ∩ L+ ,

with L being the Lagrangian chain dual to βn, H the (2n− 2)-dimen-
sional symplectic submanifold dual to ω , and L+ being dual to ∂−βn .3

In words, L+ is an (n + 1)-dimensional chain that intersects with H
along the boundary of L. Altogether, ∂′′ should correspond to the com-
position of L → L+ → ∂L+, i.e. it maps L to the boundary of L+.

3. ∂′ is dual to ∂+ = Π0◦d where Π0 : Ωk → P k is the projection operator
onto the primitive component (see (6)). This suggests that ∂′ = π0 ◦ ∂
where π0 heuristically “projects” onto the coisotropic component of
the boundary. For a better intuition, we note that for βk, a primitive
k-current, dβk = ∂+βk + ω ∧ (∂−βk) . This dualizes to

∂′C = ∂C −H ∩ C+

where C is the (2n− k)-dimensional coisotropic chain dual to βk, and
C+ is the (2n − k + 1)-dimensional coisotropic chain dual to ∂−βk.
Hence, the projection π0 effectively removes point x ∈ ∂C whose tan-
gent space Tx(∂C) ⊂ TxH.

The chain complex (32) implies several distinct homologies for isotropic
and coisotropic chains on (M2n, ω). For isotropic chains, we have

HI
k(M) :=

ker(∂ : Ik → Ik−1)

im(∂ : Ik+1 → Ik)
, 0 ≤ k ≤ n− 1 ,

3The existence of a symplectic submanifold dual to [ω] an integral class is cur-
rently known only for [kω] where k is a sufficiently large integer [5].
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associated to the right hand side of (32). This is just standard homology

but with objects restricted to isotropic chains. For coisotropics chains on

left hand side of (32), we have the homology:

HC
2n−k(M) :=

ker(∂′ : C2n−k → C2n−k−1)

im(∂′ : C2n−k+1 → C2n−k)
, 0 ≤ k ≤ n− 1 .

Of note, coisotropic elements in the homology can have boundary, but the

boundary may not have any coisotropic component. Lastly, at the center of

chain complex (32), we have two homologies involving Lagrangians:

HI
n(M) :=

ker(∂ : Ln → In−1)

im(∂′′ : Ln → Ln)
,

HC
n (M) =

ker(∂′′ : Ln → Ln)

im(∂′ : Cn+1 → Ln)
.

These two Lagrangian homologies certainly can have elements that are not

in the standard homology Hn(M). For HI
n(M), though the Lagrangian gen-

erators must be boundaryless, a Lagrangian that is the boundary of an

(n + 1)-dimensional chain can be a non-trivial element. Such a Lagrangian

would only be trivial in HI
n(M) if it is also in the image of the ∂′′ map. On

the other hand, for HC
n (M), its elements may include Lagrangians which

have non-trivial boundary but are trivial under the ∂′′ map. Examples of

both cases will be seen in the Kodaira-Thurston four-manifold discussed at

the end of this section.

5.3. Intersection theory via lifts to E

To better understand these homologies, we can make use of the isomorphism

between the cohomology of primitive currents, F 0H(M) := PH(M), and the

singular cohomology of the contact circle bundle, H(E0). Then we can ex-

plicitly pull back the currents in F̃(M) to currents in Ω(E) by reinterpreting

the map g : F(M) → Ω(E) from Definition 3.4 as a map g̃ : F̃(M) → Ω(E).

See Figure 4.

The interpretation of the map g̃ at the chain level is as follows:

• A coisotropic chain C2n−k of codimension k in M (represented by

the dual current βk ∈ P k(M)), is mapped to a codimension k chain

C̃2n+1−k of dimension (2n + 1 − k). The extra dimension comes from

C̃ wrapping around the circle fiber of E plus another the addition of
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. . .
d Ck d

. . .
d Cn d Cn+1 d

. . .
d C2n+2p+1−k d

. . .

. . .
∂+

P k

βk−θ∂−βk

∂+

. . .
∂+

Pn

βn−θ∂−βn

−∂+∂−
ω0Pn

−θβn

−d
. . .

−d
ωn−kP

k

−θ ωn−kβk

−d
. . .

Figure 4: The map g̃ : F̃(M) → Ω(E).

another component that is the dual of θ∂−βk. This additional com-
ponent is important as those coisotropic chains that have non-trivial
boundary, but yet the boundary does not have a coisotropic compo-
nent, become boundaryless cycles after lifted to E (since βk − θ∂−βk
is d-closed).

• An isotropic chain Ik of dimension k in M (represented by the dual
current ωn−kβk ∈ ωn−kP k) gets mapped to a section Ĩk of E which
is still of dimension k. This is possible since ω|I = 0 and thus the
restricted bundle E|I is trivial. In particular, if k = n, then I is a
Lagrangian and the resulting Ĩ in E is Legendrian. Furthermore, if
d(ωn−kβk) = 0, this implies that I has no boundary and neither does
Ĩ after the lift.

Under the map g̃, the homologies {HC
• (M), HI

• (M)} map to the standard
homology {H•(E)}. Thus the Calabi-Yau pairing on F is interpreted as the
usual intersection pairing of C̃2n+1−k with Ĩk inside E.

5.4. Example: Kodaira-Thurston four-fold.

The Kodaira-Thurston manifold, KT 4, is a closed, non-Kähler, symplec-
tic four-manifold. It can be defined as the quotient of R4 with coordinates
{x1, x2, x3, x4} under the identification

(x1, x2, x3, x4) ∼ (x1 + a, x2 + b, x3 + c, x4 + d− b x3)(33)

where a, b, c, d ∈ Z . On KT 4, global one-forms can be written as

e1 = dx1 , e2 = dx2 , e3 = dx3 , e4 = dx4 + x2dx3 .

We will take the symplectic structure on KT 4 to be

ω = e1 ∧ e2 + e3 ∧ e4.(34)
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j 0 1 2 3 4 5
e1, ω ω e1,

Hj(KT 4) 1 e2, e12 − e34, ω e2, ω2

e3 e13, e24 ω e4
e1, e12 − e34, e12 − e34, e1,

F 0Hj(KT 4) 1 e2, e13, e24, e13, e24, e2, 1
e3 e14 e23 e4
e1, e12 − e34, θ(e12 − e34), θ(ω e1),

Hj(E) 1 e2, e13, e24, θe13, θe24 θ(ω e2) θω2

e3 e14 + θe3 θe23 θ(ω e4)

Figure 5: Basis of generators for the cohomologies of the Kodaira-Thurston
four-manifold KT 4 and its circle bundle E (where dθ = ω). Here we use the
notation eij = eiej and eijk = eiejek .

It is worthwhile to point out that KT 4 can be interpreted as a torus bundle
over a torus in two ways:

T 2
{x3,x4} KT 4

T 2
{x1,x2}

T 2
{x1,x4} KT 4

T 2
{x2,x3}

On the left, the fiber torus over a point on the base is a symplectic subman-
ifold with respect to the ω of (34). In contrast, the fiber torus on the right
is a Lagrangian. In fact, it is actually a special Lagrangian with respect to
the global (2,0)-form Ω2,0 = (e1 + i e2)(e3 + i e4).

To define E, the circle bundle over KT 4, we define the global angular
one-form

θ = dy + x1dx2 − x4dx3 .(35)

where y is the coordinate on S1 = R/Z with y ∼ y + 1. Clearly, dθ = ω on
E. Moreover, that θ is globally-defined implies that the circle fiber is twisted
over KT 4 with the identification

(x1, x4, y) ∼ (x1 + a, x4 + d, y − a x2 + d x3)(36)

where a, d ∈ Z.
In Table 5, we give a basis of generators for the de Rham cohomology

and the p = 0 filtered cohomology of KT 4, and also the de Rham cohomol-
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ogy of its circle bundle. They have a heuristic dual chain description when
promoted to currents. The two special generators in F 0H∗(M) that are dis-
tinct from those in H∗(M) are e14 ∈ F 0H2(M) and e23 ∈ F 0H3(M). They
are both dual to Lagrangians.

1. e14 ∈ F 0H2(KT 4) corresponds to the dual current of a Lagrangian L
spanning the torus base in the {x2, x3} directions. Note that d e14 =
−e123, hence, the Lagrangian L has a non-trivial boundary, i.e. ∂L �= 0 .
However, under the lift to e14+θe3 ∈ H2(E), the corresponding three-
dimensional cycle L̃ ⊂ E has no boundary.

2. e23 ∈ F 0H3(KT 4) is the dual current of a Lagrangian L′ wrapping the
torus fiber spanning {x1, x4} over a point on the base. Since e23 = de4,
L′ is rationally the boundary of a three-dimensional subspace.

3. Note that the intersection of L and L′ can be defined on M . The
value corresponds to the standard intersection (even though L is not
a cycle).

6. Functoriality of F

Many invariants are useful not just for what they assign to objects, but
also for how they behave under morphisms. In this section we prove that
the assignment M 	→ Fp(M) enjoys several functorial properties. First, if
f : M → M ′ is a symplectic map (so f∗ω′ = ω), the entire sequence of
p-filtered algebras admits a pullback morphism. Second, if f0 and f1 are
smoothly homotopic by an orthogonal homotopy, the pullback maps are also
chain-homotopic. Third, just as ω is a section of a sheaf on M—indeed, be-
cause ω is a section of a sheaf—we prove that the assignment U 	→ Fp(U)
forms a sheaf of A∞-algebras on M , and we give an interpretation of the
filtered cohomologies as sheaf cohomology. We conclude by showing that
any isotropic (in particular, Lagrangian) correspondence between symplec-
tic manifolds induces a bimodule between the filtered algebras of each sym-
plectic manifolds. This bimodule structure is local, in that it factors through
the restriction of these algebras to an arbitrarily small neighborhood of the
isotropic.

Remark 6.1. The sheaf-theoretic interpretation is useful for the following
reason. Until this section, we have treated Fp(M) and Cone(ωp) simply as
A∞-algebras over R, rather than as smooth objects living over M . But the
equivalence used to prove Theorem 1.1 is local, in that the formulas are
compatible with restriction maps, so we have in fact proven that the two
algebras are equivalent as objects living over M . We anticipate that another
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natural language to convey this equivalence is to express Fp(M) � Cone(ωp)
as an equivalence of algebroids over M , rather than just algebras over R.

Notation: Later in this section, we will utilize categories and their ∞-
categorical enhancements. We will employ a (somewhat uncommon) con-
vention that C denotes a strict category, while C will denote some natural
∞-categorical enhancement. For instance, cdga denotes the category whose
objects are commutative differential graded algebras (cdgas), and whose
morphisms are maps of cdgas. The notation, cdga, without the underline,
will be the ∞-category.

6.1. On objects

Here is a corollary of Theorem 1.1, which further illustrates the topological
invariance of F and C:
Corollary 6.2. Let ω and ω′ be two symplectic forms on M , and let Fp(ω)
and Fp(ω

′) denote the A∞-algebras associated to each. If [ω] = [ω′] ∈
H2(M ;R), then there is an equivalence of A∞-algebras Fp(ω) � Fp(ω

′) for
every p.

Proof. It suffices to show an equivalence Cone(ωp+1) � Cone(ω′p+1). More
generally, let ζ and ζ ′ be two even-degree elements of a cdga that define the
same cohomology class. We write an element of Cone(ζ), and its differential,
as

η ⊕ θξ, d(η ⊕ θξ) = dη + ζξ ⊕−θ dξ

and likewise for Cone(ζ ′):

η ⊕ θ′ξ, d(η ⊕ θ′ξ) = dη + ζ ′ξ ⊕−θ′dξ.

Let λ be an element of the cdga such that dλ = ζ ′ − ζ. Then consider the
map

φ : η ⊕ θξ 	→ (η − λξ)⊕ θ′ξ.

This is an equivalence of cdgas—one can easily check it is both a chain map
and an algebra map, and an inverse chain map is given by

η ⊕ θ′ξ 	→ (η + λξ)⊕ θξ.

Remark 6.3. In particular, this shows that those invariants from [17], [18],
[16] expressed entirely in terms of the A∞-equivalence class of Fp (for exam-
ple, the filtered cohomologies) are invariants only of the cohomology class
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of ω, rather than on ω itself. We present an informal explanation: Usually,

invariants that are sensitive to ω utilize the fact that one can detect when

certain objects are positive with respect to ω. (For example, one can define

when an almost-complex structure J defines a positive definite Riemannian

metric when intertwined with ω, and one can thus make statements about

how spaces of positive curves (such as holomorphic curves) behave.) Since

F0 by definition only sees those forms which have no ω factor, F0 is blind

to such measures of positivity.

The proof of the following is straightforward:

Proposition 6.4. For all p ≥ 0, the maps

Cone(ωp+1)
q−→ Cone(ωp), q(η ⊕ θξ) = η ⊕ θ̃ξω.

are maps of cdgas; here, θ̃ is the formal variable of Cone(ωp) for which

dθ̃ = ωp.

As a result, we can fill in the dotted arrow below by composing the solid

arrows, which are all maps of A∞-algebras:

Cone(ωp+1)
q

Cone(ωp)

f

Fp

g

q Fp−1.

Corollary 6.5. For all p ≥ 0, there are natural maps of A∞-algebras

Fp → Fp−1.

Thus to every manifold M we can associate a homotopy-commutative

diagram of A∞-algebras as follows:

. . .

f ∼

Cone(ωp+1)
q

f ∼

Cone(ωp)

f ∼

. . .

f ∼

Cone(ω)

f ∼

. . . Fp
q Fp−1 . . . F0

One likewise has a homotopy commutative diagram where each downward

f is replaced by an upward-pointing g.
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Remark 6.6. Recall from commutative algebra that for any primitive ideal
(f) ⊂ R, one always has a sequence of commutative ring maps

R/(fp+1) → R/(fp)

which cut out higher-degree infinitesimal neighborhoods around the locus
f = 0. The above results, particularly Proposition 6.4, are a cdga analogue.
So the sequence of algebra maps (4) may be thought of as a sequence of
neighborhoods around the locus where ω ∈ Ω2(M) vanishes.4

6.2. On morphisms

Note that if f : (M,ω) → (M ′, ω′) is any smooth map such that f∗ω′ = ω,
one has an induced map of cdgas

(37) f∗
Cone : Cone(ω

′p+1) → Cone(ωp+1), η ⊕ θ′ξ 	→ f∗η ⊕ θf∗ξ.

Here, f∗η and f∗ξ are the usual pullbacks of differential forms.
Now we claim that the maps of Proposition 6.4 are natural; by naturality,

we mean that given any smooth map f : M → M ′ such that f∗ω′ = ω, the
diagram

Cone(ω′p+1)

f∗
Cone

q
Cone(ω′p)

f∗
Cone

Cone(ωp+1)
q

Cone(ωp)

commutes on the nose. What this shows is that maps between symplectic
manifolds induce maps between the sequences of algebras (Cone(ωp+1))p≥0.
So our work so far has lead to the following functorial description:

Let cdga be the category whose objects are cdgas, and whose morphisms
are maps of cdgas. We let Z≥0 denote the usual poset, considered as a cate-
gory. We let Fun(Zop

≥0, cdga) denote the functor category, whose morphisms
are natural transformations. Finally, let Symp denote the category whose
objects are symplectic manifolds, and whose morphisms are smooth maps
respecting the symplectic forms.

Proposition 6.7. The assignments

• M 	→
(
. . . → Cone(ωp+1) → Cone(ωp) → . . . → Cone(ω)

)
and

4Not as a locus on M , but as a locus on stacky points on the derived stack
represented by Cone(ω).
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• f 	→ f∗
Cone from (37)

define a functor

Symp → Fun(Zop
≥0, cdga).

Proof. Identities are obviously sent to identities, since id∗ η = η for differen-
tial forms. Composition is respected by the definition of f∗

Cone in (37).

6.3. On orthogonal homotopies

Just as de Rham forms respect smooth homotopies, it is natural to ask
whether Cone(ω•+1) respects certain kinds of homotopies between symplec-
tic maps. While the assignment respects other kinds of smooth homotopies
if one just remembers Cone(ω•+1) as a cdga, we have purposefully restricted
ourselves to a class of smooth homotopies for which the homotopy formulas
can be expressed in terms of local operators—i.e., for which we can stay in
the C∞ world.

Definition 6.8. Let F : M × Δ1 → M ′ be a smooth map, and let π :
M × Δ1 → M be the projection. Endow both M and M ′ with symplectic
forms. We will say that F is an orthogonal homotopy of symplectic maps, or
orthogonal homotopy for short, if

(38) F ∗ω′ = π∗ω.

Remark 6.9. The condition of being an orthogonal homotopy is a rigid
one. The condition implies that

F ∗ω′(∂t, v) = ω′(DF (∂t), DF (v))

for any v ∈ TM . Hence for any time t, the vector DF (∂t) must always
be in the symplectic orthogonal to the image of Ft(M). In particular, a
homotopy obtained by pre-composing a symplectic immersion j : M → M ′

by a symplectic isotopy of M is not an example of an orthogonal homotopy
unless the isotopy is trivial (i.e., constant).

Example 6.10. If one is given a fibration E → B where E is symplectic
and the symplectic form renders each fiber symplectic, then the symplec-
tic orthogonals to each fiber determine a horizontal distribution. Parallel
transport defines an orthogonal homotopy.

Remark 6.11. We are not aware if the notion of orthogonal homotopy has
appeared elsewhere in the literature; we concocted it as a natural notion that
induces homotopies between maps on cones (see Proposition 6.12 below).
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Proposition 6.12. If F : M ×Δ1 → M ′ is an orthogonal homotopy, then
F induces a homotopy of chain maps between (F0)

∗
Cone and (F1)

∗
Cone.

Recall how one normally proves that a homotopy F : M × Δ1 → M ′

induces a homotopy of chain maps between F ∗
0 and F ∗

1 on differential forms:
One defines a degree -1 map

(39) H : Ω•(M ′) → Ω•−1(M), H(η′) :=

∫ 1

0
(ι∂t

F ∗η′)dt

where t is a coordinate for Δ1. Then H satisfies

Hd+ dH = F ∗
1 − F ∗

0

and hence exhibits a chain homotopy from F ∗
1 to F ∗

0 .

So, given a smooth homotopy F : M ×Δ1 → M ′, define a degree -1 map
as follows:

(40) H̃ : Cone(ω′)• → Cone(ω)•−1, η ⊕ θ′ξ 	→ H(η)⊕−θH(ξ).

Lemma 6.13. Let F : M ×Δ1 → M ′ be a smooth homotopy, and let H̃ be
the operator defined in (40). H̃ exhibits a homotopy between the pullbacks
(F0)

∗
Cone and (F1)

∗
Cone as defined in (37) if and only if one has

(41) H(ω′ξ) = ωH(ξ).

Proof of Lemma 6.13. We see that

H̃d+dH̃(η ⊕ θ′ξ)

= H̃(dη + ω′ξ ⊕−θ′dξ) + d(Hη ⊕−θH(ξ))

= (Hdη ⊕ θHdξ) +H(ω′ξ)⊕ 0 + dHη ⊕ θdH(ξ)− ωH(ξ)⊕ 0

= (Hd+ dH)η ⊕ θ(Hd+ dH)ξ +
(
H(ω′ξ)− ωH(ξ)

)
⊕ 0

= (F ∗
1 − F ∗

0 )η ⊕ θ(F ∗
1 − F ∗

0 )ξ +
(
H(ω′ξ)− ωH(ξ)

)
⊕ 0

= ((F1)
∗
Cone − (F0)

∗
Cone) (η ⊕ θξ) +

(
H(ω′ξ)− ωH(ξ)

)
⊕ 0.

Proof of Proposition 6.12. Writing out (39), the lefthand side of (41) be-
comes

H(ω′ξ) =

∫ 1

0
ι∂t

F ∗(ω′ξ)dt
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=

∫ 1

0
(ι∂t

F ∗ω′) ∧ F ∗ξ + F ∗ω′ ∧ ι∂t
F ∗ξdt

=

∫ 1

0
(ι∂t

F ∗ω′) ∧ F ∗ξ + F ∗ω′ ∧ ι∂t
F ∗ξdt

while the righthand side of (41) is given by

ωH(ξ) = ω

∫ 1

0
ι∂t

(F ∗ξ)dt.

Now we show that a sufficient condition for (41) to hold is the given by (38).

The condition (38) implies that for every time t, F ∗
t ω

′ = ω. This is
because, letting it : M ↪→ M ×Δ1 be the inclusion at time t, we have that

(F ◦ it)∗ω′ = i∗tF
∗ω′ = i∗tπ

∗ω = (π ◦ it)∗ω = id∗M ω = ω.

In other words, F is a homotopy through maps that respect the symplectic
form. Even more strongly, the definition implies that for all v ∈ TM , we
have

(ι∂t
F ∗ω′)v = F ∗ω′(∂t, v)=π∗ω(∂t, v)=ω(Dπ(∂t), Dπ(v))=ω(0, Dπ(v))= 0.

Hence the definition implies that

ι∂t
F ∗ω′ = 0.

Because F ∗
t ω

′ = ω for all t, this is enough for (41) to hold.

Remark 6.14. One would like to further say that orthogonal homotopies
determine homotopies between the algebra maps, rather than just the chain
maps. However, we have not delved into the algebraic theory for homo-
topies in the smooth category for the reasons mentioned in Remark 6.1; for
instance, the usual definition for a homotopy between cdga maps uses poly-
nomial forms on the 1-simplex, which are only suitable when one deals with
smooth homotopies whose dependence on t happens to be polynomial. (I.e.,
not very often.)

6.4. Sheaf property

Note that being primitive is a local property. Moreover, ∂− and ∂+ are local
operators, so the differentials of F are compatible with the restriction of
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differential forms from one open subset to another. All this data obviously
forms a sheaf of cochain complexes; we prove that they also form a sheaf
which is robust with respect to the homotopy theory of A∞-algebras:

Theorem 6.15. The assignment U 	→ F(U) is a sheaf on M with values
in the ∞-category of A∞-algebras.

We recall that if C is an ∞-category with limits, a presheaf on M with
values in C is a functor

F : Open(M)op → C.

Here, Open(M) is the nerve of the category of open subsets of M (i.e., the
∞-category associated to the usual 1-category Open(M) of open subsets).
We call F a sheaf if the following holds: For any open cover {Uα} of any
open set U , the associated augmented cosimplicial diagram

F(U)
∏

αF(Uα)
∏

α,β F(Uα ∩ Uβ) . . .

is a limit diagram in C.
Remark 6.16. Since C is an ∞-category, when we say “limit” in C, there is
only one notion of limit—if C arises from a model category, for instance, a
limit in C is equivalent to the appropriate homotopy limit computed in the
model category.

Proof. Let A∞Alg be the ∞-category of A∞-algebras over R. Then the as-
signment U 	→ F(U) defines a functor

F : Open(M)op → A∞Alg.

(In fact, it factors through the strict 1-category A∞Alg.)
Since the forgetful functor A∞Alg → Chain creates limits, one need only

prove that this augmented diagram is a limit diagram in the ∞-category of
cochain complexes. But in general, if F is a sheaf of cochain complexes in
the strict sense (meaning that the augmented diagram is a limit diagram
in the 1-category Chain) in which the degree n presheaf Fn is a soft sheaf
for every n, then F is itself a homotopy sheaf [11]. That is, the augmented
diagram in cochain complexes is a limit diagram in the ∞-category Chain.

So one simply needs to check that Fp is a complex of soft sheaves. This
is elementary—each Fk

p is soft because differential forms on a closed subset
can extend to a differential form globally. Fp is a sheaf for the same reasons
that differential forms form a sheaf.
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Remark 6.17. The equivalences F → C are natural for open inclusions
by Theorem 1.1; so one could also prove the (homotopy) sheaf property by
showing that U 	→ C(U) is a homotopy sheaf. This can be proved using the
exact same argument as above.

Remark 6.18. In fact, if one considers the ∞-category

Fun(Zop
≥0,A∞Alg)

then we see that F defines a sheaf on M with this target ∞-category—this
is because limits in a diagram category are computed pointwise (i.e., one
need only check that for every n ∈ Z≥0, the resulting cosimplicial diagram
is a limit diagram). Note that A∞Alg contrasts with cdga, which did not
incorporate higher homotopies. And if one uses the model of filtered forms
using the cone construction—utilizing the equivalence of Theorem 1.1—then
one can make a stronger statement: The assignment

U 	→
(
. . . → Cone(ωp+1)(U) → Cone(ωp)(U) → . . . → Cone(ω)(U)

)
is a homotopy sheaf in the ∞-category Fun(Zop

≥0, cdga) where we remove the
underline.

6.5. As sheaf cohomology

Recall Leray’s theory of sheaf cohomology, which in Grothendieck’s lan-
guage is obtained as a right derived functor of the global sections functor
F 	→ F (M). It is a consequence of the de Rham-Weil theorem that these
cohomology groups can be computed by taking an acyclic (rather than in-
jective) resolution.

One sees immediately that the de Rham forms Ωk(M) are soft, as we
mentioned in the proof of Theorem 6.15. Likewise, it is clear that each sheaf
Fk
p or Cone(ωp+1)k is a soft sheaf on M . So we must ask—is there a natural

sheaf for which these complexes are a resolution?
Though the following discussion is valid using the A∞-algebra F as well,

we will focus on the sheaf Cone(ωp+1). The following should be compared
to Proposition 3.3 of [16]:

Proposition 6.19. Locally on M , the sequence

Ωk−1 ⊕ θΩk−2p−2 → Ωk ⊕ θΩk−2p−1 → Ωk+1 ⊕ θΩk−2p

is exact for k ≥ 2p+ 2.
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Proof. Evaluate the sequence on some open set U which is diffeomorphic to

R
2n. If η⊕θξ is in the kernel of d|U , then we know dη = −ωp+1ξ and dξ = 0.

The Poincaré Lemma says we can find ξ′ such that −dξ′ = ξ. Moreover,

η−ωp+1ξ′ is closed, so the Poincaré Lemma also allows us to find η′ so that

dη′ = η − ωp+1ξ′. Thus η ⊕ θξ = d(η′ ⊕ θξ′).

The exactness fails at the 2p + 1 group of Cone(ωp+1). Of course, the

complex is exact at degrees 1 ≤ k ≤ 2p by the usual Poincaré Lemma. For

this reason, the sheaf cohomology description is cleanest when p = 0, though

one can easily formulate the analogue for higher p.

Definition 6.20. For any open set U ⊂ M , let Prim′(U) be the vector

space whose elements are pairs (η, b) where b is a locally constant function

on U , and η is a 1-form such that dη = −bω|U . We let Prim denote the

sheafification of Prim′.

Proposition 6.21. Cone(ω) is a soft resolution of the two-term complex of

sheaves

Ω0 → Prim, g 	→ (dg, 0).

Proof. We simply need to show that the inclusion

Ω0 d
Prim 0 . . .

Ω0 d
Ω1 ⊕ θΩ0 Ω2 ⊕ θΩ1 . . .

is an equivalence of complexes of sheaves—that is, that the map induces an

isomorphism of cohomology sheaves Hk. We already saw in Proposition 6.19

that the Cone(ω) complex is indeed locally acyclic at k ≥ 2. So one need

only show an isomorphism at H0 and H1. The isomorphism at H0 is obvious,

as the inclusion naturally identifies the kernels of d—the locally constant

functions. The isomorphism at H1 is also obvious, as Prim′ is defined to

locally be the kernel of the differential Ω1 ⊕ θΩ0 → Ω2 ⊕ θΩ1.

Remark 6.22. A similar proof shows the trivial result that Cone(ωp+1) is

a soft replacement for the complex of sheaves

Ω0 → . . . → Ω2p → ker(d|Ω2p+1⊕θΩ0) → 0

which, of course, is soft away from the last non-zero entry.
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6.6. Looking forward: Weinstein functoriality

Each sequence of cdgas Cone(ω•+1) depends only on the cohomology class of
ω. However, the equivalence Cone(ω) � Cone(ω′) from Corollary 6.2 relied
on a choice of λ such that dλ = ω′ − ω. At this point, we see two doorways
into further structure:

1. The first appears when we recall that maps which respect ω are only
one kind of morphism between symplectic manifolds. As advocated by
Weinstein, a more natural notion of morphism is given by submani-
folds of M ×M ′. In general, graphs of symplectomorphisms give rise
to Lagrangian submanifolds of M ×M ′, but the fact that Cone(ω•+1)
is functorial with respect to all maps respecting ω suggests the follow-
ing: isotropic submanifolds of M ×M ′ should also be included in the
class of morphisms we consider. (Graphs of smooth maps respecting ω
are, in general, isotropic.) In other words, we should look for a Wein-
stein functoriality with respect to isotropic correspondences between
symplectic manifolds—not just smooth maps respecting ω.

2. The second is that specifying forms λ that realize the equality [ω] = [ω′]
is a natural piece of data to include in whatever kind of functoriality
we consider. This is a picture one has seen before: For instance, in the
framework of [15], derived symplectic manifolds and their Lagrangians
all carry with them additional data showing how symplectic forms are
closed, and how their restrictions to Lagrangians are null.

Following through on the second doorway goes beyond the scope of our
current paper, as we would need to seriously develop the machinery for
derived smooth manifolds, for their cotangent complexes, and for writing
down a stack classifying closed 2-forms. (Roughly, we would need a C∞

analogue of all the basic ingredients set up in [15] in the context of derived
algebraic geometry.) So here we merely open the first door.

Remark 6.23 (Motivation for Weinstein functoriality). It is an idea going
back at least to Weinstein [20] that, rather than just symplectomorphisms,
Lagrangian correspondences L ⊂ M1 ×M2 ought to behave like morphisms
in the category of symplectic manifolds. This idea is compatible with the
notion that boundary conditions for field theories define Lagrangian sub-
manifolds in the space of classical solutions (see, for example, the Atiyah-
Floer conjecture), and many efforts are being made to formalize this idea for
Fukaya categories, where one expects Lagrangian correspondences to define
a bimodule between the Fukaya categories of M1 and M2.
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Let j : L → M1 ×M2 be an immersion. Also assume that j∗ω1 = j∗ω2,
so that L is an immersed isotropic submanifold of (M1 ×M2,−ω1 ⊕ ω2).

Definition 6.24. We let ConeL(ω
p) denote the mapping cone of the map

Ω(L)[−2p]
j∗ω2−−−→ Ω(L).

Remark 6.25. One should expect a construction of ConeL having the same
flavor as the construction of the Fp. We do not know of any such construction
at present.

Because j is an isotropic immersion, we see immediately:

Proposition 6.26. Let ConeMi
(ωp+1

i ) denote the cone algebra for Mi. The
composite smooth maps L → M1 ×M2 → Mi induce maps Ω(Mi) → Ω(L),
and these in turn induce maps of cdgas

ConeM1
(ωp+1

1 ) → ConeL(ω
p+1) ← ConeM2

(ωp+1
2 ).

In other words, ConeL(ω
p+1) is a bimodule for each cone algebra.

In particular, any Lagrangian immersion defines a bimodule between
the algebras associated to each Mi. Note also that if j : L → M1 × M2 is
not strictly an isotropic map, but if one can specify a form λL such that
dλL = j∗ω2 − j∗ω1, then this specifies an equivalence

ConeL(ω1) � ConeL(ω2)

hence one still has a bimodule over the two cone algebras given by the
Mi. This is exactly the kind of data that we should witness when following
through with door (2), which we leave for later work.

Finally, we also leave for later work the proof of Weinstein functoriality
in (1), which likewise requires a development of some derived smooth geom-
etry to incorporate non-transverse intersections of Lagrangian and isotropic
correspondences. The expectation, of course, is that compositions of La-
grangian correspondences are taken to tensor products of bimodules under
the functor F• (or equivalently, the functor Cone(ω•+1)).

Appendix A. Proof that Cone(ω) is equivalent to differential
forms on a sphere bundle

Assume [ω] is an integral cohomology class on M . Then [ω] classifies a com-
plex line bundle L on M , and hence a circle bundle. More generally, the
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higher powers [ωp+1] are the top Chern classes of the vector bundles L⊕p+1.
There is a natural smooth sphere bundle Ep associated to this vector bundle.

In this appendix, we give a proof of the following:

Theorem A.1. Let M be an arbitrary symplectic manifold, and ω a sym-
plectic form defining an integral cohomology class. Then there is an equiva-
lence of cdgas

Ω(Ep) � Cone(ωp+1).

Remark A.2. This result is obvious if M is simply-connected—by rational
homotopy theory, the cone is a standard cdga model for forms on the total
space of an odd-dimensional sphere bundle.

Remark A.3. Fix a real number k �= 0. Note that if one scales ω to kω,
one has an isomorphism of cdgas as follows: (replaced ζ by ξ)

K : Cone(ωp+1) � Cone(kp+1ωp+1), η ⊕ θξ 	→ η ⊕ 1

kp+1
θξ.

The proof of the theorem uses the following easy lemma:

Lemma A.4. Theorem A.1 holds when M is contractible.

Proof of Lemma. WhenM is contractible, Ep is trivial, and homotopy equiv-
alent to S2p+1. Hence we can choose a global 2p+1-form called θ that realizes
a generator for the cohomology of the fiber (and hence of Ep). Then we claim
that the cdga map
(42)
Cone(ωp+1) = Ω•(M)⊕ θΩ•−2p−1(M) → Ω(Ep), η ⊕ θξ 	→ π∗η + θ ∧ π∗ξ

exhibits the equivalence. Note it is obviously a surjection on cohomology, as
the generators of H0(S2p+1) and H2p+1(S2p+1) are hit by

1⊕ 0 and 0⊕ θ1,

respectively. (Here, “1” is the constant 0-form with value 1.) It is further an
injection on cohomology, because the long exact sequence in cohomology for
a cone (along with the contractibility of M) shows that these are the only
possible cohomology generators in Cone(ω).

Proof of Theorem A.1. Ep is an oriented sphere bundle, being the sphere
bundle associated to a complex vector bundle. We let θ ∈ Ω2p+1(Ep) denote
the global angular form on Ep. (For the existence and properties of the
global angular form of a sphere bundle, see Section 11 of Bott-Tu [1].) Being
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a global angular form, θ has the following two properties: (i) θ restricts to a
generator of H2p+1(S2p+1) on each fiber of Ep, and (ii) dθ = π∗(ωp+1). Note
property (ii) follows because ωp+1 is a representative of the Euler class of
Ep.

So the same map as in (42) is a map of cdgas.
Let V = {Vα} be a good cover of M . If π : Ep → M is the projection

map of the fibration, the open sets Uα = π−1(Vα) form an open cover of Ep,
where each non-empty intersection Uα0,...,αr

:= Uα0
∩ . . . ∩ Uαr

is homotopy
equivalent to the fiber sphere. Consider the Čech-de Rham double complex,
which is the E0 page of the spectral sequence given by the usual filtration
on on Ω(Ep).

...
...

...

∏
αΩ

2(Uα)

d

δ ∏
α0,α1

Ω2(Uα0,α1
)

−d

δ ∏
α0,α1,α2

Ω2(Uα0,α1,α2
)

d

. . .

∏
αΩ

1(Uα)

d

δ ∏
α0,α1

Ω1(Uα0,α1
)

−d

δ ∏
α0,α1,α2

Ω1(Uα0,α1,α2
)

d

. . .

∏
αΩ

0(Uα)

d

δ ∏
α0,α1

Ω0(Uα0,α1
)

−d

δ ∏
α0,α1,α2

Ω0(Uα0,α1,α2
)

d

. . .

The advantage of working in the smooth world (and hence using the de
Rham model) is that this double complex has a total complex which is a
cdga—after all, this is the Čech complex of a (pre)sheaf of cdgas.5 Moreover,
the usual augmentation from Ω•(Ep) gives a map of cdgas from Ω(Ep) to
the total complex, and this is an equivalence of cdgas. (For instance, each
row of this E0 page is exact by the existence of partitions of unity. This is
one classical way to see that the Čech-de Rham double complex computes
the de Rham cohomology algebra of the total space.)

Now we note that the map of cdgas (42) is local—it is compatible with
restriction maps. Hence (42) induces a map of double complexes. For the
sake of having a name, we will call the domain double complex the “V
double complex.” At the rth column and sth row, the map from the V
double complex to the Čech-de Rham complex is given by

Ωs(Vα0,...,αr
)⊕θΩs−2p−1(Vα0,...,αr

) → Ωs(Uα0,...,αr
), η⊕θξ 	→ π∗η+θ∧π∗ξ.

5As opposed to having to keep track of E∞ structures on singular cochains.
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But this is the map used in the Lemma, hence an equivalence of cdgas.
Thus the vertical differentials d of the V double complex compute the same
E1 page of the spectral sequence associated to the Čech-de Rham double
complex. Importantly, the horizontal differentials of the E2 page are also
equal—this is where one uses the existence of the global angular form. Specif-
ically, the horizontal Čech complexes have compatible differentials precisely
because a single global form restricts to the generators along each open set.

The last (and only other) page at which one has a differential is the E2p+2

page, where the differential is precisely given by the map called “wedge with
ωp+1.” (This is by definition of the differential of Cone(ωp+1), which leads
to this differential in the V double complex, and by a well-known property
of the Euler form for the Čech-de Rham double complex.)

This completes the proof.
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