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This is the first paper in a two-part series in which we analyze two model systems to study pinchoff
and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity
contrast between the components. The systems stem from a simplification of a general system of
equations governing the motion of a binary fl(IdSCH model[Lowengrub and Truskinovsky,

Proc. R. Soc. London, Ser.454, 2617(1998]) to flow in a Hele-Shaw cell. The system takes into
account the chemical diffusivity between different components of a fluid mixture and the reactive
stresses induced by inhomogeneity. In one of the systems we coft8BieH), the binary fluid may

be compressible due to diffusion. In the other systBHMSCH), a Boussinesq approximation is used

and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH
equations so as to yield the classical sharp interface model as a limiting case. We then analyze their
equilibria, one dimensional evolution and linear stability. In the second ppapper I, Phys. Fluids

14, 514(2002], we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH
system, the equilibrium concentration profile is obtained using the classical Maxwell construction
[Rowlinson and WidomMolecular Theory of CapillarityClarendon, Oxford, 1979 and does not
depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model
are somewhat surprising as the gravitational field actually affects the internal structure of an isolated
interface by driving additional stratification of light and heavy fluids over that predicted in the
Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly
more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth
rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect
that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then
show how this analysis may be used to suggest a set of modified parameters which, when used in
the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite
interface thickness. Evidence of this improved agreement may be found in paper ROO®
American Institute of Physics[DOI: 10.1063/1.1425843

I. INTRODUCTION a binary Hele-Shaw flow, one of the goals of this paper is
develop insight that can be used in an analysis of the full
This is the first paper in a two-part series in which we NSCH model.
analyze two model systems to study pinchoff and reconnec- In this paper, we motivate, present and calibrate the
tion in binary fluid flow in a Hele-Shaw cell with arbitrary equations so as to yield the classical sharp interface model as
density and viscosity contrast between the components. Thee limiting case. We then analyze their equilibria, one-
systems stem from a simplification of a general system oflimensional evolution and linear stability. In the second pa-
equations governing the motion of a binary fluINSCH  per(paper IP), we analyze the behavior of the models in the
model) to flow in a Hele-Shaw cell. The system takes into fully nonlinear regime though pinchoff and reconnection.
account the chemical diffusivity between different compo- A Hele-Shaw cell consists of two flat parallel plates
nents of a fluid mixture and the reactive stresses induced bgeparated by a small gépsee Fig. 1, and between the plates
inhomogeneity. Our goal is to investigate these effects ohere is viscous fluid. The cell was originally designed by
flow, and in particular through pinchoff and reconnection ofHele-Shaw to study two-dimensional potential flow. Re-
interfaces, in a simpler setting than the general system. 1Rently, there has been much interest in Hele-Shaw flows

addition to the intrinsic interest of analyzing these effects in@rgely because the gap-averaged velocity of the fluid is
given by Darcy’s law and is identical to that of a fluid mov-

ing through a porous medium with permeabiltig/12, see,

dAlso in Department of Chemical Engineering and Materials Science, Uni—]cor example, Refs. 5__7' In addition, the relative Slmp|IC|t¥ of
versity of Minesota. the equations of motion also makes Hele-Shaw flows ideal
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components provides a physical mechanism to smooth flow
discontinuities and to yield smooth evolutions through topol-
ogy changes. They gave a physical derivation of the equa-
tions for binary fluids with density matched, or nearly den-
sity matched, componeni@lso known as model Ff, see
below). The diffusion is limited if the components are mac-
roscopically immiscible and reflects the partial miscibility
real fluids always display. As a consequence, interfaces sepa-
rating the flow components are diffuse although the thickness
FIG. 1. A Hele-Shaw cell in which light and heavy fluids are separated byof interfaces between real immiscible fluids, such as oil and
interfaces(Ref. 3. water, may be microscopic in many circumstances. The in-
terface thickness and structure may be important at topologi-
cal transitions since the distance between interfaces becomes
test cases in which to develop mathematical theory and nwzomparable to the interface thickness.
merical methods to study singularities and topological tran- ~ With topology transitions in mind, Lowengrub and
sitions, see for instance Refs. 8—17. The latter is our point oTruskinovsky gave a systematic derivation of the general
view here. equations governing the motion of a binary fluid. In this
Topological transitions such as pinchoff and reconnecmodel, subsequently referred to as the NSCH model, the
tion of interfaces are fundamental features of multicompo-mass concentration is coupled to the fluid motion and the
nent fluid flows. The details of such transitions are importantesulting system couples the Navier—StokR$) equations
in many physical processes as mixing and reaction rates mag a nonlinear, fourth order diffusion equation of Cahn-
sensitively depend on the production/reduction of interfaciaHilliard (CH, Ref. 46 type for the concentration. The gradi-
area. In general, the dynamics of topological transitions arents in concentration produce reactive stresses in the fluid
difficult to understand and model even in the Hele-Shawwhich mimic surface tension. The NSCH model reduces to a
context. It is not obvious how to change the interface topol-system known as model’fi(see also Refs. 47 and ¥@&hen
ogy in a physically justified manner using continuum theorythe flow components are density matched. When the compo-
and numerical simulation. The collision of material surfacesnents have different densities, diffusion may create density
for instance, produces a singularity in the fluid equationsvariation and in the NSCH model, the binary fluid may be
(e.g., see Ref. 18 slightly compressible even if the components are incom-
In interface tracking algorithms for example.g., Refs. pressible, e.g., see Joséphnd Perera and SekerkaMore-
19-26, ad hoc cut-and-connect procedures are typically over, the chemical potential depends explicitly on the fluid
used to change the topology of interfaces. Only in a fewpressure. We note that Antanovskialso derived equations
special cases involving liquid/air interfaces is it possible tofor the motion of a binary fluid with immiscible components
develop physically based reconnection conditions based owith different densities. His system shares common features
similiarity solutions of the fluid equatiorfé-?°The develop- with the NSCH model however the dependence of the
ment of such similarity solutions and reconnection condi-chemical potential upon the pressure is missing.
tions for the general liquid/liquid case remains open and thus  The idea that interfaces have a finite thickness dates to
it is difficult to provide a physical justification for the cut- Poissor?? Gibbs>® Rayleigh®* van der Waal$® and
and-connect rules. In fact, in the context of colliding drops,Korteweg®® The idea is according to the thermodynamics of
Nobari et al?* noticed that the flow may sensitively depend immiscible fluids, there is a range of concentrati¢éoone
on the time at which the interface surgery is performed. of the componenjswhere the free energy is concave and
In interface capturing algorithms, such as color functionhomogeneous states are unstabln interface between two
and level set method&.g., see Refs. 30—B5and the vol- immiscible fluids may then be described as a layer where
ume of fluid methodalso sometimes referred to as a track-thermodynamically unstable mixtures are stabilized by
ing method, e.g., see Refs. 364 analogous ambiguity weakly nonlocal termggradient$ in the energy® which
arises. In these methods, the fluid equations are augmentéave their origins in molecular force interactions between the
with an additional conservation law for the color/level setcomponents:®’ These gradient terms induce extra reactive
function and volume fraction, respectively, which are used tcstresses in the fluid which become surface stress in the zero
mark each fluid domain. The numerical viscosity introducedthickness limi®
by using an upwind method to solve the equations of motion  There has been much recent work on the use of diffuse
actually allows topological transitions to occur smoothly.interfaces in multicomponent fluid flows. Applications in-
The flow discontinuities(density, viscosity are typically clude modeling the two- and three-dimensional Rayleigh—
smoothed as well although there are now several methods ifaylor instability (e.g., Refs. 59, 63, and #4he pinchoff of
which the interface jump conditior{se., surface tensigrare  liquid/liquid jets (e.g., Ref. 38 thermocapillary flow(e.g.,
handled explicitly*'~*3It is not clear, however, which types Refs. 60 and 61 mixing (e.g., Ref. 62, contact angles and
of smoothing and numerical viscosity are physically justi-wetting phenomenge.g., Refs. 63 and 64nucleation and
fied. spinodal decompositiote.g., Refs. 65, 66, 38, 60, and)61
Recently, Goodman, Lowengrub, and Shelfegug-  gravity and capillary wavete.g., Refs. 67—69 coalescence
gested that chemical diffusion between the different fluid(e.g., Ref. 6], reactive flowge.g., Struchtrup and Dolgre-
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print)] and the displacement of miscible fluigsg., Refs. 70, the class of phase-field models which have been widely used
49, 71, and 72 In the interest of brevity, we have cited only for free boundary problems in other physical situations such
a few works. We refer the interested reader to the review o&s the solidification of binary alloys, e.g., see the review
recent research by Anderson, McFadden, and Whéelad  edited by Gurtin and McFaddéfIn fact, because there is a
the references contained therein for a much more completelose connection between quasisteady diffusion and the
listing. Hele-Shaw problentboth involve harmonic fields in a do-

In this paper, we use a simplified NSCH model to studymain with a free boundajy some phase-field equations
binary fluid flow in a Hele-ShawH$S) cell. In particular, we  (even the classical Cahn—Hilliard equatiphave Hele-Shaw
follow the classical sharp interface model and assume Polike sharp interface limits(e.g., Refs. 79—82 Typically
seuille flow between the plates. In addition, we assume therthese limiting models do not include hydrodynamic effects
is no diffusion in the direction normal to the plates. This such as buoyancy. Very recently, however, Faétkal 33 de-
results in a generalized Darcy law in which there is onlyrived, analyzed, and implemented numerically a phase-field
planar flow and diffusion. This yields one of the simplestmodel for Hele-Shaw flows, with buoyancy and arbitrary vis-
such systems that can describe the flow and indeed capturessity constrast, to study the evolution of viscous fingers
topological transitions smoothlyreferred to as the HSCH (e.g., Ref. 84 They also consider only planar flow. How-
mode). However, it does not account for 3D flow which ever, their approach differs from ours in several important
could play a role near the meniscus and near pinchoff andvays. In their model, a modified Allen—Cahn equafn
reconnection. To rule out such effects, one would have tdgnonconservative equatipgoverns the motion of the phase
perform a detailed analysis of meniscus region as is done bfjeld which is then coupled to a dissipative, time evolution
Park and Homs¥ for the classical Hele-Shaw model. We do equation for the stream function. Although Folehal. show
not present such an analysis héedthough it seems quite that this system converges to the classical Hele-Shaw system
possible such an analysis could be performed at least away the thin interface limit and indeed reproduces fingering, it
from topology transitionsand thus our model should be un- seems difficult to justify their choice of phase-field function
derstood as just that—a model. We do provide an indirecand governing equations from physical considerations. Our
justification for our model by demonstrating that it convergesapproach, on the other hand, is motivated by physical con-
to the classical sharp interface models in the limit of zerosiderations such as chemical diffusion between the liquid
interface thickness. components.

In this work, we consider primarily buoyancy driven In this paper, the differences between the HSCH, the
flow (Rayleigh—Taylor instabilityin which the two compo- BHSCH and sharp interface models are studied by consider-
nents are incompressible and macroscopically immiscibleing equilibrium solutions and their linear stability. In the
The densities of the fluids may be arbitrary but the viscosiBHSCH system, the equilibrium concentration profile is ob-
ties must be nonvanishing. We also consider a Boussinesained using the classical Maxwell construcficand does
limit (referred to as the BHSCH modeh which density  not depend on the orientation of the gravitational field. In the
variation is assumed to non-negligible only in the gravita-HSCH system, on the other hand, the gravitational field ac-
tional force. The HSCH and BHSCH models are calibratedually affects the internal structure of an isolated interface by
so that the classical sharp interface model is a limiting casegriving additional stratification of light and heavy fluids over
we note that other nonclassical sharp interface limits are¢hat predicted in the Boussinesq case. We are only able to
possiblel Several essential features of the NSCH system arebtain an equilibrium solution numerically for the stably
retained in the HSCH model including the reactive stressestratified case and there is no analytic formula. Boundary
the diffusionally induced compressibility and the pressurdayers in the equilibrium solution are observed and the evo-
dependence of the chemical potential. The BHSCH modelution towards the stably stratified equilibrium simulated in
contains reactive stresses but the flow is incompressible amghe dimension. It remains an open question as to whether an
the chemical potential does not depend on the pressure sincastably stratified equilibrium solution of the HSCH model
density variation is assumed to be small. Thus, Hele-Shawxists.
flow provides a simpler setting than the full NSCH model in The linear stability of unstably stratified equilibria to
which to compare and contrast these effects. two-dimensional perturbations is studied using two ap-

Recently, E and Palffy-Muhordy derived equations proaches. In the first, the linearized equations are solved di-
similar to the HSCH model to study polymer melgge also rectly in the BHSCH context using an analytic formula for
Ref. 76. In addition, Verschueréh derived an analogous the equilibrium concentration profile. Because no such for-
system to study thermocapillary flow in a Hele-Shaw cell. Inmula exists for the HSCH case, a practical comparison is
the case of density matched components, the HSCH modehade between the growth rates for the two models by solv-
reduces to one which was previously used by Shinozaki anthg the full equations numerically in the linear regime. The
Oond”’ to study spinodal decomposition and has been reBHSCH and HSCH growth rates are consistent although the
cently used by Verschuer®nto study coalescence in hyper- HSCH system is seen to be slightly more diffusive than the
bolic flows. We note that very recently, Struchtrup and DoldBHSCH system. Linear convergence to the sharp interface
(prepriny derived a version of the HSCH system to studygrowth rates is observed in a parameter controlling the inter-
miscible, buoyantly unstable reaction fronts in a Hele-Shawace thickness. In addition, we identify the effect that each of
cell. the parameters, in the HSCH/BHSCH models, has on the

The HSCH and BHSCH models belong collectively to linear growth rates. We then use this information to suggest a
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modified set of parameters for which a better match is obwhich measures the relative strengths of the gravitational and
tained between the HSCH/BHSCH and sharp interface lineagsurface tension forces. For example, in Fig. 1, the upper in-
growth rates at finite interface thicknesses. The models witlerface ha8< 0 (unstable stratificationwhile the lower in-

the modified parameters still have the sharp interface modeérface haB>0 (stable stratification In addition, let

as a limiting case. In paper Il, we present evidence indicating

that |mproved agr.eement betweer_l the mo_dels is ach|eve.d in A _ N1 72 be the Atwood number, 2.6

the nonlinear regime as well. This technique of enhancing 71+ 72

agreement is quite general and has application beyond the ) ) .

current context. which is a measure of the difference in the fluid components’

The outline of the paper is as follows. In Sec. II, we ViScosity.
present a derivation of the HSCH and BHSCH models. In  The systen(2.1)—(2.4) is dissipative. This is seen most
Sec. I, the method of matched asymptotic expansions i§asily in the case of zero gravity where the system energy is
used to obtain the sharp interface limit of the models. In Sedust the surface energy
IV, the equilibrium solutions of the models are given and, in
addition, the evolutiorfone dimensionalis studied for the E(t):f rds 2.7
HSCH system. In Sec. V, the linear stability of the equilib- r

rium solutions is analyzed. Last, in Sec. VI, conclusions are, = =
given. that is dissipated at the rate

2
E(t)=—12, ”if lu;| 2 dA. (2.9
Il. THE HELE-SHAW-CAHN-HILLIARD MODEL i=1 Q,

Consider a viscous two-componefttinary) fluid be-  Before turning to the Hele-Shaw—Cahn—Hilliard system, a
tween two parallel plates with gap width We suppose that few remarks are in order. In a certain sense, the sharp inter-
the two plates are located at=+b and extend over the face system given above represents the simplest set of equa-
region O<x,y<L whered=b/L is small. See Fig. 1 for an tions governing the motion of a viscous fluid between two
illustration of a Hele-Shaw cell with a layer of light fluid closely spaced parallel plat&sThe system is obtained from
surrounded by heavy fluid. Let us begin by considering thehe Navier—Stokes equations by assuming that the viscous

classical sharp interface model. forces dominate the inertial forces and that the bulk flow
between the plates is Poiseuille flow. However, because the
A. Classical sharp interface model flow may actually be fully three dimensional in the region

near the two-fluid interfacd’, particularly near the glass
plates due to flow near the contact region, it is not at all
obvious that Darcy’s law in fact holds ne&r Further,T’

In the classical sharp interface mo@éDarcy’s law is
assumed to hold in each fluid

V-u=0, (2D actually has two-dimensional curvature so that it is also not
clear that the pressure jump conditiGh4) holds acrosd".

UiZ—T(VDi—éPiQ), (2.2 Nevertheless, under several assumptions, including that of

i complete wetting of the plates by the displaced fluid, Park

wherei=1, 2 denotes the fluid regiom; denotes the gap- and Homsy" performed a matched asymptotic analysis near
averaged fluid velocityy; is the viscosityp; is the pressure, I' and showed that for small capillary numbers, the above
pi is the densityG is the gravitational force in the direction Systém indeed describes the leading order behavior of the
of the unit vectorg=e,=(0,1). In addition, we have ab- flow provided that the surface tensionis appropriately
sorbed the effect of gap width into the velocity scale and thenodified. We wish to make this point because in the Hele-
above equations have been made nondimensional using@w—Cahn-Hilliard models we present next, we also as-
characteristic velocity scale*, pressure scalp*, density ~Sume P0|_seU|IIe flow and neglect three-dlmensmnal diffusion
scale p*, viscosity scales*, gravitational scaleG, and hear the interface and contact region.
length scald.. _ o
If the fluid components are immiscible, a sharp interfaceB- The Navier—Stokes—Cahn—Hilliard model
I" separates them. The boundary conditions on the intefface The Hele-Shaw—Cahn—Hilliard models we consider in
are assumed to be this paper are versions of the general Navier—Stokes—Cahn—
2.3 Hilliard (NSCH) model(see Ref. ], simplified to model the
Hele-Shaw geometry. For completeness, we briefly review
(P2—P1) =Tk, (24 the NSCH model. In this model, a mass concentration field

wheren is the unit normal vector tb, « is the curvature, and C(x:1) is introduced to denote the mass ratio of one of the
7 is the dimensionless surface tension coefficient. In th&OMponents in a heterogeneous mixture of two fluely.,
cases we will consider in this paper, the flow is characterized!1/M whereM, is the mass of component 1 aMlis the
by the two relevant physical parameters total_mass of the binary fluid in a representative voluve _
In this paperc is always taken to be the mass concentration
B=G(p,—p,)/7 the Bond number, (2.5  of the fluid labeled 1.

(up—uy)-n=0,
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Models for Helmhoitz free energy fo(c)
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: — - logarithmic
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FIG. 2. lllustration of models fof o(c) for immiscible and miscible fluids. Solid curve, quartic free enefggg) =c?(1—c)?; dashed curve, logarithmic free
energy,fy(c)=0.9c log(c)+(1—c)log(1—c)]—0.79 ¢+ (1—c)?]+0.7841; dotted—dashed curvig(c)=(c—0.5).

As an illustrative example, let component 1 be oil, com- pVv=—Vp—€V-(pVcoVc)+pG
ponent 2 be water and thus the binary fluid is the combina-
tion of the two (separated by very thin interfagesEven +V-(p(Vv+VV)+VAV-v), (2.10
though such a combination of fluids is macroscopically im- .
miscible, there is nevertheless a narrow region of chemical P~V (¥VA), (211
mixing in which van der Waal§intermolecular forces play  where - =4,+v-V is the advective derivativep=p(c) is
an important rolé>*° the densityy=(u,v,w) is the velocity,p is the pressure)
Separately, the fluid components are assumed to be ilind 4 are the viscosity coefficients=—V®, @ is the
compressible and have constant densities and viscosities. Weavitational potential, and denotes the derivative with re-

assume that the density of the binary fluid depends on thgpect toc. u is the generalized chemical potential given by
concentration but not on the pressure. This is referred to as

the “quasi-incompressible” cadesince diffusion may intro- . p'(c) €

duce density variation and hence may cause the binary fluid pn=fo(c) = 2 [p=(A+29/3)V-v]~- ;V'(ch),

to be slightly compressible. Diffusion is allowed to occur (2.12
between the fluid components which is limited if the compo- .

nents are macroscopically immiscible. where fo(c) is the Helmholtz free energy. Note that the

chemical potential depends explicitly on the fluid pressure
and the bulk viscosity. This form gk is slightly more gen-

eral than that presented in Ref. 1 since it was assumed there
that the bulk viscosity was equal to zero. The derivation of
Eq. (2.12 follows straightforwardly from the approach given

Let p1,p, andvy,V, be the densitiesM]; /V) and veloci-
ties of the two fluid components, respectively. lget p(c)
be the total densityNl/V) andv be the mass-averaged ve-
locity field, i.e., pv=p.v,+p,v,. Then, in dimensional
form, the NSCH equations are

in Ref. 1.
If the fluid components are immiscible, thép is taken
p'(c). to be a nonconvex function @f If the components are mis-

Veov=- p ¢ 2.9 cible, f, is taken to be a convex function of See Fig. 2.
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Note that for fy nonconvex, there is a regioftalled the
spinodal regiop in which the diffusion coefficientfg(c)

<0. This creates antidiffusion and is what prevents the fluids

from mixing completely.

Finally, the two additional parameteesand v may be
interpreted as follows is a measure of nonlocalitgradient
energy which, as we will see, effectively introduces an in-
ternal length scaldinterface thickness in the immiscible
casg, see Refs. 46 and 1 for example.is a measure of

nonviscous dissipation and may also be interpreted as a mo-

bility.

We wish to point out two important features of the
NSCH model. First, the velocity is not necessary solenoi-
dal which may introduce compressibility effects. Second
gradients in concentration may produce stresses which as

see in the next section, mimic the effect of surface tension.

For further details, we refer the reader to Ref. 1.
Equations(2.9—(2.11) have the associated energy func-

j p
Q

which is the sum of the kinetic, surfacehemical and po-
tential energies. It is easily seen that

|v|?
2

E dxdydz (2.13

€
+fo(c)+ §|Vc|2+®

E=

3
7721 V|2

—f v|V,u|2dxdydz—f
Q Q

+(p+N)(V-v)?|dx dy dz+-boundary terms.

(2.19

We further assume that the viscosity coefficiemtand A
may depend or and thate and v are constant.

On the parallel plates, we take the boundary conditions

v=0, no slip, (2.15
¢,=0, no concentration flux, (2.16
#,=0, no diffusion flux, (2.17

atz=*+b/2, where the subscrigtdenotesi/ 9z. We note that
Egs. (2.16 and (2.17 imply that the liquid/solid contact
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Voum—Lp ve—— 2 LA 2.1
-u——;pwxq+u @——;ﬂ% e (2.19
= V-+CV VcaVe) -G 2.1

1
P(Ct+U'VC)=P—eAM, (2.20
herePe=U*p*L/(vu*) is the diffusional Peclet number
wu* is a characteristic scale df)(c)), C=¢€/(u4L) is the
Cahn number(a measure of interface thickngéssand M
=p*/(p* u*) is a Mach numbeta measure of the relative
strengths of the pressure and chemical foxrc¥sand A de-
note the two-dimensional gradient and Laplace operators.
e generalized chemical potentjalis given by

, p'(c) 1
,u=f0(c)—M7p—C;V-(ch). (2.21
The dimensionless energy for the HSCH equations can be
obtained by dropping the kinetic energy and nondimension-

alizing the NSCH energy in Eq2.13 to yield
dx dy;,

1
MJ’Q p(c)
’ (2.22

which is the sum of the dimensionless surfadeemical and
potential energies. By),, we denote the reduced two-
dimensional domain. It is not difficult to see that the energy
is dissipated by the evolution

E= + MG

C
(fo<c>+5|Vcl2

Eu)——-J 127|u|?dx dy— 1J‘ 1|V |2dx d
0, 127 Y= M o,pel V4 y

1
+ —

1 ~
M Cpcidc+ P—e,u&n,ud—{Mq-l—Mqu)

90,

u-nds.

C
+p(f(C)—§|VC|2 (2.23
This is one of the simplest diffusional systems that can de-
scribe binary Hele-Shaw flow and is in the spirit of the sharp
interface model presented earlier. However, it does neglect
three-dimensional flow and diffusion which could play a role

angle is 90°. We choose these boundary conditions for simaear the meniscus, pinchoff and reconnection. While we do
plicity. See Jacqmitt for a discussion of other concentration not present an analogous version of the analysis of Park and
boundary conditions and their relation to liquid/solid contactHomsy to justify our assumptions, it seems quite possible

angles.

C. Simplification of the NSCH model for flow in a
Hele-Shaw cell

that such an analysis could be performed, at least away from
topology transitions. We do provide an indirect justification

for the HSCH model by demonstrating that it converges to
the classical sharp interface models in the limit of zero inter-

Next, we obtain the Hele-Shaw—-Cahn—Hilliard systemface_l_tr?idﬂgzs';| del i iderably simol h h
by supposing in the NSCH model that the viscous forces € model s considerably simpler than the

dominate the inertial forces, the flow between the plates in,CH system.r,]é\s SflfJCh’ It ;:rg_\f/;dgs a S|mdpler forum .'E_I\,Nh'Ch
Poiseuille flow and that there is no diffusion in thalirec- :E |nf\|/e_3t|gat$ t evt\a/ ectst Oth It uS|ontgn cc.)mlf)re;?l liity on
tion so thatc is independent of. Using an analogous non- e fluid motion. We note that equations similar (@18

dimensionalization as in the sharp interface case, the Hscif-2D were denveéj by E a.md Palffy-Muhoray in thg context
model is given as of polymer melts’® In particular, those authors noticed the

dependence of the chemical potential on the pressure. How-
HSCH model ever, they did not seem to account for compressibility effects

Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



498 Phys. Fluids, Vol. 14, No. 2, February 2002 Lee, Lowengrub, and Goodman

due to density differences of the constituents. In addition, Before concluding this section, we rewrite the HSCH
Verschueren derived an analogous system to study theequations in a more useful way by using the vector identity
mocapillary flow in a Hele-Shaw céit. Very recently, _ _ 24 1 2
Struchtrup and Dold(prepriny derived a version of the V- (pVeaVe)=V(p|Vel’)+pAacVe—3V|Vc|
HSCH system to study miscible, buoyantly unstable reactiorand introducing the modified pressure
fronts in a Hele-Shaw cell.

: ) . . . C
Finally, we will take the following simple mixture model q=p+ —p|Vcl
for the density in the HSCH system: M
1 1 1 Using these, Eq2.19 can be written as
——=—c+—(1-0), (2.249 1 C 1
p(c) p1 p2 - ~ - 2| _&
120(0) Vg+ v P AcVec 5 V|Vc| ) Gp(c)g},

where p; and p, are the nondimensional densities of two (2.31)
fluids before mixing. The formulé2.24) means that volume . ] .
is preserved under mixirf.In the case of a simple mixture, @nd the chemical potenti&2.21) may be written as

the HSCH equations can be simplified by using '

p
=f/,(c)— —-Mqg—CAc. 2.3
i@ 1 1 u=fo(e)= Mg (2.32
?__a_ P11 P2 Yet another equivalent form of Eq2.19 may be ob-

In this paper, we consider both the HSCH system giVer;talned by introducing the generalized Gibbs free energy

above and a slightly simpler version obtained from a Bouss- p 1C , 1

inesq approximation. To obtain this reduced system, we as- 97 ;Jr 2 M|VC| + Mfo' (2.33
sume that the deviation betwegfic) and its spatial average
{p) is small, but[p(c)—(p)]G is not negligible. In the
Boussinesq limit, we suppose that the density is a constant p(c)
which we take equal to 1 everywhere except in the gravita- Y~ ~ 127(c)
tional term. We refer to this simpler system as the BHSCH
model and the equations are given by

Using g, we obtain

~ 1
V(g+G®)- ruvc|. (2.34

Using Eq.(2.34 we obtain a relatively simple form for
the out of plane vorticityw=V X u-e; wheree; is the unit

BHSCH model vector out of the plane. The vorticity is given by
. = C ~
V.-u=0, (2-25) w=— P( ) XV(g+G(I)).93
1 c 12%(c)
u=-— Vp+—V-(VceVe)-Gp(c }
1270)| P Y e y Dy 229 ge. (2.39
(2.2 M "1 127(c)
The first term on the right-hand side is the baroclinic vortic-
Ctu-Ve=g5 Va, (227 ity and the second term is the vorticity due to surface ten-
sion.
where
p(C)=(p;—1)c+1, (2.28  lll. THE SHARP INTERFACE LIMIT
and p,=1. Further, In this section, we present the sharp interface limit of the

, HSCH model(2.18—(2.21) away from topological transi-
n=To(c)—CAc. (229 t{ions such as pinchoff and reconnections. To do this, we

In the Boussinesq case, the energy B2 reduces to follow the approach in Ref. 1 and relate tGe M, and Pe
numbers to a single parametgrwhich measures the inter-
1
E= Mf

face thickness:
C=0(y%), M=0(y), andPe=0O(1l/y) or O(1).
and a formula analogous t@.23 may be obtained foE in (3.9)
the Boussinesq limit. We then sketch matched asymptotic expansionsy iand
The BHSCH system is simpler than the HSCH model inshow that at leading order in the outer equations, the classi-
that the velocity is solenoidal and the chemical potential doesal sharp interface system is recovered. In addition, we show
not depend directly on the fluid pressure. Concentration grathat the BHSCH model has the same classical leading order
dients still may produce nonzero velocities however. Thdimit which suggests that for thin interfaces, the two ap-
system(2.25—(2.27) has been used previously to study spin-proaches yield very similar results away from topology tran-
odal decomposition in a Hele-Shaw cell in the absence ositions. While this is indeed borne out by our numerical re-
gravity’’ and was recently used by Verschuéfeto study sults in paper If we also note some important differences
coalescence in hyperbolic flows. between the models. As we will see in the next section, there

C ~
fo(c)+ §|Vc|2+ MGp(c)® |dx dy, (2.30
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are interesting differences in the 1D equilibria for the two  yp(-V=0, (3.3
models for finitey. In particular, boundary layers are present L

in the HSCH equilibria and the gravitational field actually 0)_ _ Vo Ep(c® 3.4
affects the concentration profile and hence the interface ! 1277(c<°))( P p(c)9), @4

structure. Further, in paper dlpbserve that the limiting be-
havior of the two models is subtly different near pinchoff and
reconnection. p'

V-u®=— ?(c§°)+ uOvc©@)=o, (3.5

A. Sharp interface asymptotics
_ - c9+uOvc®@=p, (3.6)
We now present a brief sketch of the matched asymptotic

expansions of the HSCH and BHSCH systems. FollowingvhenPe=1/y, or
the standard approach.g., Peg®), we suppose that at time

t=0, there is a single smooth transition layer of wify) V.u®=-— p—(c§°)+ u©®.vc©®)

separating two domain§); and ), where the fluids are p

nearly gniform. In particular, suppose tha(x,O?.:cllyz = aA[f5(c?)+ ap Y], (3.7
+0(y) in Q, ,, respectively, where, , are the equilibrium o )
concentrations of fluid 1 in the two domaifise., wells of p(c)(ct?+u@. V@) =A[f5(c@)+ap~V], (3.9

the Helmholtz free energfy(c)]. Note that this impliex;
~1 andc,~0. This initial condition forc is consistent with Equation (3.3 implies thatp(~? is constant in each
letting the fluids equilibrate before motion starts. lebe a 4 tar region. Since'® is the constant, , in each fluid
curve centered in the transition layer. The idea of the metho?nitially, C(O):C12 is the solution to botk{3.6) and (3.9).

IS to expand, u andp in powers ofy both away from the 14,5 "Eq .(3.5) is satisfied for both choices d¥e. Conse-
transition regionjouter expansior(), ,) and inside the tran- q ently, at zeroth order in, the sharp interface field equa-
sition region (inner expansion In the inner expansion, a tions (2.1)—(2.2) are recovered with densitiggc, ,) and vis-
stretched local coordinate systémith respect td”) is used. cosities7(c, ). In the BHSCH case, the only éhange in the
In order for our expansions to be valid, the curvatgref I above equaiions is that thein Egs. (3.7) and (3.8) should

must satisfyk<1/y. By substituting these expansions into po get to zero which does not alter the conclusion.
the equations and matching powersygfone can determine
the field equations in theg— 0 limit. By matching the inner
and outer expansions at the boundaries of the transition res

. - . 2. Inner expansions
gion, one can reconstruct the sharp interface jump condi-

whenPe=1.

tions. To derive the jump condition§2.3) and (2.4), we per-
To be specific, we will take the scaling form the matched asymptotic analysis of the HSCH system
Ce 2 near the interface. Since the analysis for the BHSCH system
R is somewhat simpler and yields the same leading order limit

¥ ¢y as the HSCH system, we do not present that case here.

M= ;ﬁf p(c)Vfo(c)—fo(c) —fh(cy)(c—cy)dc, First we introduce the signed distance functiofx,y,t)

c which measures the distance from the interfage;0 de-

Pe=1/y or Pe=1. (3.2  notes the distance to the interface from the fluid 1 direction.

As will become apparent when we consider the inner expan.The interface is re“presented" W‘):{ﬂ”(x’y't? =0} Ne)ft
. . . ) L introduce the “stretched” coordinatesX and ¥
sion, this choice oM guarantees the sharp interface limit of _

the HSCH model,satsies the Laplace jump conditas) (ECTY 7, DA 5 SO0 0 ME S0 TS
with the surface tension In the BHSCH model, the in M '

should be set to 1. increasingk andy, respectively. The curvature of the in-
terface is—A.
1. Outer expansions In this new coordinate system,

In the outer domain$); and(},, write the variables,
¢, andp as expansions in powers of Vi=tf+ ;fgu
u(x,y,H) =u 20y, + yutxy )+ uP(xy )+ 1 o«
c(x,y, ) =c@0xy,n+yc@xy, )+ ¥’ (xy, 0+, A=t 2l 3

1 1
pixy.H=" PPy, D+ pQx,y, D)+ yp P (X, )+ V- (Fat+Fan=(Fyz+ —(Fo)y—«F.

The 1/ term is introduced in the expansion fpifor a rea- By using hats, we denote the variables in the inner region.
son to be explained when we discuss the inner expansioWe write u=ot+Wn and further suppose that the variables
Substituting the expansions into the HSCH equati@%8—- ¢, v, w, and p have the following expansions in the inner

(2.21), the leading order equations are region:
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0(%,9,0)=0V(%,9,t) + ¥ U (%,§,1) + ¥ P (%,9,1) (et W) p(e@)=C(t,%) (3.16

+-. for some functionC(t,X). We claim thatC(t,X)=0 if Pe

=1/y or Pe=1. It will follow from this that

W(%,9,0)=WO(%,9,0)+ W D(X,§,1)+ y? W2 (X,9,1)

Wi =W_=—iy
_|_. ..
' and hencd?2.3) is satisfied.
e(%,9,0)=289(%,9,t) + yeP(%,9,t) + Y2 (,9,1) For the proof of this claim, we let
T . dfg pap Y[ . +1 ~ K
. =G Yo o (pCs)x 72'(pcy)y 5P%
BT t)y= DDk < 5O (& ¢ 1Y n "~ N N A o -
p(X.9.1) 5 (%Y, + Py D+ yp (X y,1) = 20,9, + v, 50) + Y22 (%,9,8) +
4. be the inner expansion for the generalized chemical poten-
tial.
The matching procedure in the intermediate region where the  case 1:Pe=1/y.
inner and outer regions overlap is well knowsee Ref. 81 At O(1/y) in the inner expansion of E42.20), we have
for example and so we do not discuss the details here. At 0 o a(0) o A0)_ 25 (0)
leading order one obtains p(c) (g +WOE =C(t, %)) =5 '?, (3.17)
ém)(?)—mf’%, (3.9 V\{Z:Zr;a (3.16 is used. Integrating3.17) with respect toy
yi
P9 —pis (3.10

C(t,%)c' V=9, +D(t,%)

for some functionD(t,X). Evaluation of this equation &t
as{— =, where the 1, 2 values are the limiting values as= = gives
the outer variables ax, y) approach the interface frofl; C(t,%)C1 = D(1,%),
and(,. Further, let

which is possible only ifC(t,X)=D(t,X)=0 becausec;

i 7-/ f:lp(c) V2(fo(e)—fo(c) - fo(cy)(c—cy))dc. #Cy.

Case 2Pe=1.
(3.11 The O(1/y?) equation in the inner expansion of Eq.
At O(1/92) in the inner expansion of E¢2.19, we obtain (2.20 combined with the matching conditions gives
o ~ ~ - (0)—
PV =P(R)—p(&?)(e5)*. (3.12 Iy =0.

By matching with the outer solution and using thatThen atO(1/y), the inner expansion if2.20 reduces to

limg_..¢5”=0, we findP is independent ok and thatp‘~ %) C(t,0)e” = p?.
is the same constat in each region); and(),.
Among theO(1/y) equations in the inner expansion of

Egs.(2.18—(2.21) are the following:

Thus, the same argument as is used in case 1 implies that
C(t,x)=0.

Finally, it remains to show Ed3.15 holds. In either the
case 1 or case 2, we conclude that

~(0)_ _ 1(a0) ~(0)yA(0)
Wy = = c +wW™) s 3.1
y (6P (€ 7) (e )&, (3.13 20—a (3.18
and wherea=a(t,X) is a constant irjy. Using a centering con-
B+ (p’ (6™ (20)2+ 2p(6®)e08l), dition of the type given in Peﬁblwhic'h links T with the
Y y y oy inner expansion, the argument given in the Appendix of Lo-
- Kp(é(‘)))(eglo))zzo_ (3.14  wengrub and Truskinovskyshows that(®)(§,%,t)=C,(9)

_ ) _ - where C,(y) is the planar interface connectirg with ¢,
Integrating(3.14 and using the matching conditions, we ob- yescribed in Sec. 5 of Ref. 1. From this, one can conclude

tain the jump conditior(2.4) for pressure that Eq.(3.19 indeed is satisfied.
P2—P1= 7K

since as we will see presently, IV SPECIAL SOLUTIONS

C
\QJ 2po(c) Vfo(c)—fo(cy) — fo(cy)(c—cq)dc In this section, we consider equilibrium solutions to the
@ HSCH and BHSCH systems. These solutions and their sta-
+oo bility, which is analyzed in Sec. V, help to characterize the
= f p(e@)(&{”)2dy. (3.19  models. The simplest equilibrium solution for the HSCH and
o BHSCH models corresponds to a homogeneous solution at
Further, integrating3.13), we get rest:
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c(x,t)=¢, u(xt)=0, (4.1 ful. It is not immediately apparent that an unstably stratified

_. ) o 1D equilibrium solution does exist for the HSCH model.
wherec is a constant. Note that there is a balancing linear  |,'1p the HSCH equations reduce to the following sys-
pressure. More interesting equilibrium solutions are obtainegg . ’

when one considers a stratified binary fluid. That is, the case
in which a flat (diffuse) interface separates two infinite re- @

gions of nearly pure fluids. Suppose the interface is centered Uy~ pgtyy: 4.7
aty=0. Then, we may consider the one-dimensional prob-

lem in which there is no flow and all variables depend only _ i =

ony. v= 127](qy Gp): (48)

A. 1D equilibrium for the BHSCH model 1
a bt (v (;b)y:P_eMyyv 4.9
The BHSCH 1D equilibrium equations are

wherep(c) is given by(2.24), the viscosityy is assumed to

dy=Gp(C), (42 pe constant for simpiicity, gravity is in the positiyedirec-
fyy=0, (4.3 tion (é>0), the chemical potential is

where u="fs(c)+aMqg—Cc,y,
n="Tfs(c)—Ccyy. (4.9 and we have introduced the volume fraction

Therefore Eq(4.3) can be solved independently of £d.2). ¢=p(c)c. (4.10

An explicit solution may be obtained for at least one choice
of fo(c) with the boundary conditions,=0 andc,,,=0
(from uy=0) aty=*c. One can recast these conditions as  ¢(¢)=p,(1—a¢p), c=d¢/p(ep). (4.12)
limy_ ... c(y)=c,,. Letfy(c) be the quartic function

Note that as functions ap,

We suppose4.7)—(4.9) hold on a sufficiently large finite
4.5 interval [ —a,a] and we impose zero Neumann boundary

D
a2 o2
fo(c)= 7 (c=cy™(e=co)", conditions onc, and u, at the boundaries:

which with D=4 andc;=1 andc,=0 is the solid curve in c,=0, wy=0 aty==a. (4.12

Fig. 2. Then, it is easy to see that . . )
Using these boundary conditions and after some manipula-

c(y)=3[(cy+cy)—(ci—cy)tank((c,—c,)y/\2C/D)]. tion, Egs.(4.7)—(4.9) can be recast as a single conservation
(4.6)  law for ¢,

This is known as the Maxwell constructiole.g., Ref. 3 b+ 1(),=0, (4.13
which connects the wells of the free enerfgywith a com-

mon tangent. The modified pressiugeis then obtained by Where

integrating Eq.(4.2) in y. Note that this solution is valid 1 1

whether the fluid is stably or unstably stratifiedetermined f(p)=vp— Baly= " —Pp(C)Iuy (4.14
by the sign ofG). For the more general free energfggc), © p2re

such as the regular solution model free eng®g22 consid- s the flux for ¢, and

ered in the next subsectigdashed curve in Fig.)2it is not

possible to obtain an exact solution and the equilibrium so- i
lution is computed numerically. We next discuss how this is 12y B ~
done in the context of the HSCH model. Ay 1 [(1o(€) = Ceyy)y+ aMGp(C)],
+ JEE—
Pe 129

B. 1D equilibrium for the HSCH model
whereuo(c)=fg(c) and we actually usé4.11) to replacec

Since the chemical potential depends explicitly o in . ! S . .
the HSCH model, it is not possible to find an exact form oflcnoﬁgi?jngf(ﬁ' This equation is equipped with the boundary

the 1D equilibria even for the case of the quartic free energy

(4.5 given above. Therefore, numerical simulation is used.  ¢,=0, u,=0 aty==*a. (4.19
To compute the equilibria, we solve the 1D time dependent . o

equations and march in time until equilibria is attained. wehote that the boundary condition qnimplies that

took this approach because we encountered difficulty in solv- aM

ing the equilibrium equations directly using a boundary  ¢yyy=—=Gp(c) aty==a, (4.16
value problem solver. As a consequence, we are able only to

obtain the stably stratified equilibria. Although we tried sev-which directly links gravity with the concentration profile. In
eral strategies for computing unstably stratified solutigms  the Boussinesq case,,,(*a)=0 sincea is taken to be
cluding the approach taken in Ref.)8®one were success- zero inpu.
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1. Numerical method for 1D evolution A
. . - . R'= ¢! — 1o (v 1200 127 01 12B1 - 112)
We use the following conservative finite difference Ay

method to solve Eq4.13 numerically. We first divide the
. . . aMAt
interval [ —a,a] into N cells I;=[y;_1/2,Yi+12], 1=<i<N. +—(ny)n

i
Letyi=3(Yi+ 12t Yi-12) andAy;=Y; 1o~ Yi 1. For sim- Pe
plicity, we assume that these cells have equal lengths and 1
thus thatAy;=Ay. Qin:,uo(Cin)—CLd( ¢l —— in)'
Integrating(4.13 overl;, we obtain the following sys- p(C)
tem: To evaluate §y,);', we take
d (VYitiz n_ 1 n n
atly Ay, dy+(F(d(Yi+12,0)) = F(A(Yi-112,1))) =0. (Qyy)i _A_y[(qv)iﬂ/z_(qy)i—l/z]’
(417) a,ZM 1 @
To achieve second order accuracy, we approximate the solu- (P_e+ F) ()i 12= P_('“"(C)y)‘nJr 12
, n e

tion using the value at cell centers, all derivatives are ap-

. . G
proximated by second order centered differences, and the +EP(Cin+1/2)'

integral
Vit in the interior of the dual grid. At the boundary, we talg
f dy =Gp(c). To calculate fo(C)y){'} 12, We use
Yi-1/2
1
is approximated byAy¢(y;) from the midpoint rule. The (,uo(c)y){‘ﬂ,zzA—y[,uo(c{‘ﬂ)—uo(c{‘)].

resulting semidiscrete equation is
Note that by the definition o#,

J 1
Efﬁ(Yi O+ A_y(f(¢>(Yi+1/2,t))_f(¢(¥i71/2,t))):0- o
(4.18 p(cy)

Several advantages of this semidiscrete formulation caBway from the transition region sincg~1 andc,~0. We
be easily observed. In view ¢4.14), the Neumann boundary Will also take advantage of this fact when we solve the full
conditions (4.15 can be imposed exactly: we simply set equations in paper ﬂ.FinaIIy, L4 is the discrete Laplacian in
f(p12)=0, f(dni12) =0 as we evolve4.18 in the cellsl, 1D associated with the zero Neumann boundary condition,
andly . Due to this exact numerical implementation of zerothat is,
Neumann boundary condition for and cancellation of p
fluxes at the cell boundaries in the interior, the masg
preserved on the numerical level.

In this semidiscrete system, the primitive variables such .
asc and ¢, and their derivatives of even order are computed Lafi= W(f”l_ fi) for i=1,
at the cell center§primary grig and their derivatives of odd
order are computed at the cell boundafligsal grid. When- —
ever we need a value of a variable on one grid computed on L (AY)
the other grid, we take the average of two consecutive valuean advantage of our fully discrete formulation is that the
on the other grid. For example, ifis needed ay; , 15, itis  resulting linear system fop"** and »"** can be solved
defined by directly using a block tridiagonal solver.

$~0 (4.20)

1
W(fi+l_2fi)+fi—l for 1<|<N,

(_fi+fi*l) for |:N

pi+12=2(p(Ci)+p(Ciy1)).
To advance the solution in time, we use a simple first2. Numerical results for 1D evolution

order forward—backward Euler scheme. Because of the \vo first solved Eqs(4.19—(4.20 using the quartic free
fourth order derivatives irt and the nonlinear relationship energyf, given in Eq.(4.5 with ¢,=1 andc,=0 andp,
betweerc and¢, a little care must be taken to do this. Rather _ 4 andp,=0.9091. Interestingly the code diverges for the
than updating4.18 directly, we update following coupled f5|10wing reason. Both antidiffusion and gravity drive the

system for¢ and separation of light and heavy fluid, although the chemical
t diffusion “turns off” when c~c;, ¢, since Aug(cy)=0.
{‘“:P—eLdM{‘“Jr R, (4.19 Gravity, however, continues to drive the separation even

whenc~c,, ¢, (e.g., recall the boundary condition foy,,)
and the fluids “pile up” at the boundaries. As this occurs, the

pitt=— c )Ld¢in+l+ Q. (420  concentration becomes negative near the fluid 2 boundary
Pt since there is no maximum principle for the concentration
where equation with the quartic free energy and constant mobility;
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recall that Eq.(4.13 is a fourth order nonlinear diffusion tangent(4.6) as the profile approaches the boundary with
equation. The negative concentration eventually causes theero slope. Sincé, is the regular solution free energy, the

densityp(c) to diverge. B=0 solution is different from Eq4.6) though.
To overcome this difficulty, we use the regular solution The presence of the pressure in the chemical potential
model free energy when 8=0.1, on the other hand, causes a surprising differ-

B ence between the two cases away from the transition layer. In
fo(c)=A[cInc+(1-c)In(1—c)]— E[Cz+ (1—c)?]+E, the 3=0.1 casesolid curve, gravity additionally drives the
(4.22) density stratification and causes the fluids to be more “pure”
' away from the transition layer; that isis closer to 0 and 1.
which is singular ac=0, 1 and hence constraiicgy,t) to  This seems quite reasonable physically. At the boundaries,
remain between 0 and 1 for dl(e.g., see Ref. §7 The  for examplec(—2.5)=0.9971 anct(2.5)=0.0023. In addi-
constantsc; andc, are then determined as the minima of tion, the profile does not approach the boundary with zero
fo(c). When we seA=0.5,B=1.5, andE=0.7841 we can  slope because of the boundary conditionay,. We have
see in Fig. 2 that this regular solution free enetdgshed tried other values of and found similar behavior. Moreover,
curve compares well with the quartic free energsolid e have also considered the effect of domain size. Increasing
curve). For the above choice & andB, we have the size of the domain causes the limiting concentrations to
¢,=0.9293, c,=0.0707, b_e c_Ic_)ser to0 ar_1d 1 but does not <_:hange _tht_a transitiqn _pr_ofile
significantly. This suggests that in the limit of an infinite
which are found using Newton’s method. For the density, wejomain(with 8>0), the values ot aty=+ are 0 and 1
prescribe the equilibrium densities(c;)=1/(1+8) and  [the singular values of,(c)] rather thanc, and c, [the
p(cz)=1 instead ofp, andp, which are the densities before minima of f,(c)] as is the case in the BHSCH model.

mixing. The connection between the two is given by By considering the numerical flux, we can understand
1 1 how such a profile can be in equilibrium. Consider Figh)3
a=———=p/(c1—C,), (4.23 In this plot, all the components of the fldX¢) are shown.
P1 P2 The total flux is indicated by “o0” and is seen to be zero. The
c.B pressure contribution(q) to the flux is nearly constant
—=p+1- (424  (dotted—dashed cury@nd has only a small variation across

_ ~ the transition layer due to the small density variatisince
Note that whenc,=1 andc,=0, the two density descrip- g=0.1). Near the transition layer, the, (solid curve and
tions are identical. In addition3 is a non-negative constant c,yy (dashed curvecontributions dominate and balance one
that is varied. Thus, fluid 1 is the lighter fluid of the two.  another. At the boundaridshown in Fig. &)], a boundary

We defineC andM by the scaling3.2) and we sePe  |ayer is seen in the, andc,y, terms and it is the latter that
=1/y. In the simulations presented below, we take 0.1.  palances the pressure at the boundary. Note that in the inte-
The surface tension is=v2/6, the viscosity isp=0.5 and  rjor of the domain(e.g.,— 2.4<y<—0.5), the flux fromcy,y
the gravitational constar® is determined from the Bond is nearly zero.

number as follows: To examine the evolution process, we consider the ap-
B proach to steady state of an initially unstably stratified binary
G= —(p(cy)—p(cy)), (4.25 fluid. This is shown in plot of Fig. @). The initial state
T (solid curveg is a hyperbolic tangent connecting, at y
with B=25. Note that the Atwood number=0. In the re- = —2.5 withc; aty=2.5. All parameters are as in the pre-
mainder of the paper, this value ofs fixed and so changing vious simulation; this makes the stratification unstable. Ob-
B is equivalent to changinG via Eq. (4.25. serve that fluid is fluxed through the domain and that the

Last, the numerical parameters are given as follows. wdight and heavy fluids pile up gt= —2.5 andy = 2.5, respec-
consider the domain-2.5<y<2.5 and useN=1000 grid tively. The light/heavy interfaces move in from the bound-
points. We use the time steft=5.0x 10" # initially and we ~ aries and eventually meet at the center of the domain as the
refine the time step i€(=2.51) approaches 0 or 1, the sin- Profile equilibrates. The fluk(¢) is shown in Figs. é) and
gular points of the logarithmidy(c). More precisely, if 4(c) at timeT= 1.5 and the behavior is analogous to that seen
|C(i2-51)—Csind<d where Cgng=0, 1 thenAt= ey Aty in Fig. 3 except that now there are more transition layers.
and d=e4dyq Where digja = 2.5% 1073, €A=0.5 and ¢4 Finally, let us interpret our equilibrium results in view of
=0.8. the sharp interface asymptotics presented in Sec. Ill. In that

The equilibrium solutions foB=0 andB=0.1 (the sta-  Section, it was seen that the same sharp interface limit is
bly stratified caseare shown in Fig. 3. In the upper gragh, o0btained at leading order for both the HSCH and BHSCH
is shown while in the lower graphs the numerical flux and itsmodels. In the 1D case this means that acyos$, ¢ should
components are shown. Note that whgn 0, the concentra- jump fromc, to c,. Now, although the equilibrium profiles
tion and pressure equations decouple at equilibrium and thef c for =0 andB=0.1 appear to be quite different away
resulting concentration solutionis the equilibrium for the from the transition layer, they actually only differ by an
Boussinesq model. The3=0 solution (dashed curve O(y) amount sincey=0.1. Further, wheny is reduced to
smoothly connectg,; andc, and resembles the hyperbolic y=0.05, two things happen. The width of the transition layer
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Stably Stratified Equilibrium: HSCH, Log. Free Energy, N=1000, B=25,y=0.1
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Components of Flux at Equilibrium: HSCH, Log. Free Energy, N=1000, B=25,7=0.1, B=0.1
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FIG. 3. Stably stratified equilibriunB= 25 andy=0.1.(a) Concentrationg=0 (dashed curve 8= 0.1 (solid curve; (b) components of the flux. Total flux

(O curve), uo(c)y(ap—1)/Pe(solid curvg, —Ccy,(a¢p—1)/Pe(dashed curve aMq,(a¢—1)/Pe(dotted—dashed curye(c) close-up of the components
near the boundary point=—2.5.

decreases by a factor of(28s expectedand the values afat  layen and equilibrium nature of the problem. For example,
the boundary become closer g and ¢, [i.e., c(—2.5)  as may be seen in paperltlynamical simulations of the full
=0.9872 and:(2.5)=0.0113] albeit at a slow rate. This is HSCH and BHSCH models, in periodic domains with two
consistent with the sharp interface asymptotics and we intettransition layers, yield very similar results for comparable
pret the slow rate of approach as follows. We believe that thealues of y away from pinchoff and reconnection. This is
effect of gravity on the chemical potentidhrough the pres- likely due to the fact that because of the periodic boundary
sure is magnified by both the geomet(¥D single transition  conditions, there are no boundary layers in the HSCH case.
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Evolution to Stably Stratified Equilibrium: HSCH, Log. Free Energy, N=1000, B=25,y=0.1, p=0.1
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Components of Flux: HSCH, Log. Free Energy, N=1000, B=25,y=0.1, $=0.1
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FIG. 4. Evolution to the stably stratified equilibriuB=25, y=0.1, andy=0.1. () Concentration at times=0 (solid curvg, t=0.5 (dashed curvg t
=1.0 (dotted—dashed curyendt=1.5 (dotted curvg (b) components of the flux &t=1.5 marked as in Fig. 3c) close up of the components near the
boundary pointy=—2.5.

V. LINEAR STABILITY ANALYSIS rium solution to two-dimensional perturbations in the
BHSCH model. Since we do not have an analytical or nu-

In this section, we consider the linear stability of the . . . .
equilibrium solutions we obtained in the preceding section.merlcal representation of an unstably stratified 1D equilib-
We focus primarily on the two cases for which we have exacf'!m sqlut|0n for the HSCH model, we make a practical
formulas for the equilibrium solutiofd) the stability of ho- ~ COmparison between the growth rates for the two models, at

mogeneous solutions at rest for the HSCH and BHSCH modthe end of this section, by solving the full equations numeri-
els and(2) the stability of the unstably stratified 1D equilib- cally in the linear regime.
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A. Linear stability of homogeneous solutions Note that there is no flow. Equatigs.10 is identical to the
Let us consider solutions to the HSCH Eq8.18— ciasilc?ItCahn_—Hllllagj fqu8a_|t_|;6l?1llneart|§edtab(;ut a Con-I
(2.21) of the form stant sta dgagain see Ref. 88The growth rate of a norma
mode is
c(Xx,t)=c+ €C(x,t), (5.2 1
o= 5 [kI*(ke=[kI?), (5.1
u(x,t)=0+ €ti(x,t), (5.2) Pe| |*(ke =1k

and thus the condition for growth or decay of modes is the

q(x.t)=g+€q(x.t), (53 same as that in the HSCH model.

X,t)=u+ em(x,t), 5.4 ) . I
p)=pten(xt) 64 B. Linear stability of the 1D BHSCH equilibrium

where T is a constant, g=Gp(C)y and u=puy(c)  Solution

+aMGp(C)y are the equilibrium values of concentration, We now consider the linear stability of the unstably
pressure, and chemical potential, respectively. Gravity is asstratified 1D equilibrium solution of the BHSCH model to
sumed to be in thg direction. Plugging Eqg5.1)—(5.4) into  two-dimensional perturbations. In this section, we present
the HSCH system, keeping terms proportionaletand re-  equations governing the linear growth rates of the perturba-
writing the resulting linear system as a single equatiortfor tions. We solve these equations numerically and compare the

we obtain the advection—diffusion equation resulting growth rates to those from the sharp interface
o — _ model given in Sec. Il A. We demonstrate the linear conver-
Citu Cy=D A[fg(c)T— CAT], (5.9 gence of the two growth rates as the interface thickness is

taken to zerdfollowing the scaling in Sec. 1)l Through this
comparison, we study the effect of tife, C, andM num-
a®Mp(c) - bers on the linear growth rates. We then use this knowledge
v;=p(C) Pet 122M n(0) = (5.6 later in our numerical simulations of the full equations.
7(c) o .
We focus on the unstably stratified case because there is
and we have used the simple mixture form(@a24) for the  the potential for perturbations to grow, in contrast to the
density. The diffusion coefficierd, is given by decay found in the stably stratified case. Thus, the stabilizing
effects of the chemical diffusion and interface thickness are
D= 1 _ (5.7) easy to identify. For simplicity, we suppose that the viscosity
p(S)[Pet+ 12a°M 7(C)] 7 iS constant.

The ad . loci ises f he d q fth Let us consider the solution to Eqg.2)—(4.4) with the
e advection velocity arises from the dependence of the | i+ free energy,(c) given in (4.5 with D=4, ¢,=1,

chemical potential on _the pressure. Observe_ that as a cons idc,=0. For the density, we take
guence, there is flow in the direction of gravity. This makes
sense physically and is consistent with the 1D evolution we  p(C)=1—aq4C, (5.12

investigated in the previous section for the HSCH LnOdelwhere ay is a positive constant. Therefore=p(0)>p(1)
Using the scaling3.2) the advection velocity i©(a®y*G)  =1- a4 . The unstably stratified equilibrium solution is then

which vanishes as the interface thickngss 0. either given by Eq.4.6) with G<0 (gravity pointing in
Looking for a solution of Eq(5.5) in the form of a  o4ativey direction or by reversing the roles af, andc, in

& aik-x+ot ; ; ; . ")
n_ormal m_odec € » we obtain the following disper (4.6) and keepings>0. In the results we present below, we
sion relation between the wave number (k;,k,) and the

take the former approach.

growth fateo : Next we consider the following perturbations of the 1D
o=—v,ik,+CD,|k|2(k3—|k|?), (5.9  BHSCH equilibrium:
u(x,y,t) =0+ eti(y)e**ret,

c(x,y,t)=cly) + et(y)e >+,

— 1/ + b ikx+ ot
which was first identified in the context of the spinodal de- q(x,y,t)- q(.y) c.fq(y)e ’ _ _
composition for binary alloyge.g., see Ref. 88From Egs. Wherec(y) is given in Eq.(4.6) andq(y) is obtained by
(5.8 and(5.9), we see that growth may occur for those waveUS'ngay) in Eq. (4.2. _ .
numbersk such thatk| <k if f3(¢)<0. Otherwise, the so- The linearized equations for the perturbations are

lutions decay. ikli+0,=0, (5.13
The linearized equation fé¢ in the BHSCH model is

where the advection velocity, is given by

wherek. is the critical wave number

k&= —fg(e)/C, (5.9)

obtained by simply setting=0 andp(c)=1 in Egs.(5.5— _ . C N

(5.7). This gives 12n0=ik| g+ 7 (Cye—Cyty) |, (5.19
-1 ~ 5 o cC__ . i
CF@A[fS@C—CAC]- (5.10 —1290=q,— kzmcyc-i- Gp’'(c)¢E, (5.15
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o 1 { d? d? This is confirmed by numerical experiments and the com-
oC+c= ﬁa(d_yz_ kz)(ué@é—C(d—ﬁ— kz)e)- puted linear growth rates are insensitive to the size of the
(5.1 interval[—a,a] as long asa>\/C.
To take advantage of the symmetry of the solutions, we
solve E@s.(5.17—(5.19 on the half interval[0,a] and we
prescribe the following boundary conditionsyat 0:

§=0, =0, &,,=0, &=b, aty=0, (5.20

Equationg(5.13—(5.16 can be reduced to a coupled system
consisting of a second order equationdoand a fourth order
equation for¢ as follows:

C— N = A
Qyy= k2q+2k2m CyyC+ayGe, (5.17  whereb is a numerical parameter which is discussed below.
At y=a, we pose
and ) R )
kq(a)+Qy(a):0- ny(a)zo’ (522

. Pe _ 2 ,
Sy~ 12, ST C mo(C)C,y+

where the first term it5.22) is suggested by the outer lead-
ing order equations in the matched asymptotic expansions of

1 Egs.(5.17—(5.19. We account for the exponential decay in
—k*+ E(u&’(afi+ 16(C)Cyy—K?u4(C)) ¢ and noté because the rate of decay fdepends on the
wave numbek. Henced decays slowly for smak. In con-
trast, the rate of decay @f is independent ok.

Although there are six boundary conditions in total, the
condition ¢,y(a)=0 does not imply that(a)=0. Conse-
quently, solutions can be found for all values ofwith
§—0, -0 asy— . (5.19 boundary condition$5.21) and(5.22 but there is only one
value of o for which &(a)=0 in addition. Note that if the
domain is large enougit(a)=0 implies ¢, (a)~0 with
the~ becoming= in the infinite domain limit.

D, ) — 10 1 Following Ref. 89, we use a version of Keller’s
ro(C)=5l4(c=2) +2((c=3)"~ )] method® in which the growth rate is determined as the value
of ¢ which produces the correct boundary vaire 0 aty

1, )
EMO(E)"_ZK

Cyy

+

Pe Pe kZC_+ &
0T 12 M YT Y

The boundary conditions for these equations are

C. (5.18

Next, observe from Eq4.6) thatc(y) — 3 is an odd function
of y, and thus

even, =a. Let ¢(y,k,o) represent the solution of Eq$5.17)—
wl(C)=3D(2C—1) (5.19 for a givenk ando. For eaclk, starting with an initial
, guess foroy o, We generate a sequenge, ;} converging to
is odd, and the root of
1§/(€©)=6D e(ak,a0)=0

iS even. These faCtS Iead us to eXpect Symmetric Solutiorﬁsing an iterative root f|nd|ng method_ To Compute
(0ddq and evert) to Eqgs.(5.17) and(5.18. Our numerical  g(a,k, o) for eachoy ; , we solve the boundary value prob-
method will take advantage of this symmetry and we solvgem (5.17—(5.19 using the FORTRAN routine COLNEW
Egs.(5.17) and(5.18 on only half of the domain. ~ and we use Brent's method to find the root. Both routines are
Before concluding this section, we present the sharp inavajlable fromneTLIB. The numerical constaititin (5.23) is
terface growth rate for this flow for purposes of comparisoniset to a nonzero number in order to obtain a nontrivial solu-
T , tion €.
00:_%(|k| +B|k|), (52@

where 7 is the surface tension arl8l is the bond number 2. Numerical linear growth rates

(2.5). Therefore, wherB<<0 there is a range of unstable We takea=2.5, b=10"3 and use 800 grid points in

modes neak=0 due to unstable density stratification. solving the boundary value problef6.17—(5.19. For C,
Although we do not present it here, we have performedy|, andPe numbers, we take the values given(B12) with

matched asymptotic expansions for EGe17) and(5.18 for  ,,=0.05. The viscosity isy=1/2, the surface tension is

the scaling and general procedure outlined in Sec. lll. We_ /6 and gravityG is determined from the Bond number

obtained the sharp interface growth ratg at leading order, B=—25 anda,=0.091 via Eqs(5.12 and (4.25.
but we were unable to calculate the next order correction in We begin %y considering the effect &% In Fig. 5a)

closed form. Consequently, we solve the full EGE17 and e |inear growth rates are shown for the sharp interface

(5.18 numerically to compare with o model[solid curve;o, from Eq.(5.20], the BHSCH model
with Pe=1/y (O) and with Pe=1 (+). The growth rates
from the BHSCH model withiPe=1/y are much closer to-,

We solve Eqs(5.17—(5.19 on a large, but finite inter- than are the growth rates witRe=1. Decreasing théPe
val [ —a,a]. The transition region is centered aroupg0  number increases dissipation and decreases the linear growth
and our matched asymptotic expansions suggest that the s@te. So, even though our asymptotic analysis in Sec. Il
lutions decay exponentially fast iy| away from this layer. indicates that both scalings &fe yield the classical sharp

1. Numerical methods for linear growth rates
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Sharp and Linear Diffuse Growth Rates: v=0.05, a=0.1
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FIG. 5. Sharp and diffuse interface growth rates in Boussinesq approximBton.25, = 0.1 (a). Sharp interfacésolid curvg, BHSCH withPe=1/y (O
curve, BHSCH withPe=1 (+ curve. In BHSCH, y=0.05.(b) Sharp interfacésolid curvg, BHSCH withPe=1/y (O curve, BHSCH withPe=0.5/y (+
curve), BHSCH withPe=0.2/y (X curve. Again, y=0.05.(c) Sharp interfacésolid curvg. BHSCH with Pe=1/y, y=0.04(O curve, y=0.05: + curve,
y=0.06 (X curve). (d) Difference between sharp and BHSCH growth ratgsys— 0904 (O cUrve, o os— 004 (+ CUrve, 2(og o5~ 0p0a (X curve.

interface model at leading order @s-0, this graph suggests this a little surprising given that our model equations seem
that for a fixed value ofy, thePe= 1/vy scaling yields a closer quite different.
approximation to the sharp interface. Consequently, we use Next, we consider the effect of on the linear growth
this scaling in our simulations of the full BHSCH and HSCH rates. In Fig. &c), we takePe=1/y and consider the growth
models presented in paper?ll. rates wheny=0.06 (X), 0.05(+), and 0.04(O). For com-
Figure Fa) also indicates that thBe=1/y growth rates parison,o is also showr(solid curve. The growth rates are
become less negative tharn for wave number&>5.8 sug- seen to be increasing functions gfand approach ther
gesting that the BHSCH model is less dissipative than theurve. To measure the rate of approach, consider the differ-
sharp interface model at those wave numbers. In a simulatioeances between the different growth rates at different values
of the full equations with initial data containing linearly un- of y. This is shown in Fig. &l). Observe that the conver-
stable modes, it is difficult to observe the lowered dissipatiorgence is linear iny at small wave numbers. This is consistent
since growth dominates. Nevertheless, one can modify theith the matched asymptotics presented in Sec. Ill. Decreas-
Pe, still keepingPe=0(1/y), so as to increase damping at ing v further leads to a larger region of linear convergence.
high wave numbers. This is shown in Fig(bb where o Finally, we comment on the effect of other parameters
(solid curve and the growth rates witlPe=1/y (O) Pe  on the BHSCH growth rates. Letting= 2, this parameter
=0.5/y (+), Pe=0.2/y (X) are shown. Not surprisingly, ob- measures the closeness of the sharp and BHSCH growth
serve that decreasirf@e tends to affect the behavior at high rates. LettingM =My, the parameteM, can be used to
wave numbers much more than at low wave numbers. Interadjust both the wave numbkyg, and magnitude of the maxi-
estingly, the diffuse interface model of Foleh al®® seems mum growing mode by effectively modifying the surface
to produce a qualitatively similar dispersion relation astension. The initial slope, ne&=0, can be altered by chang-
shown here for the BHSCH model withe=1/y. We find  ing B (i.e., gravity. Since our asymptotic analysis and nu-
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merical results predict linear convergence of the BHSCH and
sharp interface growth rates, we can modil, from Eq.
(3.2 andB by anO(y) amount and still achieve the same
leading order sharp interface growth rate. We can take ad-
vantage of this fact as follows.

By modifying My, B, and Pe by an O(y) amount to
better match the growth rates of the BHSCH and sharp in-
terface models at finite values of we may achieve better
agreement between the solutions of the fully nonlinear sys-
tems. This idea is quite general and, in spirit, is analogous to
the improvements in a phase field model for solidification,
suggested by Karma and Rappkin which the phase-field
equations are modified to remove first order effects of inter-
face kinetics in the sharp interface limit. In our case, we can
try to match the growth rates of all the unstable wave num-
bers or we can try to match only the growth rate of the most
unstable wave number or perhaps just the most unstable
wave number present in an initial condition.

We have investigated all of these approaches and found
that while they all yield better approximations of the sharp
interface model(measured from simulations of the full
BHSCH/HSCH equationghan the original values dfl,, B,
and Pe the best agreement between the BHSCkihd
HSCH and sharp interface models is achieved when the
growth rate of the most unstable wave number in an initial
condition is matched. On the one hand, this is a little unsat-
isfactory because this suggests that the appropriate BHSCF
(and HSCH parameters are initial data dependent. On the
other hand, the parameters may be precalculated without ref:
erence to the specific initial condition; the parameters only
depend on which wave numbers are present, the interface
thickness and the physical constants governing the flow. We
are unable to explain fully why matching more than the most
unstable wave number in an initial condition does not yield a
better result. Perhaps the answer lies in the fact that our
attempts to match the growth rates of a band of unstable
modes are only approximate and in that band no growth rates
are matched exactly—they are all uniformly approximated.
With a single wave number, however, we can exactly match
the growth rate. Thus, it may be that the choicedvigf, B,
andPe we used in our attempt to match the band of unstable
modes, were not optimal.

-10
(b) '

Models for Hele-Shaw pinchoff and reconnection. I.
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In paper 11> we present several simulations of the fully FIG. 6. (a) Linear relation betweeh and the growth rates with=0.05 and

nonlinear BHSCH and HSCH models with different initial

B=—25¢(1+by). o(b=1)—a(b=0) (O curve®, o(b=2)—co(b=1)

data in which the growth rates at wave numbers 1 and 3 ar@iangle curve, 2(s(b=1)—o(b=0)) (inverted triangle curve (b) values

matched tar, respectively, with each corresponding to the
most unstable wave number in the initial condition. In prepa-
ration for these simulations, we indicate how matching the
growth rates ak=1 andk=3 may be achieved by modify-
ing only B. Let B=—25(1+by), Pe=1/y and all other pa-
rameters as before. From Fig(ah we conclude that the
BHSCH growth rates depend linearly bnWe then use lin-

of b at which the BHSCH growth rate matches the sharp interface growth
rate atk=1. y=0.04 (O curve, y=0.05(box curve.

C. Practical comparison between BHSCH and HSCH
linear growth rates

In this section, we compare the linear growth rates for

the BHSCH and HSCH models. Since we do not have an
unstably stratified 1D equilibrium solution available for the
HSCH model, we use simulations of the full equations of
motion in the linear regime for both the BHSC and HSCH to
determine the growth of perturbations from a {ffat) inter-
face. Although we postpone a detailed discussion of our nu-
merical algorithm until paper A,we discuss a few relevant

ear interpolation to determine the valuesbof by ,, required
to match the growth rates for a given wave numkeand
interface thickness. This is shown in Fig. @) for k=1 and
y=0.05, 0.04. We obtailb, os=1.4148 andb; o= 1.4025.
Analogously, we obtaitb; os=3.3782 andb; o,~3.2101 at
wave numbek= 3. Observe thab, , is a decreasing func-
tion of y for these two wave numbers.
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Slice of ¢ at'x=n: y=0.04, T=0
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FIG. 7. Initial data for concentratiot®) and its slice ak= = (b) when y=0.05.

features of the method here. The geometry we use is periodic Because there are two interfaces, we note that even with
in x andy (Q=[0,27]?) and in each periodic box, there are =0, the initial datacy(x,y) are only an approximation of
two interface layers rather than one as we have been consithe corresponding equilibrium solution for the BHSCH
ering up to now. Because of the periodicity, no boundarymodel and henceg(x,y) is not an equilibrium solution for
layers develop in the HSCH case. The initial interface posieither model. In contrast, flat interfaces are equilibrium so-
tions are ,y1(x,0)) and &,y,(x,0)) where lutions of the sharp interface model.
To calculate the numerical approximation of the linear
y1(x,00=m=(0.5+ e cogkx)), growth rates, we suppose at timeﬁg interface positions are

ya(x,00=m+(0.5+ ecogkx)), O=x=2m, (523 givenby
andk denotes the wave number of the perturbation. The ini-  Y1(X,t)=7—(0.5+ e exp(oy xt)cog kX)),
v concentaton TG0y 0)=coly) 15 guen by Ya(X,t) =7+ (0.5+ € explopxt) cog kx)).
Co(X,Y) = §(1+tanh((y—y1(x))/(2y(2+ C/D))))* (1 The growth rate of the unstable interfagg, is then com-
—tanh(y—y,(x))/(2\(2CID)))).  (5.24  Puted by

The density of the BHSCH model is as befdbel2 and the
density in the HSCH model is given by E.24 with p,
=1 anda=0.1 since relatingr and a4 by

1
0'k=?|Og((y2(0,T)—(7T+ 0.5)/e), (5.26

where we determine the positign(0,T) using the height of
ag the corresponding= 0.5 contour line at its intersection with
(5.259  they-axis. We additionally use=0.05 andT=0.1.

In Fig. 8, the growth rates,, are shown for the BH-
matchesp(c) and’p(c) atc=0 andc=1. Thus, the initial SCH and HSCH models wittPe=1/y, Pe=1, and y
data correspond to the situation of a light layer of fluid sur-=0.05. The BHSCH growth rates are denoted ®y(Pe

a=
1—ag

rounded by a heavier one. See Flg 7 forlthel.initial data; = 1/»)/) and ¢ (Pe: l) The HSCH growth rates are denoted
the upper interfacex(y,(x,t)) is unstable while the lower by + (Pe=1/y) andx (Pe=1). For comparison, the sharp
interface &,yi1(x,t)) is stable. interface growth rater, (solid curve is shown together with

In order to compare our results with those in the precedthe BHSCH growth rates obtained in the preceding section:
ing section, we use the quartic free eneffgyc) from Eq.  pe=1/y (dashed curyeand Pe=1 (dotted—dashed curye
(4.5 in our simulations of the full HSCH and BHSCH mod- There are three main conclusions we draw from this figure.
els. Unlike the 1D equilibrium case, we encounter no diffi- First, the BHSCH growth rates we calculate from the full
culties in using the quartic free energy in the HSCH modelequations and from the preceding section are consistent;
This is likely due to the periodic flow geometry. We find that there are slight differences but this is to be expected since the
the HSCH solutionc(x,t) typically lies within anO(»?)  flow geometries are not the same. Second, the HSCH growth
neighborhood of0, 1]. Additionally, we takeD=4 andc;  rates are consistently less than the BHSCH growth rates in-
=1, c,=0 and the parametefs, 7, 5, C are the same as in dicating more dissipation in the HSCH model. This is likely
the BHSCH case we considered previously. In the HSCHlue to the fact that the initial datga(x,y) is a better approxi-
case M is appropriately modified according to E@.2). mation of the BHSCH equilibrium than the HSCH equilib-
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Growth Rates: v=0.05, «=0.1, Perturbation Amplitude=0.05, T=0.1

FIG. 8. A comparison of growth rates
obtained from simulations of the full
HSCH and BHSCH modelsymbols
with those from the sharp interface
) and 1D BHSCH linear stability equa-
N tions (5.17 and (5.18. Solid curve,
-3r . — sharp interface; dashed curve, 1D
BHSCH growth rate withPe=1/y,
dotted—dashed curve, 1D BHSCH

4+ \ |
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rium. Naturally, this effect is more pronounced at smaer rates is observed in a parameter controlling the interface
numbers. Third, in th&e=1/y case, the growth rates of the thickness. The BHSCH and HSCH growth rates are consis-
BHSCH and HSCH models are quite similar. This suggestsent although the HSCH system is seen to be slightly more
that the analysis of the BHSCH linear growth rates we prediffusive than the BHSCH system. In addition, we identify

sented in the preceding section is relevant also to the HSClhe effect that each of the parameters, in the HSCH/BHSCH

model in periodic geometries. models, has on the linear growth rates. We then use this
information to suggest a modified set of HSCH/BHSCH pa-
VI. CONCLUSIONS rameters for which a better match is obtained between the

In this first paper of a two part series, the behavior ofH_SC_H/BHSCH _and sharp int(_arface Iinear_grovyth rates at fi-
two model systems, to study binary fluid flow in a Hele- nite mterfacg thicknesses. This approach is quite general and
Shaw cell, is investigated. The equations are obtained usingr}:\as application beyond the current context. We SuggeSt that
simplification, for the Hele-Shaw setting, of a general systenfdréément between the HSCH/BHSCH and sharp interface
of equations describing the motion of a binary viscous fluidModels may be improved by simply modifying the bond
(NSCH equatior. This system takes into account the number by an amount approximately proportional to the in-

chemical diffusivity between different components of a fluid terface thickness in order to match the sharp and BHSCH/
mixture and the extra fluid stresses induced by the inhomoHSCH growth rates at the most unstable wave number in the
geneity of the mixturévan der Waals type stres&®s In one initial condition. There may be other, more optimal choices
of the model§HSCH), the binary fluid may be compressible of parameters however. Evidence supporting our contention
due to diffusion. In the other modéBHSCH), a Boussinesq ©f improved agreement may be found in paper I.
approximation is used and the binary fluid is incompressible.  In paper 117 we focus on the behavior of the models in
The models are calibrated to yield the classical sharghe fully nonlinear regime through pinchoff and reconnec-
interface model as a limiting case. The differences betweeHon. To briefly preview that work, we find that the breakup
the HSCH, BHSCH and sharp interface models are studie@f an unstably stratified fluid layer is smoothly captured by
by considering equilibrium solutions and their linear stabil-both models. Moreover, because the HSCH model is more
ity. Somewhat surprisingly, the gravitational field actually diffusive than the BHSCH model, an earlier pinchoff time is
affects the internal structure of the equilibrium transitionpredicted at finite interface thicknesses which causes subtle
layer and an equilibrium solution is obtained numericallydifferences between the two in the pinchoff region. Away
only for the stably stratified case. Boundary layers in thefrom the pinchoff region, both the HSCH and BHSCH mod-
equilibrium solution are observed and the evolution towardsls yield nearly identical results. At pinchoff, compressibility
the stably stratified equilibrium simulated in one dimension.effects do not vanish in the sharp interface limit. This distin-
The linear stability of unstably stratified equilibria is also guishes the HSCH model from all others in which compress-
analyzed. Linear convergence to the sharp interface growttbility effects are neglected. It may turn out, for example,
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