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Abstract: We study SYZ mirror symmetry in the context of non-Kéhler Calabi—Yau
manifolds. In particular, we study the six-dimensional Type II supersymmetric SU (3)
systems with Ramond-Ramond fluxes, and generalize them to higher dimensions. We
show that Fourier—Mukai transform provides the mirror map between these Type IIA and
Type 1IB supersymmetric systems in the semi-flat setting. This is concretely exhibited
by nilmanifolds.

1. Introduction

The Strominger—Yau—Zaslow (SYZ) approach [SYZ96] to mirror symmetry has brought
many fruitful results in the past two decades. For a mirror pair of Calabi—Yau manifolds
(X, X), itasserts that there exist special Lagrangian fibrations i : X — Band ji : X —
B such that 2~ ({b}) and /1~ ({b}) are dual tori. As a consequence, Lagrangian sections
of  should correspond to holomorphic line bundles on X, which explains the interchange
between symplectic geometry of X and complex geometry of X. Gross [Gro01] gave
a verification of the above picture in the topological level. The Gross-Siebert program
[GS11] gave a sophisticated algebraic formulation of the SYZ construction. Moreover,
the SYZ program was successfully carried out in various situations for Kihler manifolds
[LYZ00,Leu05, Aur07,C0O06,CL10,FOO010,CLL12,AAK].

This paper explores the SYZ approach for non-Kéhler Calabi—Yau manifolds, i.e.,
non-Kihler almost Hermitian manifolds with ¢; = 0. We shall consider two classes
of non-Kéahler Calabi—Yau geometries, which we will call Type IIA and Type IIB su-
persymmetric systems. In six dimensions, the systems arise directly from the imposi-
tion of supersymmetry in Type IIA/IIB string theory [GMPTO0S5,Tom08, TY]. The six-
dimensional Type IIA system is a symplectic manifold (X, @) with an almost complex
structure induced from a complex decomposible three-form €2 with dRe 2 = 0 (in-
stead of d 2 = 0). Type IIB system is a complex threefold X with a holomorphic


http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2454-1&domain=pdf
http://orcid.org/0000-0001-8812-4400

146 S.-C. Lau, L.-S. Tseng, S.-T. Yau

volume form €2 and a balanced Hermitian metric, whose associated (1, 1) form  satis-
fies d (J)z) = 0 (instead of d @ = 0). We also define and study their higher dimensional
analogs. Here, we preserve on the IIB side the balanced metric condition, which has a
number of desirable properties [Mic82,AB93,AB95, AB04]. The mirror dual condition
on the symplectic IIA side will be shown to require the introduction of a special real
polarization.

Though there is now a fairly decent understanding of mirror symmetry in the Kéhler
situation, the mirror phenomenon for non-Kiahler Calabi—Yau geometries has not been
studied as much and is not well-understood. This motivates us to study mirror symmetry
in the presence of the so-called Ramond-Ramond (RR) flux using SYZ transforma-
tion. The aim is to construct a duality between Type IIA and Type 1IB supersymmetric
systems (and their higher dimensional analogs) by using SYZ and Fourier—Mukai trans-
form.

While SYZ fibrations in general may not exist in the presence of flux, the SYZ trans-
formation (when fibations exist) does provide important clues on how mirror symmetry
should behave in the non-Kihler setting. We expect mirror symmetry between type IIA
and IIB systems still to occur in a similar way, even in cases when SYZ fibrations may
not exist. Namely, the flux source terms (denoted as p4 and pp later on in this paper)
are mirror to each other in the sense of homological mirror symmetry.

Construction of non-Kidhler Calabi—Yau manifolds has been studied in several re-
cent works [Cal58,STY02,GP04, GGP0O8, Wu06,FP10,FLY 12,FP13]. The survey by Fu
[Ful0O] gave an excellent introduction to this topic. In this paper we focus on the semi-flat
setting [LYZ00,Leu05], namely we consider Lagrangian fibrations away from singular
fibers. We will see that interesting correspondences between the Type IIA and IIB sys-
tems and their RR fluxes already appear in such a simple setting. The Iwasawa manifold
and its higher-dimensional analogs serves as important examples. The main theorem
is:

Theorem 1.1 (See Theorem 5.1). Under SYZ and Fourier—Mukai transform, a semi-flat
supersymmetric Type IIA SU (n) structure is transformed to a semi-flat supersymmetric
Type IIB SU (n) structure, and their fluxes also correspond to each other by Fourier—
Mukai transform.

The study of non-Kiahler Calabi—Yau geometries was largely motivated by string
theory (see, for example [Str86,BBDG03,BBD*04]). In physical terms, the presence of
fluxes in supersymmetric systems results in geometries that are generically non-Kihler.
In Type IIA and IIB string theory, there are mainly two types of fluxes, namely Ramond-—
Ramond (RR) flux and H-flux (which is also called NS—NS flux). The settings of Type
ITA and IIB supersymmetric systems in this paper follow the form expressed in Tseng—
Yau [TY], in which an RR flux is present. These are special cases of the more general
systems, as given in Grana—Minasian—Petrini—-Tomasiello [GMPTO05] and Tomasiello
[TomO8], which include the H-flux and are expressed in terms of generalized complex
geometry [Hit03,Gual 1]. In this paper, we place our focus on mirrors of balanced metrics
and generalize the definition of Type IIA systems to higher dimensions, which does not
involve the use of generalized geometry.

T-duality and SYZ in the setting of generalized Calabi—Yau manifolds were studied
in [BEM04,BHMO04,FMT05,GSN07,CG10], where H-flux played the key role, and
also from the bispinor perspective, which includes RR fluxes in [GMPT07, GMPWO09].
The emphasis of this paper is different: we study SYZ in the presence of RR-flux and in
particular focus in on the balanced Hermitian metric condition on non-Kéhler manifolds,
which also appears as part of the Strominger system [Str86].
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2. The Supersymmetric Systems and Their Higher-Dimensional Analogs

In this section we introduce Type IIA and IIB supersymmetric SU (n) systems, which
are the main objects of study in this paper.

Definition 2.1. Let X be a real manifold of dimension 2n. An SU (n) structure on X is
a pair (w, 2) of differential forms satisfying the following conditions:

(1) € is a nowhere-vanishing decomposible complex-valued n-form on X such that
by defining

TOVX =(veTX®C:,Q2=0}
and (-9 X to be the complex conjugate of 71 X, one has a splitting
TXeC=T"9%x 1Y)

which induces an almost complex structure J on X. Then €2 is an (#, 0) form with
respect to this almost complex structure J. (Note that we do not require d 2 = 0
here.)

(2) o is a non-degenerate real' (1, 1)-form with respect to this complex structure J
such that w(-, J-) defines a Hermitian metric on X. (Note that we do not require
d w = 0 here.) This in particular implies that 2 A @ = 0.

Since both (2 A )/i” and w" are real nowhere-vanishing top-forms, we have

QrG=i"F.- 2
n!

for some nowhere-vanishing function F on X. F is called to be the conformal factor of
the SU (n) structure.

In other words an SU (n) structure is a pointwise Calabi—Yau structure without im-
posing any integrability condition. Supersymmetry imposes integrability conditions on
SU (n) structures. In string theory one mostly focuses on n = 3.

Definition 2.2. An SU (3) structure (X, @, 2) is said to be supersymmetric of type IIB if
2 defines an honest complex structure and w defines a balanced metric, thatis,d 2 = 0
and d (0?) = 0.

Let F be the conformal factor of the SU (3) structure. Define

pp = 2i93 (F_l : a))

which is an exact (2, 2) form.

1 More generally we should include B-field here, and @ can be complex-valued. Such a complexification
is necessary for making the mirror map to be an isomorphism. This paper focuses on RR flux and we omit it
for simplicity.
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In conclusion, we have the following system of equations for a supersymmetric SU (3)
structure of type IIB:

dQ =0, 2.1)
d(w?) =0, (22)
3
SZ/\S_Zz—iF~%, (2.3)
2193 (F—1 a)) — os. (2.4)

When w is symplectic (that is d w = 0) and F is constant, (X, w, €2) is Calabi—Yau, and
the RR flux source current pp is zero. In such case the corresponding metric has SU (3)
holonomy.

Definition 2.3. An SU (3) structure (X, w, 2) is said to be supersymmetric of Type IIA
ifdw=0anddRe 2 = 0.
Let F be the conformal factor of the SU (3) structure. We define

pa =dd(F-ImQ)
which is an exact three-form. Here
dd =dA - Ad

is the symplectic adjoint operator, where A is the adjoint of the Lefschetz operator
L=wn().

Thus the Type IIA supersymmetric SU (3) structure satisfies the following system of
equations:

dw =0, (2.5)
d(Re ) =0, (2.6)
3
Q/\S_Z:—iF-%, 2.7)
dd™(F - Im Q) = py. (2.8)

When d2 = 0 and F is constant, 2 defines an honest complex structure and X is
Calabi—Yau; the RR flux source current p4 is zero.
Type IIB supersymmetric structures have a natural generalization to all dimensions:

Definition 2.4. An SU (n) structure (X, w, 2) is said to be supersymmetric of type IIB if
Q2 defines an honest complex structure and w defines a balanced metric, thatis,d Q2 = 0
and d (0"~ 1) = 0.

Remark 2.5. Tt is well known that supersymmetric SU (3) system satisfies the equation
of motion. See, for example [GMPTO07].

Nilmanifolds introduced in Sect. 7 serve as examples of such systems.

However, generalizing Type IIA supersymmetric SU (n) structure to all dimensions
is not as obvious as it appears. The naive definition, which is to require d Re2 = 0 as
in dimension three, does not match with SYZ transformation. It turns out that choosing
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a special real polarization is important in the definition of Type IIA supersymmetric
structure in higher dimensions.

A complex structure automatically comes with a complex polarization, which is the
splitting

TXeC=T7"9x0 1% ).

This gives rise to the notion of (p, g) forms. On the other hand, given a symplectic
structure, it does not automatically come with a real polarization, and we have to fix one
in order to define Type ITA supersymmetric structure in higher dimensions.

Definition 2.6. Let X be a real 2n-fold and w a non-degenerate two-form. A real polar-
ization with respect to w is an integrable Lagrangian distribution {Ay C Ty X : x € U}
over an open dense subset U C X. (Lagrangian means that w|s, = Oforallx € U.)

Let (X, w, ©2) be an SU (n) structure. A real polarization (U, A) is said to be special
with respect to 2 of phase & € R/2nZ if Q|5, € R.g -el? forallx € U.

Note that the symbol A appearing ind * refers to the adjoint of the Lefzchetz operator.
We will also use A to denote a real polarization. It should be clear from the context which
meaning we refer to.

Given areal polarization on (X, w), the metric on X induces asplitting7U = A DAL
We have

no_ .t
o = P
prq=n

A
where forms in Q(Lf’q) are defined over U and consist of p A-directions and g A~*-
A
directions, and the corresponding projection operators 74'? : QF, — Q;f’q) . Let
A
QP " be the space of differential forms on X whose restriction to U belongs to QEJP’(I) .
Then define a generalization of Definition 2.3 as follows:
Definition 2.7. Let (X, w, ) be an SU (n) structure with a special real polarization
(U, A). (X, w, Q) is said to be supersymmetric of Type IIA if

(1) dw=0.
@ d(y’ - Qly) =0.
3) d@@y"'Qly) =0.

Definition 2.8. Let F be the conformal factor of an SU (n) structure (X, w, 2). If
(X, w, Q) is supersymmetric of Type IIA (with respect to a special real polarization
(U, A)), define
pa=—idd*(F -y "' Qlu+7" - Q).
If (X, w, Q) is supersymmetric of Type 1IB, define
op = 2i0d (F—1 a)) .

Definition 2.7 reduces to Definition 2.3 when n = 3:
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Proposition 2.9. Let (X, w, Q) be an SU (3) structure with a special real polarization
(U, A) of phase zero or w. Then d (Re Q) = 0 if and only if d (7113\’0 -Qly) =d (7111\’2 .
Qly) =0.

Proof. Since U is an open dense subset of X, d (Re 2) = Oifandonlyifd (Re Q|y) = 0.
Forxg € U,let (61, 6, 63, ry, rp, r3) be local coordinates around x such that each leaf of
A is given by (rq, 2, r3) = (c1, ¢2, ¢3) for some constants ¢;’s. Then 2 can be written
as

Q= f0,r)-@dO+iy) A(dO2+iyY2) A(dO3 +iY3)

where ¢; = J-d 6; are one-forms and f (6, r) is complex-valued. Since (U, A) is special
of phase zero or 7, Q2|p, = f(0,r)-dO; AdO AdBs isreal-valued, and hence f (6, r)
is real-valued. Then

ReQ:f(@,r)~(d91 Adb AdBy —db /\1//2/\1//3—1//1 /\d@z/\l//g,
— Y1 Ay AdB3)

= et -Q.

It follows that d (Re ) = 0 if and only if d (7% - Q) = d (7y> - Q|y) =0. O

Note also whenn = 3, ImQ = —i (7112\’1 -Q+ 712’3 - ). Therefore, to conclude, a

Type IIA supersymmetric SU (n) system satisfies

dw =0, (2.9)
d(@ P er" ) @) =0, (2.10)
n
Q/\Q:—i”F-w—', @2.11)
n.
—iddMF - @M Qe ad" Q) = pa. (2.12)

A Type IIB supersymmetric SU (n) system satisfies

dQ =0, (2.13)
d@" =0, (2.14)
_ '
QAQ=—iF. = (2.15)
n!
2197 (F—1 ~a)) = og. (2.16)

Remark 2.10. The general SU (n) systems we introduced here have similarities with the
higher dimensional supersymmetric compactifications in string theory. For instance, for
n=4, they are very similar to special cases of the supersymmetric equations in [PT13,
Ros14]. It is interesting to expand upon this issue in future works.
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3. SYZ Transformation

The SYZ transform we use in this paper follows from [LYZ00,Leu05]. In this section
we briefly review the setting and definitions which will be used in the rest of the paper.

Let (X, w) be a symplectic manifold and w : X — B a Lagrangian torus bundle.
By Arnold-Liouville’s action-angle coordinates [Arn91, Section 50], for each p € B
there exists open subset U C B containing p, action coordinates rq, ..., r, of U and
symplectomorphism (7~ '(U), w) = (T*U/A*, wean), where A* is a lattice bundle
generated by dry, ..., dr,. The corresponding fiber coordinates of 7*U are denoted as
O;i’s,and sow = >\ d6; Adr;.

The dual torus bundle is defined as the set of all fiberwise flat U (1)-connections:

X = {(r,V):r € B, Visaflat U(1l) connection over F}}

where F, denotes the fiber of 7 at r. The torus bundle map 7 : X — Bis given by
forgetting the fiberwise flat U (1) connections V.

X is endowed with a canonical complex structure. Locally for each p € B, there
exists open subset U C B containing p and a biholomorphism 71 (U) = TU/A,
where A C TVU is the lattice bundle generated by 3371, R 8%1’ and r;’s are the action
coordinates mentioned before. The corresponding fiber coordinates of 7U are denoted
as é,-’s, and so complex coordinates of X can be taken to be & = exp(éi +1ir;) or
Zi :=éi+iri fori = 1,...,]1.

The transition between any two local action-coordinate systems of B belongs to
GL(n,7Z) x R", and so B is endowed with a tropical affine structure. We assume that
the action coordinate systems can be chosen such that all the transitions belong to
SL(n,7Z) x R". In such a situation X has a holomorphic volume form Q, which is
locally written as

Q=dziA--Adz, =[O +idr) A A G, +idr,).

(X, w) and ()V( , KVZ) are said to form a semi-flat mirror pair. The semi-flat A-branes on X
are mirror to semi-flat B-branes on X under Fourier-Mukai transform. The readers are
referred to [LYZO0O0] for details.

In this paper, we mostly focus on Fourier—Mukai transform of differential forms,
which will be discussed in the next section. We will consider a semi-flat real (1, 1) form
& on X, which is given by

L _—
®=3 Zﬂij(r)dzz' Adz;
ij
where Zi’ jMij (r)dr;dr; defines a Riemannian metric on B (that is, 1;; is symmetric

oni, j and positive definite). We will impose the balanced condition d "~ = 0 instead
of the Kihler condition d@ = 0, and consider its mirror structure by applying the
Fourier—-Mukai transform.

4. Fourier-Mukai Transform of Differential Forms

Let (X, w) and ()V( , Q) be a semi-flat mirror pair of real dimension 2n as in Sect. 3.
In this section we introduce Fourier—Mukai transform for differential forms on X and
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X. We will restrict the construction to T-invariant differential forms, while keeping
in mind that Fourier—Mukai transform can also be done for general differential forms,
which is an important tool for quantum corrections [CL10,CLL12]. Fourier—-Mukai
transform of differential forms was used to study SYZ mirror symmetry without flux
in [Leu05,CL10,CLL12,CLM11]. There is an important subtlety in the treatment here,
namely we take a switch from the complex to the real polarization (Definition 4.2) along
with the transform. A new result in this section is a direct relation between the Doubealt
operators (9, d) on X and the differentials (d, d Ayon X.

Let 9’1‘3 (X, C) denote the space of complex-valued k-forms on X which depend only

on base, that is, ¢ € QIE (X, C) is locally written as

= D> an()db A AdO, Adrj Ao Adry,

I=(i1.eiip)
J=(j1-sJq)
p+rq=k
where (r1,...,rn, 01, ...,06,) is an action-angle coordinate system of X, and a;y;(r)’s

are complex-valued functions on B. Such a ¢ is also said to be T-invariant, where T
denotes a torus fiber of X — B.

Definition 4.1. A semi-flat (supersymmetric) SU (n) structure is a (supersymmetric)
SU (n) structure (X, w, 2) such that X has a Lagrangian torus bundle structure X — B
and w, 2 € Q3 (X, C).

Similarly, let Q’;’q (X) denote the space of (p, g)-forms on X which depend only on
base. ¢ € Q59 (X) is locally of the form

¢ = Z ary(rydziy A---Adzj, Adzjy A Adzj,.
I=(i1,..ip)
I=3j1,-rJq)

The above expression of qvb is written in terms of complex polarization. We can switch
to real polarization by the following definition:

Definition 4.2 (Polarization switch operator). The polarization switch operator P on
Q7% (X) is defined by sending

é = Z ary(rydziy A---Adzj, Adzj A---Adzj,
I=(i1,0rip)
/=(jls-~'ﬁjq)
to
Ped= D ay(r)dby A Adb, Adrj A Adr,.
I=(i1,.mip)
J=(j1,-5Jq)

Now we define Fourier—Mukai transform of differential forms on X and X , which
gives an isomorphism

k

o x.0 =P (sz’;*”*“f’()?)) .

p=0
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Consider the following commutative diagram:

XXBX

N
\/

where 7 : X — B and % : X — B are dual torus bundle maps given in the semi-flat
setting, and the fiber product X x p X is defined using these bundle maps. We have the

universal connection on X xpg X, whichisd +i6;d6; —i6;d6; in terms of semi-flat
local coordinates. The curvature of the universal connection is

n
F =2i Zdéi Adb;.
i=1

Definition 4.3 (Fourier—-Mukai transform). Let dv) be a T-invariant differential form on
X. The Fourier transform of ¢ is defined as

. . F
FT - ¢ :=m, ((ﬁ*(P @) A exp Z)

where the push-forward 7, induced by w : X — B is defined by integration along torus
fibers.
Similarly for a T -invariant differential form ¢ on X, its Fourier transform is defined

as
FT ¢ =P (7| (7 d))/\expg .

By carefully keeping track of the sign in the transform, we see that applying Fourier—
Mukai transform two times is simply identity up to a sign only dependent on the dimen-
sion.

Proposition 4.4.

n(n 1)

FToFT = (—1)
where n = dim B.

Proof. Itsuffices to consider the basic elements d z; Ad zy = d zjy A+ --Adzi, Adzj A
-»Ad zj,. Switching to real polarization gives doyAdry=do, A---A déip Adrj A
-+ A drj,. Multiplication by

n
exp (Zdé,- A de,-) =S "> dbg adek
i p=0 ]



154 S.-C. Lau, L.-S. Tseng, S.-T. Yau

gives
(n—p)(n—p—1) v v
(=) 77 d0e AdBre AdB; Adry
(n—p)(n—p—1) p(n_p) Y Y
=(=1 2 (=D dbre AdO; AdbOje Adry
where /€ := {1, ...,n}— I and p = |I|. Then integrating along the fiber directions 6i’s
gives
(n=p)(n—p=1) p(n*p) . c
(=D 2 (=D sign(1°, I)dB;c Adry
— (=) sign(1, 19d 6gc Ad ).
Thus we have
_— (n=p)(n—p=1) | ¢
FT-(dz; Adzy) =(—1) 2 sign(I, I®)d6;c Adry. 4.1)

Now we take Fourier transform again. Multiplying d 6;cAd r; by exp ( > do; nd 9,-)
gives gives

pp—1)

(=P (=1)" 7 db; AdbOr Adbre Adry

rp=1)

= (=DP(=1)"Z (=1)""d0; Adbjc AdB; Adry.

Integrating along the fiber directions 6;’s gives

p(p=1)

(=DP(=1)" 2 (=1)"Psign(1, I°)d6; Adry.

Switching the real polarization back to complex polarization, we have

pp=1)
2

FT(d0;c Adry) = (—1)P(—1) (—D)"sign(I, I)dz; AdZy.

Hence FT o FT(dz; Adz)) equals to

(nfp)(;fpfl) pp=1 n(n—1)

(=D (=DP(=1)" 7 (=) -dzyAdzy=(=1)" 7 dz; Adzy.

O

In the theorem below we see thatd on Q’g (X, C) is transformed to d on Q’g ()v( , C),and

d® on Q% (X, C) is transformed to 9 on Q7 ()V(, C). Werecall thatd® :=d oA — Aod
which decreases the degree by one, where A is the dual Lefschetz operator. To our
knowledge the theorem has not appeared in previous literature.

Theorem 4.5. Fourier—Mukai transform gives an isomorphism

(Q’;(X, o), (—;)”id’ (—;)”i g

) ~ (Qg(X,C), 3, a)

as double complexes.
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Proof. Let¢ = ¢y yjdz; Adzy where I and J are multi-indices. By assuming ¢y s is
skew-symmetric on / and J, the expression is independent of the orderings of I and J.
We need to prove that

_ (— 1)
FTod ¢ =—>— doFT ¢

and

(=D"i

FTod ¢ = -d2oFT - ¢.

Consider the first equation. By Eq. (4.1), Fourier transform of ¢ is

(=p)(n—p=1)
FT-¢=(—1) 7 sign(l, )¢ ;d0;c Adr, (4.2)
where 1€ = {1, ..., n}—1.Note that the above expression is independent of the orderings

of I and J.
Let p :=|I|. We have

- i R N
FT o0 ¢ =FT. (E(aiqﬁ],J)dZ,' Adzy /\de)

= S0 sien (1 1) (i) (<17 d 61 Adry Adry
i (=p)n=p=1) . i
= 5(—1) Z sign(1, I9)(0;¢7, /) (=1D)"dri AdOje Adry.

Comparing with Eq. 4.2, we see that FT 0 9 - ¢ = (—1)”% -d oFT - ¢.
To prove the second equation, let’s recall that d A—doA— Aod,where

n
Ap=>"115¢
i=1
forw = >°; d6; A dr;. We remark that more generally for w = Zi’j wijdx; Adxj,
1 L
Adp =2 D @ H iy,
i,j
Writing K = I€ — {i}, we have

FTod-¢ =FT i E 0iprydzi Adzy Ad
0d.-b = A= . .
) iPr,J A r94 ZJ

iel¢
—i (1=p=1)(n—p=2)
=5 (- = Zsign(l’, L K)(31.7)d0g Adry.
iel®
On the other hand, let’s compute d o Ao FT-¢ and A od o FT - ¢.

(n—p)(n—p—1)
2

doFT ¢ = (—1) sign(1, 1) D (i1, dri Ad6ge Adry.

igJ
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Again the above expression is independent of orderings of /¢ and J. Since A =
Zj L tg;, taking 1€ = (j, K) and J = (j, L), we have

(n—p)(n—p—1)

Aod oFT-¢p=(—=1) 2 sign(l, I) z (3i¢pr.7) (—dOx Adry)
Jj=ig]
jel€
sign(, I°) z (Gi¢r,s)dr;
igJ
J#i
jerenJ
A(=D"P7 a0k Adrp).

To compute d o A o FT - ¢ (again taking /¢ = (j, K) and J = (j, L)), we have

sign(1, 19 D" ¢y (=1 1dog Adrg
jelenJ

(n=p)(n—p—1)
2

+(=1

n—p)(n—p—1)
2

AoFT-¢ = (—1)°

and hence

(n=p=2)(n—p—1)

doAoFT-¢=(—1) 2 sign(l, I Z djprydrj AdOg Adry
i=jel‘nJ
sign(1, I€) Z diprydrin(=1)""P dog Adrp.
i¢J
i
Jjer‘nJ

We see that the second terms of A od o FT - ¢ andd o A o FT - ¢ are equal. Thus

(1—p)(n—p—1)
2

+(=D

d? oFT- ¢ = (-1 (n_p_Z)Z(n_p_l) sign(/, 1) Z djprydrj Adbx Adrp

jelrenJ
— =D  sign (1, 19 S i1.0) (~dbg Adir))

idJ
jel¢

= (=) S sign(1, I9@i61.) A0k Adry

iel¢
n—1 (n=p=2)(n—p—1) . .
= (D" T D sien(, 1K) B¢ ) A6k Adry
iel¢

e\ —1
n 1
= (1) (5) FT - (3¢).

5. SYZ Between Type-A and Type-B Supersymmetric Systems

Let (X, w) and ()v( , 2) be a semi-flat mirror pair as described in Sect. 3. (X, w) has the
required real polarization A given by the given Lagrangian torus bundle (where A is
the tangent space of the torus fiber at x € X). The purpose of this section is to prove
Theorem 1.1, namely Fourier—Mukai transform introduced in Sect. 4 gives a symmetry
between Type-A and Type-B supersymmetric SU (n) structures.
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Theorem 5.1 (Detailed version of Theorem 1.1). Let w be a torus-invariant real (1, 1)-
form on X and Q the Fourier—-Mukai transform of €2®.

@))] ()V(, o, SVZ) Jorms an SU (n) structure if and only if (X, w, 2) forms an SU (n) struc-
ture. For such a pair the conformal factor F of (X, w, Q) is related to the conformal
factor Ia of()v(, o, SV2) by F=2Mmp-1

) (X, w, Q) is supersymmetric of Type-A if and only if ()V( , O, Q) is supersymmetric of
Type-B.

3) L)eilt7 pA be the Type-A RR flux source current of (X, w, Q2). Then its Fourier—Mukai
transform equals to the Type-B RR flux source current pg of ()V(' , O, SVZ) up to a constant
multiple.

Proof. Let (01, ...,0,,r1,...,r,) belocal semi-flat coordinates. The (1, 1) form & can
be written as

o —
W= EZM,-j(r)dz,' Adzj
LJ
v i y «
= Z/Lij(r)dei /\drj + 5 Z(/,Ll'j —uﬁ)(de,- /\d@j +dr; /\drj)
i,j i<j

Since @ is real, j1;; = uj; are real-valued. Defining the one-forms
Wi = Z pijdr;
J

on B, @ can also be written as

o= Zdéi N M.

1

Changing to real polarization,

P -expw) =exp | i Z,u,-j(r)déi Adr;
iJ

Then

Q =FT: expw) = n*-exp(—Zdéi /\d@i)/\exp i Z,u,,'j(r)déi Adrj
i i,j

= n*~exp(—2dé,- A (d 6 +i;L,-))

1
nn—1)

= (=D 7 dor+ip) A A(dOy +i ).

(5.1)
2 defines a complex structure J on X by

J-dO =—ui, J-p =do;
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if and only if the one-forms w; for i = 1,...,n are linearly independent, which is
equivalent to the condition that w is non-degenerate.
Moreover

N e T I
w:Zd@i/\drizzmzm/\ ! 2ji / =§Zuﬁlm/\n_j
ij ij ij
has no (2, 0) and (0, 2) components because /L;il is symmetric in i, j, where ;! is the
inverse matrix of p;; and n; := d6; +1iu; are (1, 0)-forms with respect to Q2. Thus w is
areal (1, 1) form with respect to J.
Finally

(w, J) is Hermitian < p;; is positive definite
@(;fl),' ; is positive definite < (o, J ) is Hermitian.

This proves (}V( , 0, SVZ) forms an SU (n) structure if and only if (X, w, 2) forms an SU (n)
structure.
Recall that the conformal factor F for (X, w, 2) is defined by

n

QrQ=i".F. 2
n!

and similarly for the conformal factor F of ()V( , 0, fl). By direct computations, we have
nn+1)
L2 (=17
For b
F det(pi5)
Now we consider the supersymmetry conditions. d @ = 0 and d (nx’o -Q|y) = 0are

automatic. It suffices to prove that d (7'[11\’"_1 -Q|y) = 0ifand only if d @"~! = 0. The
k-th summand of

Q2P - o)k

P -explo = 0

k=0
has k torus-fiber directions (d é) and k base directions (d r). After Fourier-Mukai trans-
form it has n — k torus-fiber directions (d 6) and k base directions (d r). Thus n,"(k *.Qis
the Fourier-Mukai transform of (2&)¥ / (k)! (up to a constant multiple). By Theorem 4.5,
d is transformed to 8 (up to a constant multiple). Thus d (7111\’”_1 - Q) = 0if and only if
d("") = 0. Since & is real, d(@" ") = d(&~1). Thus d (7 )"~ - Q) = 0 if and only
ifdo" ! =0.

Now consider the fluxes of the supersymmetric systems, which are defined by

pa=—idd*(F - @ " Qe Q)),
bp =2i0d (I:“’l w) .

From above nf\_l’l - Q is the Fourier—Mukai transform of 2w, and F =2np-1
The component 712’" - Q is the transform of @", which contributes zero to pg. Moreover
by Theorem 4.5, % .d is transformed to 9 and # -d ™ is transformed to 9. It
follows that the Fourier transform of py4 is 22"*255. O
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6. Deformation Theory

Since Type IIA and IIB supersymmetric SU (n) systems correspond to each other under
the SYZ mirror transform, their deformations should also correspond to each other. The
following cohomologies are keys to study their deformations:

Definition 6.1 ([BC65,Aep65]). Let X be a complex manifold. The Bott—Chern coho-
mology of X is defined as
o Ker(d)nQri(X
HPY () = er(d) X)
e Im(99) N Q2P-9(X)

Definition 6.2 ([TY12a,TY12b]). Let X be a symplectic manifold. The Tseng—Yau sym-
plectic cohomology of X is defined as

Ker(d +d2) N Qk(X)
Im(dd2) N Qk(X)

Hi g0 (X) =

Indeed we have a more refined version for a given real polarization (U, A) on X.

Definition 6.3. Let X be a symplectic manifold with a real polarization (U, A). Define

_ Kerd +d%) N Qw9 (x)
Im(dd?) NQPo*(X)

A . .. .
where we recall that Q79" (X) consists of forms whose restrictions to U consist of )4
A-directions and g A-directions.

In the semi-flat setting given in Sect. 4, we also have the torus-invariant counterparts

. Ker(d) N Q57(X)
HEY (X)) = 6.1
ps-c.) Im(33) N QL4 (X) ©D

and R
X))
- Ker(d +d® nQy? (X) 6o
Bd+dA( ) - ( )A . ( . )
Imdd®) NnQy? (X)

For a Type IIB supersymmetric SU (3) system ()V( , w, ), suppose that w; for t €
(—e€, €) is a deformation of the balanced metric w (meaning w;—9 = ) such that
(X, w;, Q) is still a Type IIB supersymmetric SU (3) system, with a fixed conformal
factor F and fixed type B flux pp. As argued in [TY, Section 2.1], the first order defor-
mation §(w?) = 7 3= 060; belongs to HB C (X) ne-ph l(X) where P! 1(X) denotes
the space of primitive (1, 1) classes and £ denotes the Lefschetz action w A -. It easily
generalizes to all dimensions:

Proposition 6.4. Let X, wr, Q) fort € (—e, €) be a one-parameter family of Type IIB
supersymmetric SU (n) systems with a fixed conformal factor. Then the infinitesimal
deformation % | =0 (a);’_l) represent a class in

Hl‘l ll‘l I(X)ﬂﬁn 2 Pl](X)BC
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Proof. The balanced condition d (] ~') = 0 implies that d 2| _ (@}~") = 0, and
hence % ‘t:O (0]~ ) represents a class in Hg Cl i 1(X). Taking % ‘t:O on

U )
QAQ=i"F.L
n!

where F is the conformal factor, we have o~ ! A % | o @ = 0, and hence % } o @t

is a primitive (1, 1) form. Thus %L:O (a)f_l) =(n-— D" 2 A % |z=0 (w;) belongs to
L2 ’Pl’l()v()B_C, O
Remark 6.5. Indeed as in [TY] we can say more: if we also fix the Type-B flux of

()V( , wy, 2), then the infinitesimal deformation % | =0 (a);‘fl) is actually harmonic with
respect to the Bott—Chern cohomology.

Now consider a Type ITA supersymmetric SU (n) system (X, w, 2). Its deformation
theory is more tricky than the n = 3 case because it depends on a real polarization.

Proposition 6.6. Let (X, w, ;) be a one-parameter family of Type IIA supersymmetric

SU (n) systems with a fixed special real polarization (U, A) on X and a fixed conformal
1,n—1 kil .

factor. Then 7t/ . (5 ’[:0 Q,) ’U represents a class in

1 1 — —
HE D @)y Ut @)

where QU1 denotes the space of (n — 1, 1) forms (with respect to the almost complex
structure induced from Q = Q;—9).

Proof. aaz | 2, only has (n, 0) and (n—1, 1) components. Taking ;—t | —oon QAQ =
i OQ)/\Q = 0, and hence
Qt has no (n, 0) component, and hence belongs to Q*~1-1 (X). By the condition

i"F - Where F is the conformal factor, we have ( 3 z|

a7 li—o
d(n}\" oQily) = 0, we haved( (2] OQf)) = 0. Moreover €; is a

primitive form as w A ; = 0, and hence 5} =0 2; is also primitive. In particular

p) ln—1 . Ln—1
dr. 2 | Q, =0. ThusrrA’Z -%!tzoﬂ,hjdeﬁnesaclassmHé gA)(U). |

From Sect. 5, we see that SYZ and Fourier—Mukai transform gives the mirror map
from the Type IIA moduli space to the Type IIB moduli space of the mirror. Indeed the
above cohomologies are also mirror to each other by Fourier—Mukai transform:

Theorem 6.7. Let (X, w) — B be a Lagrangian torus bundle and (}V(, Q) be its mirror.
Fourier—Mukai transform gives an isomorphism

H(ndquA) (X.C) = Hy'g o (X)

where A is the real polarization on X induced from the bundle structure.

Proof. Fourier—-Mukai transform maps a 7 -invariant (p, g) form on Xtoa T-invariant
form on X with (n — p) fiber directions and ¢ base directions. By Theorem 4.5, d and 9

on X correspond tod and d * on X respectively under Fourier-Mukai transform. Hence

d, 33 on X correspond tod +d* and dd? on X respectively. By Egs. (6.1) and (6.2),
statement follows. O
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7. Nilmanifolds

We describe an important example of a mirror pair of non-Kihler supersymmetric
Type-A and Type-B systems constructed from nilmanifolds. We first describe the three-
dimensional case, and extend the discussion to all dimensions.

7.1. Three dimensional case. The three-dimensional real Iwasawa manifold B is given
by the quotient of the Heisenberg group, which consists of matrices of the form

1 r r
0 1 rn),r,rmn ek,
0 0 1

by the discrete subgroup I" consisting of matrices of the same form with ry, r», r3 being
integers.
Explicitly I' acts on the Heisenberg group by affine transformations: for

1 a ¢
y=|10125>b]el
00 1
we have
1 1 00 r a
y - r = 010 rn + b
r3 0 a1 r3 c

Thus B is an affine manifold. . 5
Now consider X = T*B/A* and X = T B/A. X has a canonical complex structure,

and its complex coordinates are given by §; = 6 +iri,i =1,2,3.Ithasa holomorphic
volume form

fl:d{l Ado Ades.

X has a canonical symplectic form w = Z?:l do; ndr;.
Take the Hermitian two-form

cb='5(d;1 NG +d AdD+ (A8 —rd &) A A — rd D)

= (deﬁ Adr +d6 Adry+ (63 — rdfy) A (dr —r1dr2))

on X. Notice that d & # 0 while d ? = 0 by direct computation. Moreover,

& =db Adriadbyadra Adby Adrs
which is a constant multiple of QA Q. Thus (X, @, §2) forms a type IIB supersymmetric
system with a constant conformal factor.

The type-B flux source is

pp =2i000 ~dri AdO Adra Adb,
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up to some constant multlple pp is the Poincaré dual of the complex manifold defined
byri=r = 6; = 6, = 0, which can also be written as TC/(CNA)forC ={r =
rp =0} C B. ;

Now take the Fourier-Mukai transform of e>*. Write

b= 1 (00 A QB+t A @D —ndly+ D) +00 A W@E —rid D).
Switching polarization (Eq. (4.2)) gives
P-w= 15 (dél Adri+df A dry —ridr +r12dr2) +dO3 A dr; — rldrz)) .
Then
20219000 _exp(d ) A (A0 +idry) +dbh A (A6 +i(dry — ridrs +r2d )
+d03 A (A3 +i(dr3 —r1d ).
Thus the Fourier—Mukai transform is

Q= (d91 +idr1) VAN (d92+i(dr2 —rldr3 +r12dr2)) VAN (d93+i(dr3 —rldrz))
=(dO;+idr) A((dOy+ridB3) +idr) A(dO3+i(drs —ridrp))

on X. It is easy to verify that d (Re 2) = 0 and Q A  equals to @’ up to a constant
multiple. Thus (X, w, ©2) is a Type IIA supersymmetric SU (n) system with a constant
conformal factor.

The type-A flux source is

4 =dd2Im Q) ~dri Adr Adb;

up to a constant multiple. p4 is the Poincaré dual of the Lagrangian submanifold defined
by r1 = rp = 03 = 0, which can also be written as the conormal bundle N*C/(C N A*),
where C = {r; = rp, = 0} C B is as defined above. Note that the type-A flux current p4
of X and type-B flux current pp of the mirror X correspond to each other by Fourier—
Mukai transform.

7.2. General dimension. We may extend the above example to general dimensions to
construct type II-A and type II-B supersymmetric SU (n) systems which are mirror to
each other. Consider the vector space V of upper unitriangular matrices (r; ])l =1 that
is,rjj =0fori > jandr;; = 1foralli =1, , K. Then we consider the 1att1ce r
of upper unitriangular matrices (a; j)f =1 with integer entries, a;; = 0 fori > j and
ajj = lforalli =1,..., K. T acts on V by left multiplication, and the real Iwasawa
manifold B is the quotient V/I". Explicitly a = (a;;)i<j € I'actsonr = (rjj)i<j € V
by a-r =r', where

k—1
/
ik =Tik + Z ajjrji + aik
j=i+l
foralli < k. Inparticular whenk =i +1, r o1 = Tiir1+a; iy foralli =1, K—1.

B is an affine manifold. We have the followmg global one-forms which w111 be useful
to construct the non-Kéhler geometries:
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Proposition 7.1. Define inductively over k — i € N the following one forms on V :

e =drig — D rijeji

j=i+l

and e; jy1 :=dr; 41 foralli =1, ..., K — 1. These one forms are invariant under the
action of T’ and hence descend to be global one-forms on B =V /T.

Proof. We prove by induction over k —i € N. Fork —i = 1, since a = (a;j)i<j € T’
acts by mapping r; j+1 t0 ri j+1 + @i i+1, it follows that ¢; ;41 = dr; ;41 is invariant under
I". Now consider

k-1
eik =drix — z rijejk
j=i+l

which is sent to

drix +aiindrigi e+ +ai—1dre—1.x)
k=1

- E (rij + Qi jp1liv1,j + -+ ai j1rj—1,j +aij)ejk
=i+l

=ej+ | aiindrigi e+ +aipdr_ik

- Z (@jiv1Tig1,j -+ a j1rj_1,j +aijj)ejk

j=i+l
under the action, because by inductive assumption e is invariant for all j = i +
1,...,k — 1. Consider the second term in the last expression:
k—1
ajjiv1drivi g+ +aig—1drg1x — Z (@i is1Fiv1,j + o+ a jo1rj—1,j +aij)ej
j=i+l
k—1 j—1
= Z a,-jdrjk— ajj + Z airyj | €k
Jj=i+l [=i+1
k—1 k—1 j—1
=3 (S ren— X iy | e
Jj=i+l I=j+1 I=i+1
k=1 j—1
= Z Z aijrjien = >, D aurjek
j=i+ll=j+1 j=i+ll=i+1

=0
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where we have used the equality

k—1

drji —ejr = Z rjieik
I=j+1

by definition of e ;. Thus e;; is invariant under the action. 0O

Now consider X = T B/ A, which is automatically a complex manifold. Suppose 6¢;;
are the fiber coordinates of T'B corresponding to the coordinates r;; on B fori < j.
Then 6;; transforms in the similar way under the action of @ = (a;;);<; € I':

k—1
i
eik = 91']( + Z al'j@jk.

j=i+l

The global one-forms on B in Proposition 7.1 pulls back to be global one-forms on X.
We also have the following global one-forms on X:

k—1
Sik = d i — Z rij fik

j=i+l

defined inductively on k — i € N as in the definition of e;¢’s.
The holomorphic volume form on X is defined as

Q= /\dZij

where z;; = 0;;+ir;;. Itautomatically satisfies Eq. (2.13). (We fix an order, say dictionary
order for {(i, j) : i < j}, to define the wedge product in the above expression.) Take

w = Ze,-j VAN f,/
i<j

Proposition 7.2. w is a Hermitian (1, 1)-form on X. Moreover, 2 A Q equals to " up
to some constant multiple, that is, the conformal factor is a constant.

Proof. Since
/\eij = /\dr,'j
i<j i<j

and
N fi =\ déij,
i<j i<j

it easily follows that Q A Q equals to " up to some constant multiple. In particular, @
is non-degenerate.

Toseethatwisa (1, 1)-form, it suffices to prove thate;j A fi+ei A fijisa (1, 1)-form,
and we will prove it using induction on (j —i, [ — k). Thisistruewhen j —i =1 —k =1
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sincein such acase ¢;; = dr;j and fi; =d 6, anddr;j AdOg+dr+do;jisa(l, 1)-
form. Now consider
eij A fu +ew A fij
j—1 -1

=|dr;— Z ripepj | A | A6k — Z kg fql

p=i+l qg=k+1
-1 j—1

+ | dry — Z Tipepr | A | d6;; — Z Tig fqj

p=k+1 g=i+1
We already know that dr;; A d 6y +dr Ad6;jisa (1, 1)-form. Moreover,

-1 -1
drij A Z Tig fqi | + Z Tipepr | A dB;;

q=k+1 p=k+1
and
J—1 J—1
dryg A Z riqqu + Z Tip€pj A d by
g=i+l p=i+1

are (1, 1)-forms, because they are linear combinations of dryp AdOeq +dreqg AdOgp’s.
Finally by inductive assumption, e; A fg1+eqi A fpj’s are also (1, 1)-forms for j — p <
j—il—qg<l—k. ‘ '

To prove that w is a Hermitian form, it suffices to see that a)(a%j, a%,-,-) > ( for all
i < j.Consider '

d—1 d—1
ecd N fea = | drea — Z Teppd | N dbeq — Z chfqd
p=c+1 g=c+1

Note that (e;; A ﬁj)(%, %) = 1, and all other terms of the form (e.q A fcd)(%, %)

i 1 v L
contribute by squares of a function in r,;’s which are non-negative. Thus w is a Hermitian
form. O

Thus Eq. (2.11) is satisfied with the conformal factor f being a constant.
We will need the following lemma for the behavior of ¢;; and f;; upon differentiation:

Lemma 7.3.

-1
de,-j = — Z Cik N ekj
k=i+1

and

-1
dfij=- Z eix N fij

k=i+1

foralli < j.
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Proof. We prove by inductionon j —i € N. When j —i = 1,de;; =d f;; = 0. Recall
that

j—1
€ij = drij — Z riiejj.
I=i+1
Upon differentiation,
Jj—1 Jj—1
de,-j = — Z dry Nerj— Z r,-pdepj
I=i+1 p=i+l
j—1 Jj—1 j—1
= — Z drip Negj + z Tip Z epl A eyj
I=i+1 p=i+1 [=p+1
j—1 j—=1 1-1
= — Z dry Nepj+ Z Z ripepl N ejj
I=i+1 I=i+1 p=i+1
j—1
=- Z eil N elj
[=i+1

where the second line follows from inductive assumption applied ond e,; for j — p <
j — i. Similarly,

j—1
fiy =d6;— > rufij.

I=i+1

Upon differentiation,

j—1 j—1
dfij=—= > dranfij— D ripd fp

I=i+1 p=i+l

Jj—1

j—1 j—1
Z_Zd"il/\ﬁj"'zrip zepl/\flj

I=i+1 p=i+l I=p+1
j=1 I-1

j—1
= — Z drig N fij + Z Z ripepl N fij

I=i+1 I=i+1 p=i+1

j—1
= — Z ei; N flj~

I=i+1
This proves the required formulas. O

We have
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Proposition 7.4.

d@H=0
but

d@2) #£0

where n = K(K — 1)/2 is the (complex) dimension of X. Thus w defines a balanced
metric on X.

Proof.
dow = de,’j N fij —€jj /\dfij
Jj—1 Jj—1
= — Z eik/\ekj/\fgj— Z €jj /\e,-l/\flj.
k=i+1 I=i+1

All terms in the above expression are linearly independent. Since each term of "2

contains all but two pairs of (€., fix), "2 A (ejx A erj A fij) must be zero since the
index sets {i, k}, {k, j}, {i, j} are pairwise distinct. Similarly "IN (eijnei N fij) = 0.
Thus

d@" H=mn-1Do"?Adw=0.

On the other hand, each term of @2 contains all but three pairs of (e, fxx). Thus
for each e;x A exj A fij, there exists a unique term in "3 such that their product is
non-zero. This also holds for e;; A e;; A fij. Thus

d@ ) =m-2)"Ardw £0.
O

Thus we see that Eq. (2.14) is satisfied. The RR flux source pp is 2i 99w, which is

a closed four-form. Then we obtain a Type- B supersymmetric SU (n) structure (up to a
constant multiple in the first equation):

QAQ =",
d@" =0,
2i 00w = OB,
dQ =0.
The mirror of this system is a Type-A supersymmetric SU (n) structure defined on
the dual torus bundle X = T*B/A*. Let 01, ..., 0, be the fiber coordinates on 7*B
corresponding to the coordinates r1, ..., r, on B. Thenry, ..., r,, 601, ..., 0, descends

to be local coordinates on X. X is equipped with a canonical symplectic form
o=d0; Adri+---+d6, Adr,.

We have the global one-forms e;; for i < j on B defined inductively by Eq. (7.1),
which are pulled back to be global one-forms on X. Also recall the global one-forms f;;
defined on X fori < j. The dual basis { f, j i < j} gives global one-forms on X. The
explicit expressions of f, ;s are given by the following proposition:
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Proposition 7.5. Define fjk inductively on j € N by
Jj—1
fie=d0p+ D rij fix (7.1)
i=1
and flk = dé]k forallk = 1,..., K. Then we have (ﬁj, fah) = 8iadjp, that is,
{fij i < jYisadual basis to {fij :i < j}.

Proof. We prove by induction on j € N. For j =1, flk = dfx. Thus

(fvlkv fab) = (délk, d9ab) - bi{ Tac (délk, fch)

c=a+1

= 81a0kb

since fcp is a linear combinations of d 6, for p > ¢ > 1.
In general
j-1
(fjk fah) = (déjk, fah) + D rij (flk fab)
i=1
_ j—1
= (déjk, d9ab) - > Fac (déjkv fcb) + > rij (ﬁk fab)~
c=a+1 i=1

When (j, k) = (a, b), the first term is 1; the second term is zero because f,; contains

no d 6, term,; the third term is zero since i < j = a. Thus (f]k , fjk) =1
Now consider the case (j, k) # (a, b). The first term is always zero. If b # k, the
second term is zero automatically because f.; only consists of terms d 6, and the third

term is also zero by induction hypothesis on f, k1 < j. When b = k, we further divides
into two cases: j < a and j > a. When j < a, the second and third terms are zero

because only d 6, with p > a > j appear in f.; and f,;. When j > a, the second

term equals to —r,; and by induction hypothesis on f, x for i < j the third term equals
to r4j, and hence they cancel each other. This finishes the proof by induction. O

Using these global one-forms, the complex volume form on X is defined as
Q= /\(]ij +iejr)
j<k
where again we fix the dictionary order on {(J, k) : j < k} to define the above product. It

is then a direct verification that (X, &, €2) satisfies the following system (up to a constant
multiple in the first equation)

OANQ=a,
n,0 1,n—1 b4
d((my” @my Q) =0,
—idd® - @M Qe Q) = fa,
do=0.
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