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SYMPLECTIC STRUCTURES WITH NON-ISOMORPHIC

PRIMITIVE COHOMOLOGY ON OPEN 4-MANIFOLDS

MATTHEW GIBSON, LI-SHENG TSENG, AND STEFANO VIDUSSI

Abstract. We analyze four-dimensional symplectic manifolds of type X =
S1 × M3 where M3 is an open 3-manifold admitting inequivalent fibrations
leading to inequivalent symplectic structures on X. For the case where M3 ⊂
S3 is the complement of a 4-component link constructed by McMullen-Taubes,
we provide a general algorithm for computing the monodromy of the fibrations
explicitly. We use this algorithm to show that certain inequivalent symplectic
structures are distinguished by the dimensions of the primitive cohomologies of
differential forms on X. We also calculate the primitive cohomologies on X for
a class of open 3-manifolds that are complements of a family of fibered graph
links in S3. In this case, we show that there exist pairs of symplectic forms on
X, arising from either equivalent or inequivalent pairs of fibrations on the link
complement, that have different dimensions of the primitive cohomologies.

1. Introduction

There is a well-known class of symplectic 4-manifolds that is intrinsically related
to Riemann surfaces and its mapping class group. Given a finite type Riemann
surface Σ and an element f : Σ → Σ of its mapping class group, we can combine
the information of (Σ, f) into a three-dimensional manifold, the mapping torus
π : Yf → S1 with fiber Σ and monodromy given by f . We then take the product
of Yf with a circle S1 and obtain a symplectic 4-manifold X = S1 × Yf whose
symplectic structure can be constructed as follows (see Section 2 for more detail).
Let dπ be the closed, non-degenerate 1-form associated to the projection map and
dt the 1-form of the S1 factor in X. Together with a global two-form ωΣ of Yf ,
which restricts to the volume form on each fiber, we can take the symplectic form
to be ωf = dt ∧ dπ + ωΣ. By construction, the data of this symplectic 4-manifold
(X,ωf ) consists essentially of just (Σ, f).

Though simple in construction, this class of 4-manifolds has an interesting prop-
erty. We recall that a three-dimensional manifold can have different fibrations with
homeomorphic fibers, with the monodromy given by different elements of the map-
ping class group, or even fibrations with non-homeomorphic fibers. Of interest, the
different fibrations would lead to different symplectic forms on X. It is therefore an
interesting question whether symplectic forms from different fibrations are related
or not in some particular way. In fact, it is known from the work of McMullen
and Taubes [6] that the symplectic structures from different fibrations can be in-
equivalent. In this paper, following [6], we say that two symplectic forms (ω0, ω1)
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are equivalent if there is some combination of diffeomorphisms and smooth paths
of symplectic forms interpolating between ω0 and ω1. Otherwise, we will call two
symplectic forms inequivalent.

These 4-manifolds of course can be studied using tools from symplectic geome-
try. From this perspective, it is interesting to ask whether symplectic techniques
on 4-manifolds can shed some light on the relationships between elements of the
mapping class group of Riemann surfaces, in the case of different fibrations with
homeomorphic fibers, and their associated symplectic structures. McMullen and
Taubes used Seiberg-Witten invariants to demonstrate the inequivalence of two
symplectic forms in their construction. Here, we will consider a more algebraic tool
related to cohomologies of primitive differential forms introduced by Tseng and
Yau [9].

In [9], Tseng-Yau studied a new cohomological invariant for any symplectic man-
ifold (X,ω) denoted by PH∗

±(X,ω) (see also [8] for its underlying algebraic struc-
ture). Unlike the de Rham cohomology, the dimension of this symplectic cohomol-
ogy is not an invariant of homeomorphism type and can depend on the symplectic
structure. In fact, it was demonstrated explicitly in a 6-nilmanifold example that
PH∗

±(X,ω) can jump in dimensions as the symplectic structure ω on X varies [9].
But prior to this work, as far as the authors are aware, no examples of dimension
jumping were known for symplectic 4-manifolds. We will explain below how the
dimensions of PH2

±(X,ω) effectively count the number of Jordan blocks of size at
least two in the decomposition of f∗ − 1 : H1(Σ) → H1(Σ). This key fact together
with our explicit calculations of the monodromy allows us to distinguish different
symplectic structures on 4-manifolds of type X = S1 × M3 arising from different
fibrations for M3. As a first example, inspired by the construction of McMullen
and Taubes in [6], we find the following.

Theorem 1.1. There exists a fibered 3-manifold M3 admitting two different fibra-
tions with monodromy f and g, yielding two associated symplectic structures on
X = S1 × M3 – (X,ωf ) and (X,ωg) – that can be distinguished by the primitive
cohomologies. In particular,

dimPH2
+(X,ωf ) �= dimPH2

+(X,ωg).

The first example of inequivalent symplectic structures with distinct primitive
cohomologies that we will describe in this paper is closely related to the construction
of McMullen and Taubes where they showed the existence of a pair of inequiva-
lent symplectic forms on a simply-connected 4-manifold starting from a 3-manifold
M3 that is a fibered link complement [6]. Their construction furnishes for us the
fibration of M3 with monodromy f referenced in Theorem 1.1. In [11], the third
author found another fibration ofM3 with monodromy g whose associated symplec-
tic structure is inequivalent from that associated with McMullen-Taubes’ fibration.
After carefully describing the monodromies f and g, we are able to show that the
symplectic 4-manifolds (X,ωf ) and (X,ωg) have distinct primitive cohomologies.

It turns out that our first example motivated by McMullen and Taubes is just
the tip of the iceberg in terms of inequivalent symplectic structures having different
primitive cohomologies. A large class of examples can be constructed from fibered 3-
manifolds that are S3 complements of graph links and studied in detail by Eisenbud
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and Neumann [3]. In [10], the third author constructed a family of 3-manifolds,
denoted by M (2n) = S3\K(2n) for any n ∈ N, where K(2n) ⊂ S3 is a 2-component
graph link. Its fibrations are encoded by a pair of integers (m1,m2) satisfying
certain conditions. It was shown in [10] that the associated symplectic 4-manifold
X(n) = S1 × M (2n) admits at least n + 1 inequivalent symplectic structures. We
have investigated the primitive cohomology of this family of 4-manifolds and found
that the dimension depends on the choice of the fibration (m1,m2), and in fact,
directly relates to the divisibility of the mi’s by 3.

Theorem 1.2. For n ∈ N, let (m1,m2) be coprime, representing a fibration of the
graph link M (2n) = S3\K(2n). By reversing the roles of m1 and m2 if necessary, we
write m1 = 3kq with gcd(q, 3) = 1 and assume gcd(3,m2) = 1. Denote by ω(m1,m2)

the associated symplectic form on X(n) = S1 × M (2n). The primitive cohomology
is given by

dimPH+
2 (X(n), ω(m1,m2)) =

⎧⎪⎨⎪⎩
b2(X

(n)) + 3n+k−� k
2 � − 3k, k ≤ 2n− 4,

b2(X
(n)) + 2 · 3k, 2n− 3 ≤ k ≤ 2n− 2,

b2(X
(n)) + 1, k ≥ 2n− 1,

where b2(X
(n)) = 3 is the second Betti number.

These 4-manifolds associated with graph links not only have primitive coho-
mologies that may vary with the symplectic structures but also demonstrate other
interesting properties worthy of further investigations. For instance, in addition to
inequivalent symplectic structures possibly having different primitive cohomologies,
we also found pairs of symplectic structures associated with equivalent 3-manifold
fibrations having different primitive cohomologies as well. Similar to symplectic
forms, we say for fibered 3-manifolds that two fibrations (π0, π1) of M3 → S1 are
equivalent if their corresponding one-forms (dπ0, dπ1) are related by some combi-
nations of diffeomorphisms and smooth paths of one-forms interpolating between
them. Clearly, to distinguish equivalent versus inequivalent 3-manifold fibrations
from the symplectic 4-manifold perspective would require more tools than just the
dimension of the primitive cohomology. Regarding this, it may be helpful to point
out that the differential forms underlying PH∗(X,ω) are situated in an A3-algebra
[8] and hence the cohomology has a ring structure and also Massey products differ-
ent from those of H∗(X). For the class of symplectic 4-manifolds X = S1 ×M3,
where M3 is the mapping torus with monodromy f , it would be insightful to relate
the invariants coming from PH∗(X,ωf ) and all its products directly with the prop-
erties of the monodromy f as an element of the mapping class group. This can give
a deeper link between the space of symplectic structures on X with the mapping
class groups of Riemann surfaces and their corresponding mapping tori. This paper
represents a significant first step in this direction focusing on the implications of
the cohomology group.

The structure of the paper is as follows. In Section 2, we review the basic
properties of PH∗(X,ω) and the de Rham cohomology of a fibered 3-manifold. In
Section 3, we discuss the details of the McMullen-Taubes fibrations [6] and use their
work and that of [11] to establish Theorem 1.1. The explanation of our calculations
is given in Section 4 and the Appendix, where we provide the subtle details of our

Licensed to Univ of Calif, Irvine. Prepared on Wed Jun 19 21:06:56 EDT 2024 for download from IP 128.200.174.20.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8402 MATTHEW GIBSON, LI-SHENG TSENG, AND STEFANO VIDUSSI

explicit construction of the monodromy of the McMullen-Taubes surface bundle. In
Section 5, we prove Theorem 1.2, where we investigate the symplectic structures and
the primitive cohomologies of 4-manifolds constructed from the family of fibrations
on graph links K(2n) introduced by the third author in [10]. These fibrations are
determined by relatively prime pairs (m1,m2). Finally, we end in Section 6 with a
discussion of our results.

2. Preliminaries

2.1. de Rham and primitive cohomologies. In this subsection, we briefly re-
view the basics of the de Rham cohomology of surface bundles over a circle and
also summarize the primitive cohomology studied in [8,9], applying it to symplectic
4-manifolds associated to surface bundles.

Let Σ̂g be a closed surface of genus g. We endow Σ̂g a symplectic structure, and

we can assume, up to isotopy, that any self-diffeomorphism f̂ : Σ̂g → Σ̂g preserves

the symplectic form. Next, we consider the mapping torus of f̂ , the closed 3-

manifold Ŷ
̂f = Σ̂g × [0, 1]/(x, 1) ∼ (f̂(x), 0). It follows that Ŷ

̂f has a Σ̂g-bundle

structure over S1 with the projection given by π : Ŷ
̂f → S1, π([x, t]) = t. The

associated map f̂ is called the monodromy of the bundle. We can endow the 4-

manifold S1 × Ŷ
̂f with a symplectic structure by defining ω̂ := dt ∧ dπ + ω̂

̂Σ where

dt is the volume form on the S1 factor and ω̂
̂Σ is a 2-form on Ŷ

̂f restricting to the

volume form on Σ̂.
Let Σg,n = Σ̂g − {y1, · · · , yn} be the surface of genus g with n points removed.

When clear, the surface will simply be abbreviated by Σ. Moreover, when conve-
nient, P := {y1, · · · , yn} may be thought of as marked points. The symplectic form

on Σ̂g restricts to a symplectic form on Σ.

Let f̂ : Σ̂g → Σ̂g be any symplectic diffeomorphism preserving P setwise. This
restricts to a symplectic diffeomorphism f : Σ → Σ. The 3-dimensional mapping

torus Yf = Σ × [0, 1]/(x, 1) ∼ (f(x), 0) is an open submanifold of Ŷ
̂f , obtained by

removing a collection of curves transverse to the fibers. Denoting, with slight abuse
of notation, the new fibration by π : Yf → S1 as well, its de Rham cohomology is
determined by the Wang exact sequence

· · · H0(Σ) H1(Yf ) H1(Σ) H1(Σ) H2(Yf ) · · · .f∗−1

This sequence yields

H0(Yf ) = R,

H1(Yf ) = ker(f∗ − 1 : H1(Σ) → H1(Σ))⊕ 〈dπ〉,
H2(Yf ) = 〈dπ〉 ∧ coker(f∗ − 1 : H1(Σ) → H1(Σ)),

H3(Yf ) = 0.

For X = S1 × Yf , the restriction of the symplectic form on S1 × Ŷ
̂f to X yields

the symplectic form ω = dt ∧ dπ + ωΣ, where ωΣ (by abuse of notation) is a closed
2-form on Yf that restricts to the symplectic form on each fiber. The Kunneth
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formula also easily shows

H0(X) = R,

H1(X) = 〈dt, dπ〉 ⊕ ker(f∗ − 1 : H1(Σ) → H1(Σ)),

H2(X) = 〈dt ∧ dπ〉 ⊕ dπ ∧ coker(f∗ − 1 : H1(Σ) → H1(Σ))

⊕ dt ∧ ker(f∗ − 1 : H1(Σ) → H1(Σ)),

H3(X) = 〈dt ∧ dπ〉 ∧ coker(f∗ − 1 : H1(Σ) → H1(Σ)),

H4(X) = 0.

We now turn to describing the primitive cohomology on the symplectic 4-mani-
fold. Given a symplectic manifold (X2n, ω), choose a basis {∂xi}2ni=1 for TX. Its dif-
ferential forms Ω∗(X) carry an sl2(R) action, with the following sl2-representation:

L : Ωk(X) → Ωk+2(X),

Ak 
→ ω ∧Ak,

Λ : Ωk(X) → Ωk−2(X),

Ak 
→ 1

2
(ω−1)ijι∂xi ι∂xjAk,

H : Ωk(X) → Ωk(X),

Ak 
→ (n− k)Ak

with [H,Λ] = 2Λ, [H,L] = −2L, and [Λ, L] = H.
The primitive forms P∗(X) are the highest weight vectors in this algebra. That

is, Ak ∈ Pk(X) precisely if ΛAk = 0 = ωn−k+1 ∧ Ak. This action leads to the
Lefschetz decomposition so that any k-form has an expression Ak = Bk+ω∧Bk−2+
ω2 ∧Bk−4 + · · · where each Bi is primitive. In [9], Tseng and Yau constructed the
differentials ∂± : P(X)k → Pk±1(X) and the elliptic complex

0 −−−−→ P0 ∂+−−−−→ P1 ∂+−−−−→ P2 ∂+−−−−→ · · · ∂+−−−−→ Pn⏐⏐�∂+∂−

0
∂−←−−−− P0 ∂−←−−−− P1 ∂−←−−−− P2 ∂−←−−−− · · · ∂−←−−−− Pn

whose “top” and “bottom” cohomologies are denoted PH∗
+(X,ω) and PH∗

−(X,ω),
respectively. Also in [8], it is proven that certain de Rham cohomological data
is enough to compute the symplectic cohomology groups PH∗

±(X), given by the
isomorphisms below for k ≤ n:

PHk
+(X) ∼= coker(L : Hk−2(X) → Hk(X))⊕ ker(L : Hk−1(X) → Hk+1(X)),

(2.1)

PHk
−(X) ∼= coker(L : H2n−k−1(X) → H2n−k+1(X))⊕ ker(L : H2n−k(X)

→ H2n−k+2(X)).(2.2)

Let us first discuss the case where ω is chosen so that [ω]dR = [dt ∧ dπ]dR, the
more general case will be treated at the end of the section. Applying equations (2.1)
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and (2.2) to the 4-manifold X = S1 × Yf , along with computations from earlier in
this section, yields

PH0
+(X) ∼= R,

PH1
+(X) ∼= H1(X),

PH2
+(X) ∼= H2(X)/〈dt ∧ dπ〉 ⊕ 〈dt, dπ〉 ⊕ [ker(f∗ − 1) ∩ Im(f∗ − 1)],

PH2
−(X) ∼= H2(X)⊕ [〈dt ∧ dπ〉 ∧ coker(f∗ − 1)] / [〈dt ∧ dπ〉 ∧ ker(f∗ − 1)] ,

PH1
−(X) ∼= H3(X),

PH0
−(X) ∼= 0.

Let bi denote the Betti numbers of X and p±
i (X,ω) denote the dimensions of

PHi
±(X,ω). When the choice of the underlying symplectic structure is clear, we

simply write p±
i . Then,

p+
0 = 1,

p+
1 = b1,

p+
2 = b2 + 1 + dim [ker(f∗ − 1) ∩ Im(f∗ − 1)] ,

p−
2 = b2 + dim [ker(f∗ − 1) ∩ Im(f∗ − 1)] ,

p−
1 = b3,

p−
0 = 0,

where we have used the fact that dim [ker(f∗ − 1) ∩ Im(f∗ − 1)] and

dim [(dt ∧ dπ ∧ coker(f∗ − 1))/(dt ∧ dπ ∧ ker(f∗ − 1))]

are equal by realizing that both quantities count the number of Jordan blocks of
f∗ − 1 of size strictly greater than 1 (see discussion below). We note that the
primitive Euler characteristic χp(X) =

∑
(−1)ip+

i −
∑

(−1)ip−
i = 2 − b1 + b3 is

fixed under homeomorphism type. However, the primitive Betti numbers p±
2 may

vary in general.
Let us explain how this dimension relates to the Jordan blocks of f∗ − 1. For

brevity we write ν2 := dim [ker(f∗ − 1) ∩ Im(f∗ − 1)]. Now, if α ∈ ker(f∗ − 1) ∩
Im(f∗ − 1), then (f∗ − 1)α = 0 and (f∗ − 1)β = α for some β. That is, α is
an eigenvector in a Jordan chain of length at least 2. It follows that ν2 counts
the number of Jordan blocks corresponding to eigenvalue λ = 1 of size at least 2.
More generally, there is a descending filtration of subgroups PH2

+(M) ⊃ J1(M) ⊃
J2(M) ⊃ · · · where Jk(M) = ker(f∗ − 1) ∩ Im(f∗ − 1)k. If α ∈ Jk(M), then
it is the eigenvector in a Jordan chain of length at least k + 1 given by x1 = α,
x2 = (f∗ − 1)k−1β, x3 = (f∗ − 1)k−2β, · · · , xk = (f∗ − 1)β, xk+1 = β. Thus, the
dimension of the filtered quotient Jk−1/Jk counts the number of Jordan blocks of
size exactly k.

In general, it is also possible to consider other symplectic structures on X =
S1 × Yf where [ω] �= [dt ∧ dπ]. Though not our main focus, we will describe how
a different choice of the symplectic structure would affect the calculation of the
primitive cohomology in the remainder of this subsection. To begin, let i : Σ ↪−→ Yf

be the inclusion map of the fiber and choose ω̃f ∈ Ω2(Yf ) such that i∗(ω̃f ) = ωΣ.
Furthermore, assume ω̃f can be chosen so that [ω0] := [dt ∧ dπ + ω̃f ] = [dt ∧ dπ].
Then PH∗(X,ω0) is given by the above computations. Now, given any 1-form
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η ∈ Ω1(Yf ) such that d(η ∧ dπ) = 0, we can define a new symplectic form, ωη :=
ω0 + η ∧ dπ = (dt + η) ∧ dπ + ω̃f . Of interest are those η’s such that [ωη] �= [ω0],
which occurs precisely when [dπ ∧ η] ∈ H2(Yf ) is non-trivial. Choose a Jordan
basis {xi,0}ki=1 for ker(f∗ − 1) and denote the corresponding Jordan chain of xi,0

by {xi,0, xi,1, · · · , xi,ni
}. Rearranging if necessary, we assume ni = 0 for 1 ≤ i ≤ s.

Thus {xi,0}si=1 are the Jordan blocks of size exactly 1. Then, we can write

H1(Yf ) = 〈dπ〉 ⊕ 〈xi,0〉ki=1,

H2(Yf ) = 〈dπ ∧ xi,ni
〉ki=1,

and express [dπ ∧ η] =
∑k

i=1 λi[dπ ∧ xi,ni
]. We may write

PH2
+(X,ωη) = H2(X)/〈[ωη]〉 ⊕Kη

where Kη = ker(ωη∧ : H1(X) → H3(X)). Then

[ωη ∧ dπ] = [0],

[ωη ∧ dt] = [η ∧ dπ ∧ dt] = −[dt ∧ dπ ∧ η],

[ωη ∧ xi,0] = [dt ∧ dπ ∧ xi,0].

We see that [ωη ∧ (
∑s

i=1 λixi,0+dt)] = [dt∧dπ∧
∑k

i=s+1 λixi,ni
], which is trivial

if and only if η ∈ ker(f∗ − 1). Similarly, denote by Cη = coker(ωη∧ : H1(X) →
H3(X)). The above computations show Cη

∼= 〈dt ∧ dπ ∧ xi,ni
〉ki=s+1/〈dt ∧ dπ ∧ η〉.

The quotient by the η term will be extraneous in the case that η ∈ ker(f∗ − 1).
In all, the resulting primitive cohomology groups PH∗(X,ωη) can be expressed as
follows.

PH0
+(X,ωη) ∼= H0(X),

PH1
+(X,ωη) ∼= H1(X),

PH2
+(X,ωη) ∼= H2(X)/〈[ωη]〉 ⊕Kη,

PH2
−(X,ωη) ∼= H2(X)⊕ Cη,

PH1
−(X,ωη) ∼= H3(X),

PH0
−(X,ωη) ∼= 〈0〉,

where

Kη
∼=
{
〈dπ〉 ⊕ 〈xi,0〉ki=s+1, λi �= 0 for some i > s,

〈dπ, dt+ η〉 ⊕ 〈xi,0〉ki=s+1, λi = 0 for all i > s,

Cη
∼=
{
〈dt ∧ dπ ∧ xi,ni

〉ki=s+1/〈dt ∧ dπ ∧ η〉, λi �= 0 for some i > s,

〈dt ∧ dπ ∧ xi,ni
〉ki=s+1, λi = 0 for all i > s.

Regardless of the class of η, we see PHk
±(X,ωη) are isomorphic to de Rham

cohomologies for k = 0, 1. Furthermore, in the case that η descends to a co-
homology class [η] ∈ H1(Yf ), the above computations show dimPH∗(X,ωη) =
dimPH∗(X,ω0). Unless otherwise stated, in the remainder of the paper, we as-
sume [ω] = [dt ∧ dπ].
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ρ1 ρ2 ρ3 ρ4

1
2 3

4

τ1
τ2
τ3
τ4

Figure 1. ρi and τi paths on Σ1,4

2.2. Mapping class group. In this subsection, we review some of the necessary
topics relevant to our work from mapping class group theory. We focus mainly on
the mapping class group of Σ1,4, detailing a set of generators described by Birman in
[1]. We wish to study the diffeomorphisms of Σg,n up to an equivalence. We define
the mapping class group, denoted by M(Σg,n), as the group of diffeomorphisms
fixing P setwise, up to isotopies fixing P setwise. We define the pure mapping class
group, PM(Σg,n), as the subset of elements from M(Σg,n) fixing P pointwise.
Since the majority of this paper takes place in PM(Σ1,4) we briefly discuss the
diffeomorphisms generating this subgroup for the torus with four marked points.
We define τi as the longitudinal curve which passes above y1, y2, · · · , yi−1, through
yi, and below yi+1, · · · , yn. Denote by ρi the meridian curve passing through yi.

From these curves we define homeomorphisms Push(τi) and Push(ρi), called the
point-pushing maps. These are classical maps in mapping class group theory. They
may be loosely visualized as follows: Push(τi) is the map which pushes the point
xi around the curve τi, “dragging” the rest of the surface Σ1,4 with it. Push(ρi)
has a similar interpretation. In [1], Birman showed that the push maps generate
the mapping class group:

PM(Σ1,4) = 〈Push(τi),Push(ρi)〉, i = 1, 2, 3, 4.

It turns out that these maps can be realized in terms of Dehn twists along
homology generators for H1(Σ1,4). These explicit expressions are worked out in the
Appendix. (The curves ρi and τi are pictured in Figure 1, drawn on the square
representing Σ1,4.)

Another important subgroup of the mapping class group is the Torelli group,
I(Σ), consisting of diffeomorphisms acting trivially on (co)homology. Thus,

I(Σ) = {f ∈ M(Σ) : 1 = f∗ : H1(Σ) → H1(Σ)}.
Calculations in Section 2.2 show that if f ∈ I(Σ), then H∗(S1×Yf ) = H∗(T 2×Σ)
and PH∗(S1 ×Yf ) = PH∗(T 2 ×Σ) as groups. Thus two Torelli-bundles cannot be
distinguished from their primitive cohomology groups alone. However, by the same
reasoning, f ∈ I and g �∈ I can always be distinguished by the dimension of the
cohomology groups.

3. McMullen-Taubes type 4-manifolds

In this section, we will discuss different presentations of a 3–manifold, the com-
plement of a link in S3, as fibration with fiber a punctured torus or sphere. All
the torus fiber examples will induce symplectic structures with identical primitive
cohomologies but the sphere fibration will be shown to give primitive cohomology
of different dimension.

Licensed to Univ of Calif, Irvine. Prepared on Wed Jun 19 21:06:56 EDT 2024 for download from IP 128.200.174.20.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMPLECTIC STRUCTURES WITH PRIMITIVE COHOMOLOGY 8407

Table 1. Monodromies

Type Projection Vector v1 Monodromy

Spherical (0,0,0,1) σ−1
1 σ2σ

−1
1 σ2σ

−1
1 σ2

Toroidal (−1,−1, 1) τ−1
3 τ−1

2 τ−1
1 ρ−1

1 ρ−1
2 τ−1

1 ρ2τ
−1
4 ρ−1

4 τ−1
3

Toroidal (−1, 1, 1) ρ−1
2 τ1ρ

−1
2 τ−1

1 τ−1
4 ρ−2

3 τ−1
2 ρ−1

4 ρ−1
1

We quickly review the examples constructed in [6] and [11]. In [6], McMullen
and Taubes considered a 3-manifold M which is a link complement S3\K. Here,
K is the Borromean rings K1∪K2∪K3 plus K4, the axis of symmetry of the rings.
By performing 0-surgery along the Borromean rings we obtain a presentation of M
as T3\L where:

• L ⊂ T
3 is a union of four disjoint, closed geodesics L1, L2, L3, L4,

• H1(T
3) = 〈L1, L2.L3〉,

• L4 = L1 + L2 + L3.

The fiber of M is the 2-torus with punctures coming from the Li. The different
fibration structures are captured by the Thurston ball. In [6], this ball is computed
as the dual of the Newton polytope of the Alexander polynomial. Endow the ball
with coordinates φ = (x, y, z, t) as in [6]. Then, the Thurston unit ball has 16 top–
dimensional faces (each fibered) coming in 8 pairs under the symmetry (φ,−φ).
Furthermore, restricting to faces that are dual to those vertices of the Newton
polytope with no t–component, we get 14 faces that come in two types; quadrilateral
and triangular. It is shown in [6] that there exists a pair of inequivalent symplectic
forms on a 4-manifold coming from different fibrations of T3\L. These fibrations
correspond to points lying on the two distinct types of faces. In [11], it is shown
that the remaining pair of 16 − 14 = 2 faces (with a non-zero t-component) yields
a third symplectic structure which is inequivalent to the two found by McMullen
and Taubes.

We will investigate the monodromy of the fibration given in [11], in which it is
observed that M admits a fibration with fiber the four-punctured 2-sphere. Ta-
ble 1 summarizes the conclusions of the examples to follow. Determining these
monodromy formulas explicitly is a crucial step in computing the dimension of
PH2

±(X,ω), since it depends on the Jordan decomposition.
The first example is the fibration with fiber Σ0,4, hence ‘spherical’ type. The

other two examples are of ‘toroidal’ type with fiber Σ1,4. In the spherical example,
the given projection vector is the cohomology class in H1(M3) corresponding to
a point on the Thurston ball. The projection vectors of the ‘toroidal’ type exam-
ples refer to the vector used in its fiber bundle construction and not the point on
the Thurston ball. These details are elaborated on in the Appendix. For nota-
tional simplicity, in Table 1, Push(ρi) and Push(τi) are abbreviated to ρi and τi,
respectively.

Spherical example. In this example, we take the fibration from [11] obtained
by performing 0-surgery along the K4 axis. The fiber is S2 punctured four-times,
with monodromy given by the braid word corresponding to the Borromean rings.
Let σi denote the half-Dehn twist which switches marked points i and i + 1. This
homeomorphism can be viewed similar to the push map, where we “push” the
surface through the arc connecting the ith and (i + 1)th points. As a braid, it
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is the element which passes the ith string over the (i + 1)th string. Under this
identification, the monodromy is given by

σ−1
1 σ2σ

−1
1 σ2σ

−1
1 σ2.

The derivation of the toroidal type monodromies is much more involved. We
carefully work out these formulas in the next section. For now, we take the mon-
odromies from Table 1 as true and examine their cohomological implications.

Cohomological analysis. Denote by g the monodromy from fiber the four-
punctured 2-sphere Σ0,4. Similarly, f denotes either of the two monodromies com-
ing from the four–punctured torus fiber Σ1,4 in Table 1. With the monodromy f ,
we can compute its action on H1(Σ1,4) (either by hand or with the help of soft-
ware) to conclude that dimker(f∗ − 1) = b1(Yf ) − 1 = 3 in both ‘toroidal’ cases.
Let X = S1 × Yf = S1 × Yg, these manifolds being diffeomorphic by the above
discussion. We will compute the primitive cohomology of the symplectic structures
associated to the fibrations determined by the monodromies f and g.

With respect to the ordering (a0, a1, a2, a3, b0) of basis vectors for H1(Σ1,4),
computation shows the action on H1(Σ1,4) is given by

f∗ − 1 =

⎛⎜⎜⎜⎜⎝
−1 −1 −1 −1 1
0 0 0 0 −1
1 1 1 1 1
0 0 0 0 −1
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , J =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

for all f . Here J is the Jordan matrix for f∗ − 1. We note it has two blocks of size
2 and one of size 1. It follows that

ker(f∗ − 1) = 〈(1, 0, 0,−1, 0), (0, 1, 0,−1, 0), (0, 0, 1,−1, 0)〉,
Im(f∗ − 1) = 〈(−1, 0, 1, 0, 0), (1,−1, 1,−1, 0)〉.

A quick check shows

(f∗ − 1)(−1, 0, 1, 0, 0) = 0 = (f∗ − 1)(1,−1, 1,−1, 0).

Hence, we conclude

dimker(f∗ − 1) ∩ Im(f∗ − 1) = dim Im(f∗ − 1) = 2.

Notice this dimension agrees with the number of blocks from J of size at least 2.
Computations from Section 2.1 show that for any choice of η associated to ωf we
have either

p+
2 (X,ωf ) =

{
9, η is such that λi �= 0 for some i > s,

10, η is such that λi = 0 for all i > s.

We now turn to (X,ωg). Since Yf is diffeomorphic to Yg, we must have

dimker(g∗ − 1) = dimker(f∗ − 1) = 3.

Moreover, using the formula χ(Σg,n) = 2 − 2g − n, it follows χ(Σ0,4) = −2 =
1−b1(Σ0,4), and so b1(Σ0,4) = 3. But by Rank-Nullity, 3 = 3+dim Im(g∗−1), from
which it follows dim ker(g∗ − 1) ∩ Im(g∗ − 1) = 0. Thus p+

2 (X,ωg) = b2(Xg) + 1 =
8 �= p+

2 (X,ωf ).
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We point out that from the Jordan form of the f , these monodromies are
not Torelli elements of M(Σ1,4). However, by dimension considerations, we saw
dim Im(g∗ − 1) = 0 and so g is a Torelli element of M(Σ0,4). Moreover, even
though each f , f ′ coming from fiber Σ1,4 are not Torelli, f∗ = f ′∗ and so it follows
that f ′f−1 is a Torelli element.

These calculations give Theorem 3.1.

Theorem 3.1. There exist inequivalent fibrations of the 3-manifold M with inequiv-
alent associated symplectic 4-manifolds (X,ωf ), (X,ωg), which can be distinguished
by primitive cohomologies. In particular,

p+2 (X,ωf ) �= p+2 (X,ωg).

To establish Theorem 3.1, it only remains to verify the toroidal type mon-
odromies in Table 1. Before this verification, we point out an interesting feature of
p+2 in this situation. By calculations from Section 2, p+2 (X,ωh) = 8+ dimker(h∗ −
1) ∩ Im(h∗ − 1) ≥ 8 for any monodromy h. However, if h is some monodromy on
Σ1,4 we know its Jordan decomposition must give blocks of size (2, 2, 1) or (3, 1, 1).
That is, h has at least one block of size of at least 2, so that p+2 > 8. Consequently,
p+2 can distinguish the monodromy type in the sense that p+2 (X,ωf ) is always larger
than p+2 (X,ωg) for any f ∈ M(Σ1,4) and g ∈ M(Σ0,4). Moreover, the toroidal type
examples above all have block sizes (2, 2, 1). But if a monodromy with sizes (3, 1, 1)
existed, p+2 could also distinguish the two. Nonetheless, the exploration of the ex-
plicit constructions of the McMullen-Taubes type monodromies is still valuable. It
provides an algorithm to produce the concrete Dehn twists which are responsible
for the actions of f∗ − 1 on cohomology.

4. Construction of monodromies

In this section, we provide details for the construction of the toroidal mon-
odromies in Table 1. The Appendix gives an even more specific outline of the proce-
dure that follows. In the examples to come, we take different bases v1 = (a1, a2, a3),
v2 = (1, 1, 0), v3 = (0, 1, 1) and fiber along v1 so that the fiber at time t looks like
Σt,4 = tv1 + 〈v2, v3〉 with marked points

y1(t) = (−4ε, 3ε) + (a3 − a2,−a3)t,

y2(t) = (−ε, 2ε) + (−a1, a1 − a2)t,

y3(t) = (0, 0) + (a3 − a2, a1 − a2)t,

y4(t) = (ε,−3ε) + (−a1,−a3)t.

Here, ε is some small fixed constant used to shift the marked points away from
the origin at t = 0. The vector v1 is the projection vector given in column 2 of
Table 1. The general idea is as follows,

(1) Using the paths of the punctures yi, find relative locations to determine if
yi passes above or below yj .

(2) Express Push(yi(t)) of the yi path in terms of generators Push(ρi),
Push(τi).

(3) Calculate the intersection points of punctures (yi(t), yj(t)) at times (ti, tj).
If ti > tj then yi crosses over yj . If ti < tj then yj crosses over yi.
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(4) Use the crossings information to determine the order of Push(yi(t)) maps
in the final monodromy.

The procedure is best demonstrated through examples. As before, we drop the
push notation so that Push(ρ2)Push(τ1)

−1Push(τ3) is simply denoted by ρ2τ
−1
1 τ3.

We also use function notation right to left so that the previous word indicates y3
travels along τ3 then y1 along the inverse of τ1 then finally y2 along ρ2. Homeo-
morphism type of the below examples was confirmed with SnapPy [2].

Toroidal example 1. v1 = (−1,−1, 1).
The paths of the corresponding marked points are

y1(t) = (−4ε, 3ε) + (2,−1)t,

y2(t) = (−ε, 2ε) + (1, 0)t,

y3(t) = (0, 0) + (2, 0)t,

y4(t) = (ε,−3ε) + (1,−1)t.

Thus y2 and y3 travel in a parallel horizontal direction. y1 and y4 travel down-
wards and to the right and so will intersect both y2 and y3. We first find these
intersection times. We illustrate the process for y1 and y3 and summarize the other
points in Table 2. We need times t1 and t3 so that y1(t1) = y3(t3). In other words,
we seek a solution to the system

−4ε+ 2t1 = 2t3,

3ε− t1 = 0,

which gives (t1, t3) = (3ε, ε + n
2 ), n = 0, 1. Hence y1 and y3 intersect twice. The

first time y1 passes over y3. Then at t3 = ε + 1
2 , y3 crosses y1. At t2 = 5

8ε +
1
2 ,

y2 passes over y1. Similarly solving the corresponding system for y2 and y3 yields
(t2, t3) = ( 23 ε +

n
2 , 1 − 1

3ε), n = 0, 1. Both y2 times occur before y3, hence we
conclude y3 passes over y2 twice. The remaining points of intersection are given in
Table 2. The times specified are the later of the two crossing times and the points
have been listed in order of intersection occurrence, from first to last.

Table 2. Toroidal example 1 intersections

Points Time Crossing
(y1, y3) 3ε y1 over y3
(y1, y3) ε+ 1

2 y3 over y1
(y2, y4) 1− 3ε y2 over y4
(y3, y4) 1− 3ε y4 over y3
(y1, y2) 1− ε y2 over y1
(y1, y4) 1− ε y1 over y4
(y3, y4) 1− ε y3 over y4

Pictured in Figure 1 are the paths of the yi drawn in the plane (up to iden-
tification), where we have decomposed the “diagonal” paths of y1 and y4 into a
combination of basis curves ρi and τi. To find the path of y1, for example, we must
use its velocity vector (2,−1) as well as the relative locations of y1 with respect to
the start points of y2, y3, and y4. Given that point y2 starts at (−ε, 2ε), we have
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y1(
3
2ε) = (−ε, 3

2ε) and so y1 travels ‘below’ the y2 start point. Similar computations
show y1 travels above both the y3 and y4 start points. As illustrated in Figure 1,
the velocity vector (2,−1) suggests y1 has a path given by τ−1

1 ρ−1
1 τ−1

1 . However
the diagonal path homotopic to this combination will not preserve the condition
that y1 travels below the y2 start point. To remedy this situation, we must begin
the y1 monodromy with the loop C12. This curve travels counterclockwise from y1,
enclosing y2. Figure 1 illustrates the τ−1

1 C12 portion of the monodromy.

1
2
3
4

Figure 2. Example 1 marked point paths

y4 is the only other diagonal path. We can easily check that it travels above the
y1, y2, and y3 start points. Hence its path is simply given by τ−1

4 ρ−1
4 , indicated by

the (1,−1) velocity vector.
Summarizing, the monodromies of the punctures are given by

y1(t) : τ
−1
1 ρ−1

1 τ−1
1 C12 = τ−1

1 ρ−1
1 ρ−1

2 τ−1
1 ρ2,

y2(t) : τ
−1
2 ,

y3(t) : τ
−2
3 ,

y4(t) : τ
−1
4 ρ−1

4 .

Now, we must determine the order of these individual monodromies in the final
map. Using the above formulas, it’s clear y2(t) and y3(t) are parallel so their
relative order to each other in the final monodromy doesn’t matter. From Table 1,
we see every other point crosses over y3 first, but then y3 crosses over y1 and y4
again later. Thus we should put one τ−1

3 at the beginning of the monodromy and
the other τ−1

3 at the end. Next, both y1 and y2 cross over y4 so the y4 term should
come next.

It only remains to determine the order of y1 and y2, which is given by Table 1 as
y1 then y2. Therefore our monodromy has the formula y3 ◦ y2 ◦ y1 ◦ y4 ◦ y3, where
the first and last y3 terms are each a τ−1

3 . This ordering gives 10 possible crossings,
but y2 and y3 are parallel and y3 appears twice. Hence the number reduces to
10− 3 = 7, matching the occurrences in Table 2.

1
2

1
2

Figure 3. C12 path in example 1
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Piecing all the arguments together shows the final monodromy is isotopic to

τ−1
3 τ−1

2 (τ−1
1 ρ−1

1 τ−1
1 C12)τ

−1
4 ρ−1

4 τ−1
3 = τ−1

3 τ−1
2 (τ−1

1 ρ−1
1 ρ−1

2 τ−1
1 ρ2)τ

−1
4 ρ−1

4 τ−1
3 .

Toroidal example 2. v1 = (−1, 1, 1).
The paths of the punctures are given by

y1(t) = (−4ε, 3ε) + (0,−1)t,

y2(t) = (−ε, 2ε) + (1,−2)t,

y3(t) = (0, 0) + (0,−2)t,

y4(t) = (ε,−3ε) + (1,−1)t.

Implementing the techniques from the previous example, we obtain the intersections
in Table 3. There is only one non-trivial diagonal path, given by y2. Evaluating
this path at the appropriate times yields

y2(−3ε) = (−4ε, 8ε),

y2(ε) = (0, 0),

y2(2ε) = (ε,−2ε).

We see that y2 travels above y1 and y4 start points and through y3 at the origin.
We note at t = ε, y3(ε) = (0,−2ε) has traveled away from the origin and so y2(t)
and y3(t) do not actually collide. Thus, in between ρ−1

2 ρ−1
2 τ−1

2 , we must insert a
loop traveling counterclockwise starting at y2 and enclosing y1. It turns out this
curve is also homotopic to C12 (see [1] for more discussion). By drawing a diagram
similar to Figure 1 one can see the correct placement should be ρ−1

2 C12ρ
−1
2 τ−1

2 .
The paths of the other points are straightforward, given by

y1 : ρ−1
1 ,

y2 : ρ−1
2 C12ρ

−1
2 τ−1

2 = ρ−1
2 τ1ρ

−1
2 τ−1

1 τ−1
2 ,

y3 : ρ−2
3 ,

y4 : τ−1
4 ρ−1

4 .

The ordering for this example is similar to that of Example 1; this time we need
to split both of the paths y2 and y4 into two parts each. Notice from the individual
monodromies that y1 and y3 are parallel so their relative order doesn’t matter.
We proceed by considering the remaining interactions separately. Since y1 passes
under for all its crossings, it appears first. Then y3 over y2 and y2 over y4 suggests
the ordering y3 ◦ y2 ◦ y4. However, we need y4 to cross over y3 and this current
arrangement does the opposite. Hence we must split the y4 monodromy into two
components: y4 ◦ y3 ◦ y2 ◦ y4. Finally, if we leave y2 together, we will have both y4
and y2 crossing over one another at different times. Consequently, we also split y2
for the ultimate ordering given by y2 ◦ y4 ◦ y3 ◦ y2 ◦ y4 ◦ y1. The final monodromy
pieces together as

y2 ◦ τ−1
4 ◦ ρ−2

3 ◦ y2 ◦ ρ−1
4 ◦ ρ−1

1 .

To reiterate, we are required to separate y2 such that the τ−1
4 does not intersect

the first term. This obstruction suggests the first y2 part is τ−1
2 and the second

term is the remaining ρ−1
2 C12ρ

−1
2 . This construction yields the desired map

ρ−1
2 C12ρ

−1
2 τ−1

4 ρ−2
3 τ−1

2 ρ−1
4 ρ−1

1 .
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Table 3. Toroidal example 2 intersections

Points Time Crossing
(y2, y4) 3ε y2 over y4
(y2, y3)

1
2 y3 over y2

(y1, y4) 1− 5ε y4 over y1
(y1, y2) 1− 3ε y2 over y1
(y3, y4) 1− ε y4 over y3

Thurston ball revisited. Recall the toroidal examples in Table 1 represent fi-
brations with fiber a four-times punctured torus. Each such fibration corresponds
to an element ψ ∈ H1(T 3,Z) on the Thurston ball. We claim ψ must lie in the
open cone over a quadrilateral face. This claim follows from [6, Theorem 2.3] and
the fact that the fiber has exactly four punctures. Indeed, writing ψ = (a, b, c), we
require

ψ(L1) = a = ±1,

ψ(L2) = b = ±1,

ψ(L3) = c = ±1,

ψ(L4) = a+ b+ c = ±1.

These equations yield six possibilities for ψ: (−1, 1, 1), (1,−1, 1), (1, 1,−1),
(−1,−1, 1), (−1, 1,−1), (1,−1,−1). Referring to a diagram of the Thurston ball,
one can easily verify each of these lives on a quadrilateral face.

5. 4-Manifolds from graph links

Here, we study a family of two-component links with different fibrations over a
circle, resulting in inequivalent symplectic structures after taking the product with a
circle. We start by describing the open 3-manifolds. Let M (2n) = S3\K(2n), where
K(2n) is the graph link pictured in Figure 4 below. The details of this diagram are
given in [10], where the third author showed the existence of n + 1 inequivalent
symplectic structures coming from different fibrations of M (2n). A fibration of

K1 K2

H1 H2 H3 H2n

S1 S2 S3 S2n

1 1 1 1 1

3 3 3 3

1 1 1

Figure 4. Diagram of K(2n)

M (2n) is given by a choice of (m1,m2) ∈ H1(S3\K(2n)),Z) ∼= Z
2 satisfying the

equations
3im1 + 32n−i+1m2 �= 0, for all 1 ≤ i ≤ 2n.
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Details for such a fibration (and graph link theory in general) are worked out by
Eisenbud and Neumann in [3]. In particular, let h denote the monodromy and h∗
the induced map on the homology of the fiber. [3, Theorem 13.6] shows that there
is an integer q such that (hq

∗ − 1)2 = 0. Thus, the Jordan decomposition of h∗
only has blocks of size 1 or 2. Furthermore, with the same q, [3] computed the
characteristic polynomial of h∗|Im(hq

∗−1), denoted Δ′(t). It turns out that the roots
of Δ′(t) correspond to the eigenvalues of h∗ with size 2 Jordan blocks. Moreover,
the multiplicity of each root λi in Δ′(t) gives the number of size 2 blocks for λi.

We first introduce some notation which will be used in the definition of Δ′(t).
Fix a fibration (m1,m2). Let E = {E1, · · · , E2n−1} be the set of edges connecting
the white nodes in Figure 4. Specifically, edge Ei connects nodes labeled Hi and
Hi+1. For each Ei ∈ E , we define an integer dEi

as follows. Take the path in K(2n)

from the arrowhead of K1 to halfway through edge Ei (passing through nodes
H1, H2, · · · , Hi). Let �Ei,1 denote the product of all weights on edges not contained
in the path but are adjacent to vertices in the path. Similarly, we can take the path
from the arrowhead of K2 to halfway through edge Ei and define �Ei,2 analogously.
Set

dEi
= gcd(m1�Ei,1,m2�Ei,2).

Using Figure 4 as reference, we can easily compute that �Ei,1 = 3i and �Ei,2 = 32n−i.
This simplifies the formula for dE to

(5.1) dEi
= gcd(3im1, 3

2n−im2).

For each vertex Hi, we define an integer dVi
by the formula

(5.2) dVi
=

⎧⎪⎨⎪⎩
gcd(dEi−1

, dEi
), 1 < i < 2n,

gcd(m1, dE1
), i = 1,

gcd(m2, dE2n−1
), i = 2n.

With these definitions in place, the (restricted) characteristic polynomial takes the
form

Δ′(t) = (td − 1)

2n−1∏
i=1

(tdEi − 1)/

2n∏
i=1

(tdVi − 1),

where d = gcd(m1,m2). To understand the details of the theorem to follow, we
will use the n = 2 case, i.e. K(4), as an illustrative example. Figure 5 demonstrates
how dE1

= gcd(3m1, 3
3m2) is calculated.

K1 K2

H1 H2 H3 H4

S1 S2 S3 S4

3 3 3 3

Figure 5. Paths �E1,1 and �E1,2 of dE1

Now, define X(n) = S1 × M (2n) and let degΔ′(t) denote the degree of the
restricted characteristic polynomial Δ′(t). Since degΔ′(t) is the number of Jordan

Licensed to Univ of Calif, Irvine. Prepared on Wed Jun 19 21:06:56 EDT 2024 for download from IP 128.200.174.20.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMPLECTIC STRUCTURES WITH PRIMITIVE COHOMOLOGY 8415

blocks of size 2, which equals the number of blocks of size at least 2, it follows

p+2 = b2(X
(n)) + 1 + degΔ′(t),

p−2 = b2(X
(n)) + degΔ′(t).

In the case of a fibration represented by coprime (m1,m2), there are two possibili-
ties: 3 divides exactly one of m1 or m2, or 3 neither divides m1 nor m2. It turns out
p+2 can distinguish these two possibilities and in the first case provides information
about the power of 3 dividing m1 or m2. We give the exact statement below.

Theorem 5.1. Let (m1,m2) be coprime, representing a fibration of M (2n). By
reversing the roles of m1 and m2 if necessary, we write m1 = 3kq with gcd(q, 3) = 1
and assume gcd(3,m2) = 1. It follows that

p+2 =

⎧⎪⎨⎪⎩
b2(X

(n)) + 3n+k−� k
2 � − 3k, k ≤ 2n− 4,

b2(X
(n)) + 2 · 3k, 2n− 3 ≤ k ≤ 2n− 2,

b2(X
(n)) + 1, k ≥ 2n− 1.

Proof. For convenience, we denote by rk the quantity � 2n−k
2 �. Note that rk is

chosen such that min(k + i, 2n − i) = k + i for i ≤ rk. With this fact in mind, we
first expand the expressions for dEi

:

dEi
= gcd(3k+iq, 32n−im2) = 3min(k+i,2n−i).

A simple consideration shows

dEi
=

{
3k+i, i ≤ rk,

32n−i, i > rk.

Next, we expand the expressions for Vi. For 1 < i < 2n, we have

dVi
= gcd(dEi−1

, dEi
) =

{
dEi−1

, i ≤ rk,

dEi
, i > rk.

Verifying the cases where i ≤ rk or i − 1 > rk is straightforward. For the case
i = rk +1, we have dVi

= 3min(k+rk,2n−rk−1). A case by case analysis on the parity
of k reveals

rk ≥ n− k

2
− 1

2
=⇒ rk + rk ≥ 2n− k − 1

=⇒ rk + k ≥ 2n− rk − 1

and so dVi
= 32n−rk−1 = dErk+1

= dEi
as required. It remains to compute dV1

and

dV2n
.

dV1
= gcd(m1, dE1

) = gcd(3kq, 3min(k+1,2n−1)) = 3min(k,2n−1),

dV2n
= gcd(m2, dE2n−1

) = gcd(m2, 3
min(k+2n−1,1)) = 1,

where dV2n
follows from the fact that gcd(m2, 3) = 1. With these definitions, we

turn to the formula for Δ′(t). Its expansion will depend on whether or not there is
some index 1 < i < 2n for which i = rk. In particular, such an index exists only if
rk > 1.
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Case 1 (rk > 1). We have

Δ′(t) =
(t− 1)(tdE1 − 1) · · · (tdErk − 1) · · · (tdE2n−1 − 1)

(tdV1 − 1) · · · (tdVrk − 1) · · · (tdV2n − 1)

=
(tdErk − 1)

(tdV1 − 1)
=

(t3
k+rk − 1)

(t3min(k,2n−1) − 1)

=
(t3

k+rk − 1)

(t3k − 1)
,

since for rk ≥ 1 we have k < k + 1 < 2n− 1.

Case 2 (rk ≤ 1). Now we have dEi
= dVi

for all 1 < i < 2n. Furthermore,

dE1
=

{
3k+1, rk = 1,

32n−1, rk < 1.

Recall from the definition of rk, we also have

min(k, 2n− 1) =

{
k, rk = 1,

2n− 1, rk < 1.

Combining the above equalities yields

Δ′(t) =
tdE1 − 1

tdV1 − 1
=

tdE1 − 1

t3min(k,2n−1) − 1
=

{
t3

k+1
−1

t3k−1
, rk = 1,

1, rk < 1.

To acquire a more straightforward understanding of the three cases rk < 1, rk =
1, and rk > 1 let us rewrite rk = � 2n−k

2 � = n−�k
2 �. Then rk = 1 implies �k

2 � = n−1
and so k = 2n− 2 or 2n− 3. Finally, we conclude

degΔ′(t) =

⎧⎪⎨⎪⎩
3n+k−� k

2 � − 3k, k ≤ 2n− 4,

2 · 3k, 2n− 3 ≤ k ≤ 2n− 2,

0, k ≥ 2n− 1,

(5.3)

from which the result follows. �

To illustrate some of the details in the proof of Theorem 5.1, we calculate the
K(4) case explicitly. Here, we have rk = 2 − �k

2 � and so r0 = 2, r1 = r2 = 1 and
ri < 1 for i ≥ 3. Note that rk ≤ 1 for all k > 0. In particular, for k > 0 and i > 1
we should expect dEi

= 34−i = dVi
. To confirm, we compute

dE2
= gcd(3k+2q, 32) = 32,

dE3
= gcd(33+kq, 3) = 3,

dV2
= gcd(min(3k+1, 33), 32) = min(3k+1, 32) = 32,

dV3
= gcd(32, 3) = 3,

dV4
= gcd(m2, 3) = 1.

For i = 1, we have

dE1
= gcd(3k+1q, 33m2) = min(3k+1, 33),

dV1
= gcd(m1, dE1

) = gcd(3kq, 3min(3,k+1)) = min(33, 3k).
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We can now explicitly compute Δ′(t):

Δ′(t) =
(t− 1)(tmin(3k+1,33) − 1)(t9 − 1)(t3 − 1)

(tmin(3k,33) − 1)(t9 − 1)(t3 − 1)(t− 1)

=
t3

2 min(3k−1,3) − 1

t3min(3k−1,32) − 1

=

⎧⎪⎨⎪⎩
t6 + t3 + 1, k = 1,

t18 + t9 + 1, k = 2,

1, k ≥ 3.

Indeed, this calculation agrees with the general formula (5.3)

deg(Δ′(t)) =

⎧⎪⎨⎪⎩
6 = 2 · 3, k = 1,

18 = 2 · 32, k = 2,

0, k ≥ 3.

We will also use this K(4) example to demonstrate another interesting property
of the X(2n) family of open symplectic 4-manifolds. It can be seen in this n = 2
case that every possible value of p+2 , in Theorem 5.1, may be achieved for fibrations
coming from any of the faces on the Thurston ball. In Figure 6 below, we give the
diagram of the Thurston ball for M (4) taken from [10, Figure 3].

Figure 6. Thurston ball for M (4)

The eight faces come in three types, denoted by the circular, square, and tri-
angular symbols. The open cone over each face is determined by the rays passing
through the primitive elements

Pi = (35−2i,−1),

Qi = (1,−32i−5).

Consider, for example, the open cone over the circular face in the first quadrant,
as the considerations for the other two types of faces are similar. This region is
defined by the elements { (x, y)| − 1

27x < y < 27x, 0 < x < ∞}, laying between the

P1 and −Q4 rays. Furthermore, it contains the points φi = (3i, 1) for 0 ≤ i ≤ 3. By
Theorem 5.1, the corresponding symplectic 4-manifolds (X(4), ωi) have the following
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primitive dimension:

p+2 (X
(4), ω1) = b2 + 9,

p+2 (X
(4), ω2) = b2 + 7,

p+2 (X
(4), ω3) = b2 + 19,

p+2 (X
(4), ω4) = b2 + 1.

Moreover, by symmetry of the Thurston ball, the fibrations −φi lie on the cone
over the other circular face and also satisfy the above equations. Hence, the pair of
circular faces have fibrations with all possible dimensions of p+2 given in Theorem
5.1. A similar analysis shows the same property holds true for the square and
triangular faces as well.

Since fibrations within a single face of the Thurston ball are all equivalent, i.e.
there is a smooth isotopy on the one-form dπ linking any two fibrations, the above
provides examples of symplectic 4-manifolds from equivalent 3-manifold fibrations
having different primitive cohomology.

6. Discussion

We conclude with some remarks. Recall from Section 3 that the toroidal and
spherical fibrations came from inequivalent faces of the Thurston ball. The cohomo-
logical value p+2 takes different values for these two types of fibration. The ability to
distinguish these two distinct faces in this McMullen-Taubes example arises from
the fact that one monodromy is Torelli, while the other is not. In fact, p+2 will
always differ for a Torelli and non-Torelli fibration.

On the other hand, we have also seen from the graph link family of examples that
the value of p+2 can differ quite a bit for fibrations coming from the same face of the
Thurston ball. For sure, p+2 can give more refined information on each face of the
Thurston ball; within a face, p+2 can take on different values for various fibrations
of X whereas (the classical Betti number) b2 does not.

It is still however an open question as to how this distinguishing value p+2 can
be used with other invariants to probe more deeply the relation between different
fibrations and their associated symplectic structures. As mentioned, starting with
a surface Σ and a monodromy f , we can construct a Yf and an associated symplec-
tic manifold (X,ωf ). The dimension p+2 ultimately comes down to the algebraic
structure of the monodromy f on the surface. But as the graph links examples
showed, the value of p+2 alone is not sufficient in determining which face the mon-
odromy corresponds to. We do expect that the other invariants associated with the
underlying A3-algebra on PH∗(X,ωf ) [8] will be able to provide even more refined
information. The A3-algebra on the primitive differential forms not only induces
a product structure on PH∗(X,ωf ), but it is also possible to define Massey prod-
ucts on PH∗(X,ωf ) as well. And as a specific example of how they may provide
more information, the triple Massey product can be shown to count the number
of Jordan blocks of size exactly three. (See [5] for more information.) It would be
interesting to build up a dictionary relating the primitive cohomological invariants
of the symplectic 4-manifold with structures on the fibered 3-manifold, and that of
the monodromy f , an element of the mapping class group.
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Appendix

Here we provide the details of setting up the fibration structure and converting
monodromies appropriately so that they can be entered into SnapPy. Let T3 denote
the 3-torus. We view it as the cube [0, 1]3 under the identification (x, y, z) ∼
(x+p, y+q, z+r) for integers p, q, r. The axes i, j, k and their sum i+j+k form four
lines in the cube L1, L2, L3, L4, respectively. By choosing different bases (v1, v2, v3)
for the cube and displacing the four lines we may fiber T

3 − {L1, L2, L3, L4} in
different ways as follows. First we shift the four lines from the origin by

L1 = (x,−ε, 3ε),

L2 = (ε, y,−3ε),

L3 = (−ε, ε, z),

L4 = (x = y = z).

Next we choose a basis v1 = (a1, a2, a3), v2 = (1, 1, 0), v3 = (0, 1, 1). Initially v1
may be any vector which gives a non-zero determinant, specifically, a1−a2+a3 �= 0.
For brevity, let us denote A := det(v1, v2, v3) = a1−a2+a3. Choosing to fiber along
v1, each fiber has the form Σt = tv1 + αv2 + βv3 for t ∈ [0, 1]. Σt is T

2 with four
punctures denoted x1(t), x2(t), x3(t), x4(t) coming from the respective lines Li. To
verify that each line Li intersects the fiber exactly once we must solve the following
system of equations:

L1 :

(
1 1
0 1

)(
α
β

)
=

(
−ε− ta2
3ε− ta3

)
,

L2 :

(
1 0
0 1

)(
α
β

)
=

(
ε− ta1

−3ε− ta3

)
,

L3 :

(
1 0
1 1

)(
α
β

)
=

(
−ε− ta1
ε− ta2

)
,

L4 :

(
0 −1
1 −1

)(
α
β

)
=

(
t(a2 − a1)
t(a3 − a1)

)
.

Solving these systems for the (α, β) coordinates of the marked points xi(t) yields

x1(t) = (−4ε, 3ε) + (a3 − a2,−a3)t,

x2(t) = (ε,−3ε) + (−a1,−a3)t,

x3(t) = (−ε, 2ε) + (−a1, a1 − a2)t,

x4(t) = (0, 0) + (a3 − a2, a1 − a2)t.

To align with the notation of [1], we relabel the points with respect to their first
coordinate position, in increasing order, as y1(t) = x1(t), y2(t) = x3(t), y3(t) =
x4(t), y4(t) = x2(t). Under this new setting, the formulas for the points become

y1(t) = (−4ε, 3ε) + (a3 − a2,−a3)t,

y2(t) = (−ε, 2ε) + (−a1, a1 − a2)t,

y3(t) = (0, 0) + (a3 − a2, a1 − a2)t,

y4(t) = (ε,−3ε) + (−a1,−a3)t.
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Next, we verify that none of the yi(t) intersect for any value of t. Notice y2
and y3 have the same second component in the t variable but differ by the ε-term
constant so they will never intersect. We can apply a similar argument to the
pairs (y1, y3), (y1, y4), and (y2, y4). Lastly, by considering the (separate) systems of
equations y1(t) = y2(t) and y3(t) = y4(t), one can easily see no solution exists.

Let Σ1,4 be the 2−torus with four punctures and Mod(Σ1,4) its mapping class
group (which fixes the punctures setwise). Furthermore, let PMod(Σ1,4) denote the
pure mapping class group, the set of mapping class elements fixing the punctures
pointwise. We set

(6.1) H1(Σ) = 〈a0, a1, a2, a3, b0〉,

where ai is the homology curve between punctures i and i + 1 for i > 0 and a0 is
between marked point 1 and 4. b0 is the homology longitudinal curve, not enclosing
any punctures. These curves have algebraic intersection numbers ai ·aj = 0 for i �= j
and ai · b0 = 1. [1] introduces the following elements (pictured below) and shows
the Dehn twists along them that generate the pure mapping class group. In our
setting we have PMod(Σ1,4) = 〈Push(ρi),Push(τi)〉, 1 ≤ i ≤ 4. Here, Push(γ) is
the point pushing map along γ. We also summarize some of the important relations
to be used later:

[τi, τj ] = [ρi, ρj ] = 1,

Aij = ρiτ
−1
j ρ−1

i τj , Cij = τiρ
−1
j τ−1

i ρj ,

for 1 ≤ i < j < k ≤ 4.

For a more in depth discussion and outline of a proof for these identities, see [1].

Figure 7. Diagram of generators taken from [1]

We note that the formulas here differ slightly from [1] as our choice of orientation is
not the same. Moreover, we use functional composition (right to left), as opposed
to algebraic. In order to use SnapPy [2], we need to express Push(ρi) and Push(τi)
in terms of Dehn twists along the curves in (6.1). The trick is to use the following
fact (4.7 proven in [4]), which states
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Fact. Let α be a simple loop in a surface S representing an element of π1(S, x),
Then Push([α]) = TaT

−1
b , where a and b are isotopy classes of the simple closed

curves in S − x obtained by pushing α off itself to the left and right, respectively.

That is, we take an annular neighborhood of α bounded by curves a and b and
then take the product of their Dehn and inverse Dehn twists, respectively. From
this construction, we can immediately obtain that

(6.2) Push(ρi) = Tai−1
T−1
ai

.

For the τi curves, we need to find an annular boundary to work with. We intro-
duce the longitudinal homology curves bi, which enclose the punctures 1, 2, · · · , i
[“over” 1, 2, · · · , i and “under” i + 1, · · · , 4]. Thus b0 agrees with the previous ho-
mology generator introduced, b1 passes over puncture 1 and misses 2, 3, 4, and so
on. The point of introducing these curves is that now τi has an annular neighbor-
hood bounded by bi−1 and bi. By consulting the diagrams to determine proper
orientation it follows that

(6.3) Push(τi) = TbiT
−1
bi−1

.

Next, we need to convert equation (6.3) into Dehn twists only involving the
homology generators given in (6.1). First, we observe that we may express [bi] =
[a0] + [b0]− [ai], which can be verified by constructing the fundamental square for
the torus with the relevant curves. An example diagram in Figure 8 is given for the
[b1] case. One can straightforwardly check that Tai

Tb0([a0]) = [a0]+[b0]−[ai] = [bi].

b1

a0

b0

−a1

Figure 8. Diagram for b1 expression

Fact 3.7 in [4] states Tf(a) = fTaf
−1, which we can apply to our situation by setting

a = a0 and f = Tai
Tb0 . This fact then yields

(6.4) Tbi = Tai
Tb0Ta0

T−1
b0

T−1
ai

.

Finally, substituting formula (6.4) into equation (6.3) leads to our desired expression

(6.5) Push(τi) = Tai−1
Tb0T

−1
a0

T−1
b0

T−1
ai−1

Tai
Tb0Ta0

T−1
b0

T−1
ai

.
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