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Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models
and their calibration
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This is the first paper in a two-part series in which we analyze two model systems to study pinchoff
and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and viscosity
contrast between the components. The systems stem from a simplification of a general system of
equations governing the motion of a binary fluid~NSCH model@Lowengrub and Truskinovsky,
Proc. R. Soc. London, Ser. A454, 2617~1998!#! to flow in a Hele-Shaw cell. The system takes into
account the chemical diffusivity between different components of a fluid mixture and the reactive
stresses induced by inhomogeneity. In one of the systems we consider~HSCH!, the binary fluid may
be compressible due to diffusion. In the other system~BHSCH!, a Boussinesq approximation is used
and the fluid is incompressible. In this paper, we motivate, present and calibrate the HSCH/BHSCH
equations so as to yield the classical sharp interface model as a limiting case. We then analyze their
equilibria, one dimensional evolution and linear stability. In the second paper@paper II, Phys. Fluids
14, 514~2002!#, we analyze the behavior of the models in the fully nonlinear regime. In the BHSCH
system, the equilibrium concentration profile is obtained using the classical Maxwell construction
@Rowlinson and Widom,Molecular Theory of Capillarity~Clarendon, Oxford, 1979!# and does not
depend on the orientation of the gravitational field. We find that the equilibria in the HSCH model
are somewhat surprising as the gravitational field actually affects the internal structure of an isolated
interface by driving additional stratification of light and heavy fluids over that predicted in the
Boussinesq case. A comparison of the linear growth rates indicates that the HSCH system is slightly
more diffusive than the BHSCH system. In both, linear convergence to the sharp interface growth
rates is observed in a parameter controlling the interface thickness. In addition, we identify the effect
that each of the parameters, in the HSCH/BHSCH models, has on the linear growth rates. We then
show how this analysis may be used to suggest a set of modified parameters which, when used in
the HSCH/BHSCH systems, yield improved agreement with the sharp interface model at a finite
interface thickness. Evidence of this improved agreement may be found in paper II. ©2002
American Institute of Physics.@DOI: 10.1063/1.1425843#
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I. INTRODUCTION

This is the first paper in a two-part series in which w
analyze two model systems to study pinchoff and reconn
tion in binary fluid flow in a Hele-Shaw cell with arbitrar
density and viscosity contrast between the components.
systems stem from a simplification of a general system
equations governing the motion of a binary fluid~NSCH
model1! to flow in a Hele-Shaw cell. The system takes in
account the chemical diffusivity between different comp
nents of a fluid mixture and the reactive stresses induced
inhomogeneity. Our goal is to investigate these effects
flow, and in particular through pinchoff and reconnection
interfaces, in a simpler setting than the general system
addition to the intrinsic interest of analyzing these effects

a!Also in Department of Chemical Engineering and Materials Science, U
versity of Minesota.
4921070-6631/2002/14(2)/492/22/$19.00
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a binary Hele-Shaw flow, one of the goals of this paper
develop insight that can be used in an analysis of the
NSCH model.

In this paper, we motivate, present and calibrate
equations so as to yield the classical sharp interface mod
a limiting case. We then analyze their equilibria, on
dimensional evolution and linear stability. In the second p
per ~paper II2!, we analyze the behavior of the models in t
fully nonlinear regime though pinchoff and reconnection.

A Hele-Shaw cell consists of two flat parallel plate
separated by a small gapb, see Fig. 1, and between the plat
there is viscous fluid.3 The cell was originally designed b
Hele-Shaw4 to study two-dimensional potential flow. Re
cently, there has been much interest in Hele-Shaw flo
largely because the gap-averaged velocity of the fluid
given by Darcy’s law and is identical to that of a fluid mo
ing through a porous medium with permeabilityb2/12, see,
for example, Refs. 5–7. In addition, the relative simplicity
the equations of motion also makes Hele-Shaw flows id

i-
© 2002 American Institute of Physics
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test cases in which to develop mathematical theory and
merical methods to study singularities and topological tr
sitions, see for instance Refs. 8–17. The latter is our poin
view here.

Topological transitions such as pinchoff and reconn
tion of interfaces are fundamental features of multicom
nent fluid flows. The details of such transitions are import
in many physical processes as mixing and reaction rates
sensitively depend on the production/reduction of interfac
area. In general, the dynamics of topological transitions
difficult to understand and model even in the Hele-Sh
context. It is not obvious how to change the interface top
ogy in a physically justified manner using continuum theo
and numerical simulation. The collision of material surfac
for instance, produces a singularity in the fluid equatio
~e.g., see Ref. 18!.

In interface tracking algorithms for example~e.g., Refs.
19–26!, ad hoc cut-and-connect procedures are typica
used to change the topology of interfaces. Only in a f
special cases involving liquid/air interfaces is it possible
develop physically based reconnection conditions based
similiarity solutions of the fluid equations.27–29The develop-
ment of such similarity solutions and reconnection con
tions for the general liquid/liquid case remains open and t
it is difficult to provide a physical justification for the cu
and-connect rules. In fact, in the context of colliding drop
Nobari et al.24 noticed that the flow may sensitively depen
on the time at which the interface surgery is performed.

In interface capturing algorithms, such as color functi
and level set methods~e.g., see Refs. 30–35!, and the vol-
ume of fluid method~also sometimes referred to as a trac
ing method, e.g., see Refs. 36–40! an analogous ambiguity
arises. In these methods, the fluid equations are augme
with an additional conservation law for the color/level s
function and volume fraction, respectively, which are used
mark each fluid domain. The numerical viscosity introduc
by using an upwind method to solve the equations of mot
actually allows topological transitions to occur smooth
The flow discontinuities~density, viscosity! are typically
smoothed as well although there are now several method
which the interface jump conditions~i.e., surface tension! are
handled explicitly.41–43 It is not clear, however, which type
of smoothing and numerical viscosity are physically jus
fied.

Recently, Goodman, Lowengrub, and Shelley44 sug-
gested that chemical diffusion between the different fl

FIG. 1. A Hele-Shaw cell in which light and heavy fluids are separated
interfaces~Ref. 3!.
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components provides a physical mechanism to smooth fl
discontinuities and to yield smooth evolutions through top
ogy changes. They gave a physical derivation of the eq
tions for binary fluids with density matched, or nearly de
sity matched, components~also known as model H,45 see
below!. The diffusion is limited if the components are ma
roscopically immiscible and reflects the partial miscibili
real fluids always display. As a consequence, interfaces s
rating the flow components are diffuse although the thickn
of interfaces between real immiscible fluids, such as oil a
water, may be microscopic in many circumstances. The
terface thickness and structure may be important at topol
cal transitions since the distance between interfaces beco
comparable to the interface thickness.

With topology transitions in mind, Lowengrub an
Truskinovsky1 gave a systematic derivation of the gene
equations governing the motion of a binary fluid. In th
model, subsequently referred to as the NSCH model,
mass concentration is coupled to the fluid motion and
resulting system couples the Navier–Stokes~NS! equations
to a nonlinear, fourth order diffusion equation of Cahn
Hilliard ~CH, Ref. 46! type for the concentration. The grad
ents in concentration produce reactive stresses in the
which mimic surface tension. The NSCH model reduces t
system known as model H45 ~see also Refs. 47 and 48! when
the flow components are density matched. When the com
nents have different densities, diffusion may create den
variation and in the NSCH model, the binary fluid may
slightly compressible even if the components are inco
pressible, e.g., see Joseph49 and Perera and Sekerka.50 More-
over, the chemical potential depends explicitly on the flu
pressure. We note that Antanovskii51 also derived equations
for the motion of a binary fluid with immiscible componen
with different densities. His system shares common featu
with the NSCH model however the dependence of
chemical potential upon the pressure is missing.

The idea that interfaces have a finite thickness date
Poisson,52 Gibbs,53 Rayleigh,54 van der Waals,55 and
Korteweg.56 The idea is according to the thermodynamics
immiscible fluids, there is a range of concentrations~of one
of the components! where the free energy is concave a
homogeneous states are unstable.53 An interface between two
immiscible fluids may then be described as a layer wh
thermodynamically unstable mixtures are stabilized
weakly nonlocal terms~gradients! in the energy55 which
have their origins in molecular force interactions between
components.3,57 These gradient terms induce extra react
stresses in the fluid which become surface stress in the
thickness limit.58

There has been much recent work on the use of diff
interfaces in multicomponent fluid flows. Applications in
clude modeling the two- and three-dimensional Rayleig
Taylor instability~e.g., Refs. 59, 63, and 44!, the pinchoff of
liquid/liquid jets ~e.g., Ref. 38!, thermocapillary flow~e.g.,
Refs. 60 and 61!, mixing ~e.g., Ref. 62!, contact angles and
wetting phenomena~e.g., Refs. 63 and 64!, nucleation and
spinodal decomposition~e.g., Refs. 65, 66, 38, 60, and 61!,
gravity and capillary waves~e.g., Refs. 67–69!, coalescence
~e.g., Ref. 61!, reactive flows@e.g., Struchtrup and Dold~pre-

y

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ly
o

le

d

Po
e
is
ly
s
tu

h
an

t

o

w
-
e
e
r

n

bl
s
e

ta
te
s
ar
a
e

ur
d
a
in
a
in

s
In

od
an
re
r-
ld

dy
a

to

sed
ch

ew
a
the

-
s

cts

eld
is-
ers
-
nt

e
on

tem
, it
n
ur

on-
uid

the
der-
e
b-

he
ac-
by

er
e to
ly
ary
vo-
in
r an
el

o
p-
di-

or
or-

is
olv-
he
the

the
ace
ter-
of
the
st a
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print!# and the displacement of miscible fluids~e.g., Refs. 70,
49, 71, and 72!. In the interest of brevity, we have cited on
a few works. We refer the interested reader to the review
recent research by Anderson, McFadden, and Wheeler73 and
the references contained therein for a much more comp
listing.

In this paper, we use a simplified NSCH model to stu
binary fluid flow in a Hele-Shaw~HS! cell. In particular, we
follow the classical sharp interface model and assume
seuille flow between the plates. In addition, we assume th
is no diffusion in the direction normal to the plates. Th
results in a generalized Darcy law in which there is on
planar flow and diffusion. This yields one of the simple
such systems that can describe the flow and indeed cap
topological transitions smoothly~referred to as the HSCH
model!. However, it does not account for 3D flow whic
could play a role near the meniscus and near pinchoff
reconnection. To rule out such effects, one would have
perform a detailed analysis of meniscus region as is done
Park and Homsy74 for the classical Hele-Shaw model. We d
not present such an analysis here~although it seems quite
possible such an analysis could be performed at least a
from topology transitions! and thus our model should be un
derstood as just that—a model. We do provide an indir
justification for our model by demonstrating that it converg
to the classical sharp interface models in the limit of ze
interface thickness.

In this work, we consider primarily buoyancy drive
flow ~Rayleigh–Taylor instability! in which the two compo-
nents are incompressible and macroscopically immisci
The densities of the fluids may be arbitrary but the visco
ties must be nonvanishing. We also consider a Boussin
limit ~referred to as the BHSCH model! in which density
variation is assumed to non-negligible only in the gravi
tional force. The HSCH and BHSCH models are calibra
so that the classical sharp interface model is a limiting ca
we note that other nonclassical sharp interface limits
possible.1 Several essential features of the NSCH system
retained in the HSCH model including the reactive stress
the diffusionally induced compressibility and the press
dependence of the chemical potential. The BHSCH mo
contains reactive stresses but the flow is incompressible
the chemical potential does not depend on the pressure s
density variation is assumed to be small. Thus, Hele-Sh
flow provides a simpler setting than the full NSCH model
which to compare and contrast these effects.

Recently, E and Palffy-Muhoray75 derived equations
similar to the HSCH model to study polymer melts~see also
Ref. 76!. In addition, Verschueren61 derived an analogou
system to study thermocapillary flow in a Hele-Shaw cell.
the case of density matched components, the HSCH m
reduces to one which was previously used by Shinozaki
Oono77 to study spinodal decomposition and has been
cently used by Verschueren61 to study coalescence in hype
bolic flows. We note that very recently, Struchtrup and Do
~preprint! derived a version of the HSCH system to stu
miscible, buoyantly unstable reaction fronts in a Hele-Sh
cell.

The HSCH and BHSCH models belong collectively
Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to A
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the class of phase-field models which have been widely u
for free boundary problems in other physical situations su
as the solidification of binary alloys, e.g., see the revi
edited by Gurtin and McFadden.78 In fact, because there is
close connection between quasisteady diffusion and
Hele-Shaw problem~both involve harmonic fields in a do
main with a free boundary!, some phase-field equation
~even the classical Cahn–Hilliard equation!, have Hele-Shaw
like sharp interface limits~e.g., Refs. 79–82!. Typically
these limiting models do not include hydrodynamic effe
such as buoyancy. Very recently, however, Folchet al.83 de-
rived, analyzed, and implemented numerically a phase-fi
model for Hele-Shaw flows, with buoyancy and arbitrary v
cosity constrast, to study the evolution of viscous fing
~e.g., Ref. 84!. They also consider only planar flow. How
ever, their approach differs from ours in several importa
ways. In their model, a modified Allen–Cahn equation85

~nonconservative equation! governs the motion of the phas
field which is then coupled to a dissipative, time evoluti
equation for the stream function. Although Folchet al. show
that this system converges to the classical Hele-Shaw sys
in the thin interface limit and indeed reproduces fingering
seems difficult to justify their choice of phase-field functio
and governing equations from physical considerations. O
approach, on the other hand, is motivated by physical c
siderations such as chemical diffusion between the liq
components.

In this paper, the differences between the HSCH,
BHSCH and sharp interface models are studied by consi
ing equilibrium solutions and their linear stability. In th
BHSCH system, the equilibrium concentration profile is o
tained using the classical Maxwell construction3 and does
not depend on the orientation of the gravitational field. In t
HSCH system, on the other hand, the gravitational field
tually affects the internal structure of an isolated interface
driving additional stratification of light and heavy fluids ov
that predicted in the Boussinesq case. We are only abl
obtain an equilibrium solution numerically for the stab
stratified case and there is no analytic formula. Bound
layers in the equilibrium solution are observed and the e
lution towards the stably stratified equilibrium simulated
one dimension. It remains an open question as to whethe
unstably stratified equilibrium solution of the HSCH mod
exists.

The linear stability of unstably stratified equilibria t
two-dimensional perturbations is studied using two a
proaches. In the first, the linearized equations are solved
rectly in the BHSCH context using an analytic formula f
the equilibrium concentration profile. Because no such f
mula exists for the HSCH case, a practical comparison
made between the growth rates for the two models by s
ing the full equations numerically in the linear regime. T
BHSCH and HSCH growth rates are consistent although
HSCH system is seen to be slightly more diffusive than
BHSCH system. Linear convergence to the sharp interf
growth rates is observed in a parameter controlling the in
face thickness. In addition, we identify the effect that each
the parameters, in the HSCH/BHSCH models, has on
linear growth rates. We then use this information to sugge
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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495Phys. Fluids, Vol. 14, No. 2, February 2002 Models for Hele-Shaw pinchoff and reconnection. I.
modified set of parameters for which a better match is
tained between the HSCH/BHSCH and sharp interface lin
growth rates at finite interface thicknesses. The models w
the modified parameters still have the sharp interface mo
as a limiting case. In paper II, we present evidence indica
that improved agreement between the models is achieve
the nonlinear regime as well. This technique of enhanc
agreement is quite general and has application beyond
current context.

The outline of the paper is as follows. In Sec. II, w
present a derivation of the HSCH and BHSCH models.
Sec. III, the method of matched asymptotic expansions
used to obtain the sharp interface limit of the models. In S
IV, the equilibrium solutions of the models are given and,
addition, the evolution~one dimensional! is studied for the
HSCH system. In Sec. V, the linear stability of the equili
rium solutions is analyzed. Last, in Sec. VI, conclusions
given.

II. THE HELE-SHAW–CAHN–HILLIARD MODEL

Consider a viscous two-component~binary! fluid be-
tween two parallel plates with gap widthb. We suppose tha
the two plates are located atz56b and extend over the
region 0<x,y<L whered5b/L is small. See Fig. 1 for an
illustration of a Hele-Shaw cell with a layer of light flui
surrounded by heavy fluid. Let us begin by considering
classical sharp interface model.

A. Classical sharp interface model

In the classical sharp interface model,84 Darcy’s law is
assumed to hold in each fluid

“•ui50, ~2.1!

ui52
1

12h i
~“pi2G̃r ig!, ~2.2!

where i 51, 2 denotes the fluid region,ui denotes the gap
averaged fluid velocity,h i is the viscosity,pi is the pressure
r i is the density,G̃ is the gravitational force in the directio
of the unit vectorg5e25(0,1). In addition, we have ab
sorbed the effect of gap width into the velocity scale and
above equations have been made nondimensional usi
characteristic velocity scaleU* , pressure scalep* , density
scale r* , viscosity scaleh* , gravitational scaleG, and
length scaleL.

If the fluid components are immiscible, a sharp interfa
G separates them. The boundary conditions on the interfaG
are assumed to be

~u12u2!•n50, ~2.3!

~p22p1!5tk, ~2.4!

wheren is the unit normal vector toG, k is the curvature, and
t is the dimensionless surface tension coefficient. In
cases we will consider in this paper, the flow is characteri
by the two relevant physical parameters

B5G̃~r22r1!/t the Bond number, ~2.5!
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which measures the relative strengths of the gravitational
surface tension forces. For example, in Fig. 1, the upper
terface hasB,0 ~unstable stratification! while the lower in-
terface hasB.0 ~stable stratification!. In addition, let

A5
h12h2

h11h2
be the Atwood number, ~2.6!

which is a measure of the difference in the fluid componen
viscosity.

The system~2.1!–~2.4! is dissipative. This is seen mos
easily in the case of zero gravity where the system energ
just the surface energy

E~ t !5E
G
t ds ~2.7!

that is dissipated at the rate

Ė~ t !5212(
i 51

2

h iE
V i

uui u2 dA. ~2.8!

Before turning to the Hele-Shaw–Cahn–Hilliard system
few remarks are in order. In a certain sense, the sharp in
face system given above represents the simplest set of e
tions governing the motion of a viscous fluid between tw
closely spaced parallel plates.84 The system is obtained from
the Navier–Stokes equations by assuming that the visc
forces dominate the inertial forces and that the bulk fl
between the plates is Poiseuille flow. However, because
flow may actually be fully three dimensional in the regio
near the two-fluid interfaceG, particularly near the glass
plates due to flow near the contact region, it is not at
obvious that Darcy’s law in fact holds nearG. Further,G
actually has two-dimensional curvature so that it is also
clear that the pressure jump condition~2.4! holds acrossG.
Nevertheless, under several assumptions, including tha
complete wetting of the plates by the displaced fluid, P
and Homsy74 performed a matched asymptotic analysis n
G and showed that for small capillary numbers, the abo
system indeed describes the leading order behavior of
flow provided that the surface tensiont is appropriately
modified. We wish to make this point because in the He
Shaw–Cahn–Hilliard models we present next, we also
sume Poiseuille flow and neglect three-dimensional diffus
near the interface and contact region.

B. The Navier–Stokes–Cahn–Hilliard model

The Hele-Shaw–Cahn–Hilliard models we consider
this paper are versions of the general Navier–Stokes–Ca
Hilliard ~NSCH! model~see Ref. 1!, simplified to model the
Hele-Shaw geometry. For completeness, we briefly rev
the NSCH model. In this model, a mass concentration fi
c(x,t) is introduced to denote the mass ratio of one of
components in a heterogeneous mixture of two fluids~e.g.,
M1 /M whereM1 is the mass of component 1 andM is the
total mass of the binary fluid in a representative volumeV!.
In this paper,c is always taken to be the mass concentrat
of the fluid labeled 1.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Illustration of models forf 0(c) for immiscible and miscible fluids. Solid curve, quartic free energy,f 0(c)5c2(12c)2; dashed curve, logarithmic free
energy,f 0(c)50.5@c log(c)1(12c)log(12c)#20.75@c21(12c)2#10.7841; dotted–dashed curve,f 0(c)5(c20.5)2.
m
na

m
ic

.
th

flu
ur
o

e-
l

-
y

e
ure

here
of
n

-

As an illustrative example, let component 1 be oil, co
ponent 2 be water and thus the binary fluid is the combi
tion of the two ~separated by very thin interfaces!. Even
though such a combination of fluids is macroscopically i
miscible, there is nevertheless a narrow region of chem
mixing in which van der Waals~intermolecular! forces play
an important role.53,55

Separately, the fluid components are assumed to be
compressible and have constant densities and viscosities
assume that the density of the binary fluid depends on
concentration but not on the pressure. This is referred to
the ‘‘quasi-incompressible’’ case1 since diffusion may intro-
duce density variation and hence may cause the binary
to be slightly compressible. Diffusion is allowed to occ
between the fluid components which is limited if the comp
nents are macroscopically immiscible.

Let r1 ,r2 andv1 ,v2 be the densities (Mi /V) and veloci-
ties of the two fluid components, respectively. Letr5r(c)
be the total density (M /V) andv be the mass-averaged v
locity field, i.e., rv5r1v11r2v2 . Then, in dimensiona
form, the NSCH equations are

“•v52
r8~c!

r
ċ, ~2.9!
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r v̇52“p2e“•~r“c^“c!1rG

1“•~h~“v1“vT!!1“~l“•v!, ~2.10!

r ċ5“•~n“m!, ~2.11!

where •5] t1v•“ is the advective derivative,r5r(c) is
the density,v5(u,v,w) is the velocity,p is the pressure,l
and h are the viscosity coefficients,G52“F, F is the
gravitational potential, and8 denotes the derivative with re
spect toc. m is the generalized chemical potential given b

m5 f 08~c!2
r8~c!

r2 @p2~l12h/3!“•v#2
e

r
“•~r“c!,

~2.12!

where f 0(c) is the Helmholtz free energy. Note that th
chemical potential depends explicitly on the fluid press
and the bulk viscosity. This form ofm is slightly more gen-
eral than that presented in Ref. 1 since it was assumed t
that the bulk viscosity was equal to zero. The derivation
Eq. ~2.12! follows straightforwardly from the approach give
in Ref. 1.

If the fluid components are immiscible, thenf 0 is taken
to be a nonconvex function ofc. If the components are mis
cible, f 0 is taken to be a convex function ofc. See Fig. 2.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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497Phys. Fluids, Vol. 14, No. 2, February 2002 Models for Hele-Shaw pinchoff and reconnection. I.
Note that for f 0 nonconvex, there is a region~called the
spinodal region! in which the diffusion coefficientf 09(c)
,0. This creates antidiffusion and is what prevents the flu
from mixing completely.

Finally, the two additional parameterse and n may be
interpreted as follows.e is a measure of nonlocality~gradient
energy! which, as we will see, effectively introduces an i
ternal length scale~interface thickness in the immiscibl
case!, see Refs. 46 and 1 for example.n is a measure of
nonviscous dissipation and may also be interpreted as a
bility.

We wish to point out two important features of th
NSCH model. First, the velocityu is not necessary soleno
dal which may introduce compressibility effects. Seco
gradients in concentration may produce stresses which a
see in the next section, mimic the effect of surface tens
For further details, we refer the reader to Ref. 1.

Equations~2.9!–~2.11! have the associated energy fun
tional

E5E
V

rF uvu2

2
1 f 0~c!1

e

2
u“cu21FGdx dy dz, ~2.13!

which is the sum of the kinetic, surface~chemical! and po-
tential energies. It is easily seen that

Ė52E
V

nu“mu2 dx dy dz2E
V
Fh(

i 51

3

u“v i u2

1~h1l!~“•v!2Gdx dy dz1boundary terms.

~2.14!

We further assume that the viscosity coefficientsh and l
may depend onc and thate andn are constant.

On the parallel plates, we take the boundary conditio

v50, no slip, ~2.15!

cz50, no concentration flux, ~2.16!

mz50, no diffusion flux, ~2.17!

at z56b/2, where the subscriptz denotes]/]z. We note that
Eqs. ~2.16! and ~2.17! imply that the liquid/solid contac
angle is 90°. We choose these boundary conditions for s
plicity. See Jacqmin63 for a discussion of other concentratio
boundary conditions and their relation to liquid/solid conta
angles.

C. Simplification of the NSCH model for flow in a
Hele-Shaw cell

Next, we obtain the Hele-Shaw–Cahn–Hilliard syste
by supposing in the NSCH model that the viscous for
dominate the inertial forces, the flow between the plate
Poiseuille flow and that there is no diffusion in thez direc-
tion so thatc is independent ofz. Using an analogous non
dimensionalization as in the sharp interface case, the HS
model is given as

HSCH model
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H

“•u52
1

r
r8~c!~ct1u•“c!52

r8

r2

1

Pe
Dm, ~2.18!

u52
1

12h~c! F“p1
C

M
“•~r“c^“c!2G̃rgG , ~2.19!

r~ct1u•“c!5
1

Pe
Dm, ~2.20!

wherePe5U* r* L/(nm* ) is the diffusional Peclet numbe
~m* is a characteristic scale off 08(c)!, C5e/(m* L) is the
Cahn number~a measure of interface thickness!, and M
5p* /(r* m* ) is a Mach number~a measure of the relative
strengths of the pressure and chemical forces!. “ andD de-
note the two-dimensional gradient and Laplace operat
The generalized chemical potentialm is given by

m5 f 08~c!2M
r8~c!

r2 p2C
1

r
“•~r“c!. ~2.21!

The dimensionless energy for the HSCH equations can
obtained by dropping the kinetic energy and nondimensi
alizing the NSCH energy in Eq.~2.13! to yield

E5
1

M E
V2

r~c!F S f 0~c!1
C

2
u“cu2D1MG̃FGdx dy,

~2.22!

which is the sum of the dimensionless surface~chemical! and
potential energies. ByV2 , we denote the reduced two
dimensional domain. It is not difficult to see that the ener
is dissipated by the evolution

Ė~ t !52E
V2

12huuu2 dx dy2
1

M E
V2

1

Pe
u“mu2dx dy

1
1

M E
]V2

Crct]nc1
1

Pe
m]nm2FMq1MG̃rF

1rS f ~c!2
C

2
u“cu2D Gu•n dS. ~2.23!

This is one of the simplest diffusional systems that can
scribe binary Hele-Shaw flow and is in the spirit of the sha
interface model presented earlier. However, it does neg
three-dimensional flow and diffusion which could play a ro
near the meniscus, pinchoff and reconnection. While we
not present an analogous version of the analysis of Park
Homsy to justify our assumptions, it seems quite possi
that such an analysis could be performed, at least away f
topology transitions. We do provide an indirect justificatio
for the HSCH model by demonstrating that it converges
the classical sharp interface models in the limit of zero int
face thickness.

The HSCH model is considerably simpler than t
NSCH system. As such, it provides a simpler forum in whi
to investigate the effects of diffusion and compressibility
the fluid motion. We note that equations similar to~2.18!–
~2.21! were derived by E and Palffy-Muhoray in the conte
of polymer melts.75 In particular, those authors noticed th
dependence of the chemical potential on the pressure. H
ever, they did not seem to account for compressibility effe
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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due to density differences of the constituents. In additi
Verschueren derived an analogous system to study t
mocapillary flow in a Hele-Shaw cell.61 Very recently,
Struchtrup and Dold~preprint! derived a version of the
HSCH system to study miscible, buoyantly unstable reac
fronts in a Hele-Shaw cell.

Finally, we will take the following simple mixture mode
for the density in the HSCH system:

1

r~c!
5

1

r1
c1

1

r2
~12c!, ~2.24!

where r1 and r2 are the nondimensional densities of tw
fluids before mixing. The formula~2.24! means that volume
is preserved under mixing.49 In the case of a simple mixture
the HSCH equations can be simplified by using

2
r8~c!

r2 5a[
1

r1
2

1

r2
.

In this paper, we consider both the HSCH system giv
above and a slightly simpler version obtained from a Bou
inesq approximation. To obtain this reduced system, we
sume that the deviation betweenr(c) and its spatial averag
^r& is small, but @r(c)2^r&#G̃ is not negligible. In the
Boussinesq limit, we suppose that the density is a cons
which we take equal to 1 everywhere except in the grav
tional term. We refer to this simpler system as the BHSC
model and the equations are given by

BHSCH model

“•u50, ~2.25!

u52
1

12h~c! F“p1
C

M
“•~“c^“c!2G̃r̃~c!gG ,

~2.26!

ct1u•“c5
1

Pe
“m, ~2.27!

where

r̃~c!5~r121!c11, ~2.28!

andr251. Further,

m5 f 08~c!2CDc. ~2.29!

In the Boussinesq case, the energy Eq.~2.22! reduces to

E5
1

M E F f 0~c!1
C

2
u“cu21MG̃r̃~c!FGdx dy, ~2.30!

and a formula analogous to~2.23! may be obtained forĖ in
the Boussinesq limit.

The BHSCH system is simpler than the HSCH model
that the velocity is solenoidal and the chemical potential d
not depend directly on the fluid pressure. Concentration g
dients still may produce nonzero velocities however. T
system~2.25!–~2.27! has been used previously to study sp
odal decomposition in a Hele-Shaw cell in the absence
gravity77 and was recently used by Verschueren61 to study
coalescence in hyperbolic flows.
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Before concluding this section, we rewrite the HSC
equations in a more useful way by using the vector iden

“•~r“c^“c!5“~ru“cu2!1rDc“c2 1
2“u“cu2

and introducing the modified pressure

q5p1
C

M
ru“cu2.

Using these, Eq.~2.19! can be written as

u52
1

12h~c! F“q1
C

M
rS Dc“c2

1

2
“u“cu2D2G̃r~c!gG ,

~2.31!

and the chemical potential~2.21! may be written as

m5 f 08~c!2
r8

r2 Mq2CDc. ~2.32!

Yet another equivalent form of Eq.~2.19! may be ob-
tained by introducing the generalized Gibbs free energy

g5
p

r
1

1

2

C

M
u“cu21

1

M
f 0 . ~2.33!

Using g, we obtain

u52
r~c!

12h~c! F“~g1G̃F!2
1

M
m“cG . ~2.34!

Using Eq.~2.34! we obtain a relatively simple form fo
the out of plane vorticityv5“3u•e3 wheree3 is the unit
vector out of the plane. The vorticity is given by

v52“S r~c!

12h~c! D3“~g1G̃F!•e3

1
1

M
“S mr~c!

12h~c! D3“c•e3 . ~2.35!

The first term on the right-hand side is the baroclinic vort
ity and the second term is the vorticity due to surface t
sion.

III. THE SHARP INTERFACE LIMIT

In this section, we present the sharp interface limit of t
HSCH model~2.18!–~2.21! away from topological transi-
tions such as pinchoff and reconnections. To do this,
follow the approach in Ref. 1 and relate theC, M , andPe
numbers to a single parameterg which measures the inter
face thickness:

C5O~g2!, M5O~g!, and Pe5O~1/g! or O~1!.
~3.1!

We then sketch matched asymptotic expansions ing and
show that at leading order in the outer equations, the cla
cal sharp interface system is recovered. In addition, we sh
that the BHSCH model has the same classical leading o
limit which suggests that for thin interfaces, the two a
proaches yield very similar results away from topology tra
sitions. While this is indeed borne out by our numerical
sults in paper II,2 we also note some important differenc
between the models. As we will see in the next section, th
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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are interesting differences in the 1D equilibria for the tw
models for finiteg. In particular, boundary layers are prese
in the HSCH equilibria and the gravitational field actua
affects the concentration profile and hence the interf
structure. Further, in paper II,2 observe that the limiting be
havior of the two models is subtly different near pinchoff a
reconnection.

A. Sharp interface asymptotics

We now present a brief sketch of the matched asympt
expansions of the HSCH and BHSCH systems. Follow
the standard approach~e.g., Pego81!, we suppose that at tim
t50, there is a single smooth transition layer of widthO(g)
separating two domainsV1 and V2 where the fluids are
nearly uniform. In particular, suppose thatc(x,0)5c1,2

1O(g) in V1,2, respectively, wherec1,2 are the equilibrium
concentrations of fluid 1 in the two domains@i.e., wells of
the Helmholtz free energyf 0(c)#. Note that this impliesc1

'1 andc2'0. This initial condition forc is consistent with
letting the fluids equilibrate before motion starts. LetG be a
curve centered in the transition layer. The idea of the met
is to expandc, u andp in powers ofg both away from the
transition region~outer expansion,V1,2! and inside the tran-
sition region ~inner expansion!. In the inner expansion, a
stretched local coordinate system~with respect toG! is used.
In order for our expansions to be valid, the curvaturek of G
must satisfyk!1/g. By substituting these expansions in
the equations and matching powers ofg, one can determine
the field equations in theg→0 limit. By matching the inner
and outer expansions at the boundaries of the transition
gion, one can reconstruct the sharp interface jump co
tions.

To be specific, we will take the scaling

C5g2,

M5
g

t
&E

c2

c1
r~c!Af 0~c!2 f 0~c1!2 f 08~c1!~c2c1!dc,

Pe51/g or Pe51. ~3.2!

As will become apparent when we consider the inner exp
sion, this choice ofM guarantees the sharp interface limit
the HSCH model, satisfies the Laplace jump condition~2.4!
with the surface tensiont. In the BHSCH model, ther in M
should be set to 1.

1. Outer expansions

In the outer domainsV1 andV2 , write the variablesu,
c, andp as expansions in powers ofg :

u~x,y,t !5u~0!~x,y,t !1gu~1!~x,y,t !1g2u~2!~x,y,t !1¯ ,

c~x,y,t !5c~0!~x,y,t !1gc~1!~x,y,t !1g2c~2!~x,y,t !1¯ ,

p~x,y,t !5
1

g
p~21!~x,y,t !1p~0!~x,y,t !1gp~1!~x,y,t !1¯ .

The 1/g term is introduced in the expansion forp for a rea-
son to be explained when we discuss the inner expans
Substituting the expansions into the HSCH equations~2.18!–
~2.21!, the leading order equations are
Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to A
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“p~21!50, ~3.3!

u~0!52
1

12h~c~0!!
~“p~0!2G̃r~c~0!!g!, ~3.4!

and

“•u~0!52
r8

r
~ct

~0!1u~0!
“c~0!!50, ~3.5!

ct
~0!1u~0!

“c~0!50, ~3.6!

whenPe51/g, or

“•u~0!52
r8

r
~ct

~0!1u~0!
•“c~0!!

5aD@ f 08~c~0!!1ap~21!#, ~3.7!

r~c~0!!~ct
~0!1u~0!

•“c~0!!5D@ f 08~c~0!!1ap~21!#, ~3.8!

whenPe51.
Equation ~3.3! implies that p(21) is constant in each

outer region. Sincec(0) is the constantc1,2 in each fluid
initially, c(0)5c1,2 is the solution to both~3.6! and ~3.8!.
Thus, Eq.~3.5! is satisfied for both choices ofPe. Conse-
quently, at zeroth order ing, the sharp interface field equa
tions~2.1!–~2.2! are recovered with densitiesr(c1,2) and vis-
cositiesh(c1,2). In the BHSCH case, the only change in th
above equations is that thea in Eqs. ~3.7! and ~3.8! should
be set to zero which does not alter the conclusion.

2. Inner expansions

To derive the jump conditions~2.3! and ~2.4!, we per-
form the matched asymptotic analysis of the HSCH syst
near the interface. Since the analysis for the BHSCH sys
is somewhat simpler and yields the same leading order l
as the HSCH system, we do not present that case here.

First we introduce the signed distance functionc(x,y,t)
which measures the distance from the interface;c,0 de-
notes the distance to the interface from the fluid 1 directi
The interface is represented byG(t)5$c(x,y,t)50%. Next
introduce the ‘‘stretched’’ coordinates x̂ and ŷ
5c(x,y,t)/g, where x̂ is taken to be the arc length of th
interface. Lett andn be the unit vectors in the direction o
increasingx̂ and ŷ, respectively. The curvaturek of the in-
terface is2Dc.

In this new coordinate system,

“ f 5t f x̂1
n

g
f ŷ ,

D f 5 f x̂x̂1
1

g2 f ŷŷ2
k

g
f ŷ ,

“•~F1t1F2n!5~F1! x̂1
1

g
~F2! ŷ2kF2 .

By using hats, we denote the variables in the inner reg
We write u5 v̂t1ŵn and further suppose that the variabl
c, v, w, and p have the following expansions in the inne
region:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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v̂~ x̂,ŷ,t !5 v̂ ~0!~ x̂,ŷ,t !1g v̂ ~1!~ x̂,ŷ,t !1g2v̂ ~2!~ x̂,ŷ,t !

1¯ ,

ŵ~ x̂,ŷ,t !5ŵ~0!~ x̂,ŷ,t !1gŵ~1!~ x̂,ŷ,t !1g2ŵ~2!~ x̂,ŷ,t !

1¯ ,

ĉ~ x̂,ŷ,t !5 ĉ~0!~ x̂,ŷ,t !1g ĉ~1!~ x̂,ŷ,t !1g2ĉ~2!~ x̂,ŷ,t !

1¯ ,

p̂~ x̂,ŷ,t !5
1

g
p̂~21!~ x̂,ŷ,t !1 p̂~0!~ x̂,ŷ,t !1g p̂~1!~x,y,t !

1¯ .

The matching procedure in the intermediate region where
inner and outer regions overlap is well known~see Ref. 81
for example! and so we do not discuss the details here.
leading order one obtains

ĉ~0!~ ŷ!→c1,2
~0! , ~3.9!

p̂~0!~ ŷ!→p1,2
~0! ~3.10!

]

as ŷ→6`, where the 1, 2 values are the limiting values
the outer variables as~x, y! approach the interface fromV1

andV2 . Further, let

t̃5tY E
c2

c1
r~c!A2~ f 0~c!2 f 0~c1!2 f 08~c1!~c2c1!!dc.

~3.11!

At O(1/g2) in the inner expansion of Eq.~2.19!, we obtain

p~21!5P~ x̂!2r~ ĉ~0!!~ ĉŷ
~0!!2. ~3.12!

By matching with the outer solution and using th
lim ŷ→` ĉŷ

(0)50, we findP is independent ofx̂ and thatp(21)

is the same constantP in each regionV1 andV2 .
Among theO(1/g) equations in the inner expansion

Eqs.~2.18!–~2.21! are the following:

ŵŷ
~0!52

1

r~ ĉ~0!!
r8~ ĉ~0!!~c t1ŵ~0!!ĉŷ

~0! ~3.13!

and

p̂ŷ
~0!1~r8~ ĉ~0!!ĉ~1!~ ĉŷ

~0!!212r~ ĉ~0!!ĉŷ
~0!ĉŷ

~1!! ŷ

2kr~ ĉ~0!!~ ĉŷ
~0!!250. ~3.14!

Integrating~3.14! and using the matching conditions, we o
tain the jump condition~2.4! for pressure

p22p15tk

since as we will see presently,

&E
c1

c2
r0~c!Af 0~c!2 f 0~c1!2 f 08~c1!~c2c1!dc

5E
2`

1`

r~ ĉ~0!!~ ĉŷ
~0!!2 dŷ. ~3.15!

Further, integrating~3.13!, we get
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~c t1ŵ~0!!r~ ĉ~0!!5C~ t,x̂! ~3.16!

for some functionC(t,x̂). We claim thatC(t,x̂)50 if Pe
51/g or Pe51. It will follow from this that

w15w252c t

and hence~2.3! is satisfied.
For the proof of this claim, we let

m̂5
] f 0

]c
2g

p̂

r2

]r

]c
2

g2

r H ~r ĉx̂! x̂1
1

g2 ~r ĉŷ! ŷ2
k

g
r ĉŷJ

5m̂~0!~ x̂,ŷ,t !1gm̂~1!~ x̂,ŷ,t !1g2m̂~2!~ x̂,ŷ,t !1¯

be the inner expansion for the generalized chemical po
tial.

Case 1:Pe51/g.
At O(1/g) in the inner expansion of Eq.~2.20!, we have

r~c~0!!~c t1ŵ0!ĉŷ
~0!5C~ t,x̂!ĉŷ

~0!5] ŷ
2m̂~0!, ~3.17!

where ~3.16! is used. Integrating~3.17! with respect toŷ
yields

C~ t,x̂!c~0!5] ŷm̂
~0!1D~ t,x̂!

for some functionD(t,x̂). Evaluation of this equation atŷ
56` gives

C~ t,x̂!c1,25D~ t,x̂!,

which is possible only ifC(t,x̂)5D(t,x̂)50 becausec1

Þc2 .
Case 2:Pe51.
The O(1/g2) equation in the inner expansion of Eq

~2.20! combined with the matching conditions gives

] ŷm̂
~0!50.

Then atO(1/g), the inner expansion in~2.20! reduces to

C~ t,x̂!ĉŷ
~0!5]y

2m̂~1!.

Thus, the same argument as is used in case 1 implies
C(t,x̂)50.

Finally, it remains to show Eq.~3.15! holds. In either the
case 1 or case 2, we conclude that

m̂~0!5a, ~3.18!

wherea5a(t,x̂) is a constant inŷ. Using a centering con-
dition of the type given in Pego81 which links G with the
inner expansion, the argument given in the Appendix of L
wengrub and Truskinovsky1 shows thatĉ(0)( ŷ,x̂,t)5Cp( ŷ)
whereCp( ŷ) is the planar interface connectingc1 with c2

described in Sec. 5 of Ref. 1. From this, one can concl
that Eq.~3.15! indeed is satisfied.

IV. SPECIAL SOLUTIONS

In this section, we consider equilibrium solutions to t
HSCH and BHSCH systems. These solutions and their
bility, which is analyzed in Sec. V, help to characterize t
models. The simplest equilibrium solution for the HSCH a
BHSCH models corresponds to a homogeneous solutio
rest:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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c~x,t !5 c̄, u~x,t !50, ~4.1!

where c̄ is a constant. Note that there is a balancing lin
pressure. More interesting equilibrium solutions are obtai
when one considers a stratified binary fluid. That is, the c
in which a flat ~diffuse! interface separates two infinite re
gions of nearly pure fluids. Suppose the interface is cente
at y50. Then, we may consider the one-dimensional pr
lem in which there is no flow and all variables depend o
on y.

A. 1D equilibrium for the BHSCH model

The BHSCH 1D equilibrium equations are

qy5G̃r̃~c!, ~4.2!

myy50, ~4.3!

where

m5 f 08~c!2Ccyy . ~4.4!

Therefore Eq.~4.3! can be solved independently of Eq.~4.2!.
An explicit solution may be obtained for at least one cho
of f 0(c) with the boundary conditionscy50 and cyyy50
~from my50! at y56`. One can recast these conditions
limy→6` c(y)5c2,1. Let f 0(c) be the quartic function

f 0~c!5
D

4
~c2c1!2~c2c2!2, ~4.5!

which with D54 andc151 andc250 is the solid curve in
Fig. 2. Then, it is easy to see that

c~y!5 1
2@~c11c2!2~c12c2!tanh~~c12c2!y/A2C/D!#.

~4.6!

This is known as the Maxwell construction~e.g., Ref. 3!
which connects the wells of the free energyf 0 with a com-
mon tangent. The modified pressureq is then obtained by
integrating Eq.~4.2! in y. Note that this solution is valid
whether the fluid is stably or unstably stratified~determined
by the sign ofG̃!. For the more general free energiesf 0(c),
such as the regular solution model free energy~4.22! consid-
ered in the next subsection~dashed curve in Fig. 2!, it is not
possible to obtain an exact solution and the equilibrium
lution is computed numerically. We next discuss how this
done in the context of the HSCH model.

B. 1D equilibrium for the HSCH model

Since the chemical potentialm depends explicitly onq in
the HSCH model, it is not possible to find an exact form
the 1D equilibria even for the case of the quartic free ene
~4.5! given above. Therefore, numerical simulation is us
To compute the equilibria, we solve the 1D time depend
equations and march in time until equilibria is attained. W
took this approach because we encountered difficulty in s
ing the equilibrium equations directly using a bounda
value problem solver. As a consequence, we are able on
obtain the stably stratified equilibria. Although we tried se
eral strategies for computing unstably stratified solutions~in-
cluding the approach taken in Ref. 86!, none were success
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ful. It is not immediately apparent that an unstably stratifi
1D equilibrium solution does exist for the HSCH model.

In 1D, the HSCH equations reduce to the following sy
tem:

vy5
a

Pe
myy , ~4.7!

v52
1

12h
~qy2G̃r!, ~4.8!

f t1~vf!y5
1

Pe
myy , ~4.9!

wherer(c) is given by~2.24!, the viscosityh is assumed to
be constant for simplicity, gravity is in the positivey direc-
tion (G̃.0), the chemical potential is

m5 f 08~c!1aMq2Ccyy ,

and we have introduced the volume fraction

f5r~c!c. ~4.10!

Note that as functions off,

f~f!5r2~12af!, c5f/r~f!. ~4.11!

We suppose~4.7!–~4.9! hold on a sufficiently large finite
interval @2a,a# and we impose zero Neumann bounda
conditions oncy andmy at the boundaries:

cy50, my50 at y56a. ~4.12!

Using these boundary conditions and after some manip
tion, Eqs.~4.7!–~4.9! can be recast as a single conservat
law for f,

f t1 f ~f!y50, ~4.13!

where

f ~f!5vf2
1

Pe
my52

1

r2Pe
r~c!my ~4.14!

is the flux forf, and

my5

1

12h

a2M

Pe
1

1

12h

@~m0~c!2Ccyy!y1aMG̃r~c!#,

wherem0(c)[ f 08(c) and we actually use~4.11! to replacec
in terms off. This equation is equipped with the bounda
conditions

fy50, my50 at y56a. ~4.15!

Note that the boundary condition onm implies that

cyyy5
aM

C
G̃r~c! at y56a, ~4.16!

which directly links gravity with the concentration profile. I
the Boussinesq case,cyyy(6a)50 sincea is taken to be
zero inm.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1. Numerical method for 1D evolution

We use the following conservative finite differenc
method to solve Eq.~4.13! numerically. We first divide the
interval @2a,a# into N cells I i5@yi 21/2,yi 11/2#, 1< i<N.
Let yi5

1
2(yi 11/21yi 21/2) andDyi5yi 11/22yi 21/2. For sim-

plicity, we assume that these cells have equal lengths
thus thatDyi5Dy.

Integrating~4.13! over I i , we obtain the following sys-
tem:

]

]t Eyi 21/2

yi 11/2
f~y,t !dy1~ f ~f~yi 11/2,t !!2 f ~f~yi 21/2,t !!!50.

~4.17!

To achieve second order accuracy, we approximate the s
tion using the value at cell centers, all derivatives are
proximated by second order centered differences, and
integral

E
yi 21/2

yi 11/2
f dy

is approximated byDyf(yi) from the midpoint rule. The
resulting semidiscrete equation is

]

]t
f~yi ,t !1

1

Dy
~ f ~f~yi 11/2,t !!2 f ~f~yi 21/2,t !!!50.

~4.18!

Several advantages of this semidiscrete formulation
be easily observed. In view of~4.14!, the Neumann boundar
conditions ~4.15! can be imposed exactly: we simply s
f (f1/2)50, f (fN11/2)50 as we evolve~4.18! in the cellsI 1

and I N . Due to this exact numerical implementation of ze
Neumann boundary condition form and cancellation of
fluxes at the cell boundaries in the interior, the mass off is
preserved on the numerical level.

In this semidiscrete system, the primitive variables su
asc andf, and their derivatives of even order are compu
at the cell centers~primary grid! and their derivatives of odd
order are computed at the cell boundaries~dual grid!. When-
ever we need a value of a variable on one grid computed
the other grid, we take the average of two consecutive va
on the other grid. For example, ifr is needed atyi 11/2, it is
defined by

r i 11/25
1
2~r~ci !1r~ci 11!!.

To advance the solution in time, we use a simple fi
order forward–backward Euler scheme. Because of
fourth order derivatives inc and the nonlinear relationshi
betweenc andf, a little care must be taken to do this. Rath
than updating~4.18! directly, we update following coupled
system forf andm:

f i
n115

Dt

Pe
Ldm i

n111Ri
n , ~4.19!

m i
n1152

C

r~c1!
Ldf i

n111Qi
n , ~4.20!

where
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Ri
n5f i

n2
Dt

Dy
~v i 11/2

n f i 11/2
n 2v i 21/2

n f i 21/2
n !

1
aMDt

Pe
~qyy! i

n ,

Qi
n5m0~ci

n!2CLdS ci
n2

1

r~c1!
f i

nD .

To evaluate (qyy) i
n , we take

~qyy! i
n5

1

Dy
@~qy! i 11/2

n 2~qy! i 21/2
n #,

S a2M

Pe
1

1

12h D ~qy! i 11/2
n 52

a

Pe
~m0~c!y! i 11/2

n

1
G

12h
r~ci 11/2

n !,

in the interior of the dual grid. At the boundary, we takeqy

5Gr(c). To calculate (m0(c)y) i 11/2
n , we use

~m0~c!y! i 11/2
n 5

1

Dy
@m0~ci 11

n !2m0~ci
n!#.

Note that by the definition off,

c2
1

r~c1!
f'0 ~4.21!

away from the transition region sincec1'1 andc2'0. We
will also take advantage of this fact when we solve the f
equations in paper II.2 Finally, Ld is the discrete Laplacian in
1D associated with the zero Neumann boundary condit
that is,

Ldf i55
1

~Dy!2 ~ f i 1122 f i !1 f i 21 for 1, i ,N,

1

~Dy!2 ~ f i 112 f i ! for i 51,

1

~Dy!2 ~2 f i1 f i 21! for i 5N.

An advantage of our fully discrete formulation is that th
resulting linear system forfn11 and mn11 can be solved
directly using a block tridiagonal solver.

2. Numerical results for 1D evolution

We first solved Eqs.~4.19!–~4.20! using the quartic free
energy f 0 given in Eq.~4.5! with c151 andc250 andr2

51 andr150.9091. Interestingly the code diverges for t
following reason. Both antidiffusion and gravity drive th
separation of light and heavy fluid, although the chemi
diffusion ‘‘turns off’’ when c'c1 , c2 since Dm0(c1,2)50.
Gravity, however, continues to drive the separation ev
whenc'c1 , c2 ~e.g., recall the boundary condition forcyyy!
and the fluids ‘‘pile up’’ at the boundaries. As this occurs, t
concentration becomes negative near the fluid 2 bound
since there is no maximum principle for the concentrat
equation with the quartic free energy and constant mobil
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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recall that Eq.~4.13! is a fourth order nonlinear diffusion
equation. The negative concentration eventually causes
densityr(c) to diverge.

To overcome this difficulty, we use the regular soluti
model free energy

f 0~c!5A@c ln c1~12c!ln~12c!#2
B

2
@c21~12c!2#1E,

~4.22!

which is singular atc50, 1 and hence constrainsc(y,t) to
remain between 0 and 1 for allt ~e.g., see Ref. 87!. The
constantsc1 and c2 are then determined as the minima
f 0(c). When we setA50.5, B51.5, andE50.7841 we can
see in Fig. 2 that this regular solution free energy~dashed
curve! compares well with the quartic free energy~solid
curve!. For the above choice ofA andB, we have

c150.9293, c250.0707,

which are found using Newton’s method. For the density,
prescribe the equilibrium densitiesr(c1)51/(11b) and
r(c2)51 instead ofr1 andr2 which are the densities befor
mixing. The connection between the two is given by

a5
1

r1
2

1

r2
5b/~c12c2!, ~4.23!

1

r2
5b112

c1b

c12c2
. ~4.24!

Note that whenc151 andc250, the two density descrip
tions are identical. In addition,b is a non-negative constan
that is varied. Thus, fluid 1 is the lighter fluid of the two.

We defineC andM by the scaling~3.2! and we setPe
51/g. In the simulations presented below, we takeg50.1.
The surface tension ist5&/6, the viscosity ish50.5 and
the gravitational constantG̃ is determined from the Bond
number as follows:

G̃5
B

t
~r~c2!2r~c1!!, ~4.25!

with B525. Note that the Atwood numberA50. In the re-
mainder of the paper, this value oft is fixed and so changing
B is equivalent to changingG̃ via Eq. ~4.25!.

Last, the numerical parameters are given as follows.
consider the domain22.5<y<2.5 and useN51000 grid
points. We use the time stepDt55.031024 initially and we
refine the time step ifc(62.5,t) approaches 0 or 1, the sin
gular points of the logarithmicf 0(c). More precisely, if
uc(62.5,t)2csingu,d where csing50, 1 thenDt5eDtDtold

and d5eddold where dinitial52.531023, eDt50.5 and ed

50.8.
The equilibrium solutions forb50 andb50.1 ~the sta-

bly stratified case! are shown in Fig. 3. In the upper graph,c
is shown while in the lower graphs the numerical flux and
components are shown. Note that whenb50, the concentra-
tion and pressure equations decouple at equilibrium and
resulting concentration solutionc is the equilibrium for the
Boussinesq model. Theb50 solution ~dashed curve!
smoothly connectsc1 and c2 and resembles the hyperbol
Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to A
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tangent~4.6! as the profile approaches the boundary w
zero slope. Sincef 0 is the regular solution free energy, th
b50 solution is different from Eq.~4.6! though.

The presence of the pressure in the chemical poten
when b50.1, on the other hand, causes a surprising diff
ence between the two cases away from the transition laye
theb50.1 case~solid curve!, gravity additionally drives the
density stratification and causes the fluids to be more ‘‘pu
away from the transition layer; that is,c is closer to 0 and 1.
This seems quite reasonable physically. At the boundar
for example,c(22.5)50.9971 andc(2.5)50.0023. In addi-
tion, the profile does not approach the boundary with z
slope because of the boundary condition oncyyy . We have
tried other values ofb and found similar behavior. Moreove
we have also considered the effect of domain size. Increa
the size of the domain causes the limiting concentrations
be closer to 0 and 1 but does not change the transition pr
significantly. This suggests that in the limit of an infini
domain~with b.0!, the values ofc at y56` are 0 and 1
@the singular values off 0(c)# rather thanc1 and c2 @the
minima of f 0(c)# as is the case in the BHSCH model.

By considering the numerical flux, we can understa
how such a profile can be in equilibrium. Consider Fig. 3~b!.
In this plot, all the components of the fluxf (f) are shown.
The total flux is indicated by ‘‘o’’ and is seen to be zero. Th
pressure contribution~q! to the flux is nearly constan
~dotted–dashed curve! and has only a small variation acros
the transition layer due to the small density variation~since
b50.1!. Near the transition layer, them0 ~solid curve! and
cyyy ~dashed curve! contributions dominate and balance o
another. At the boundaries@shown in Fig. 3~c!#, a boundary
layer is seen in them0 andcyyy terms and it is the latter tha
balances the pressure at the boundary. Note that in the
rior of the domain~e.g.,22.4<y<20.5!, the flux fromcyyy

is nearly zero.
To examine the evolution process, we consider the

proach to steady state of an initially unstably stratified bin
fluid. This is shown in plot of Fig. 4~a!. The initial state
~solid curve! is a hyperbolic tangent connectingc2 at y
522.5 with c1 at y52.5. All parameters are as in the pr
vious simulation; this makes the stratification unstable. O
serve that fluid is fluxed through the domain and that
light and heavy fluids pile up aty522.5 andy52.5, respec-
tively. The light/heavy interfaces move in from the boun
aries and eventually meet at the center of the domain as
profile equilibrates. The fluxf (f) is shown in Figs. 4~b! and
4~c! at timeT51.5 and the behavior is analogous to that se
in Fig. 3 except that now there are more transition layers

Finally, let us interpret our equilibrium results in view o
the sharp interface asymptotics presented in Sec. III. In
section, it was seen that the same sharp interface lim
obtained at leading order for both the HSCH and BHSC
models. In the 1D case this means that acrossy50, c should
jump from c1 to c2 . Now, although the equilibrium profiles
of c for b50 andb50.1 appear to be quite different awa
from the transition layer, they actually only differ by a
O(g) amount sinceg50.1. Further, wheng is reduced to
g50.05, two things happen. The width of the transition lay
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Stably stratified equilibrium,B525 andg50.1. ~a! Concentration,b50 ~dashed curve!, b50.1 ~solid curve!; ~b! components of the flux. Total flux
~s curve!, m0(c)y(af21)/Pe ~solid curve!, 2Ccyyy(af21)/Pe ~dashed curve!, aMqy(af21)/Pe ~dotted–dashed curve!; ~c! close-up of the components
near the boundary pointy522.5.
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decreases by a factor of 2~as expected! and the values ofc at
the boundary become closer toc1 and c2 @i.e., c(22.5)
50.9872 andc(2.5)50.01131# albeit at a slow rate. This is
consistent with the sharp interface asymptotics and we in
pret the slow rate of approach as follows. We believe that
effect of gravity on the chemical potential~through the pres-
sure! is magnified by both the geometry~1D single transition
Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to A
r-
e

layer! and equilibrium nature of the problem. For examp
as may be seen in paper II,2 dynamical simulations of the ful
HSCH and BHSCH models, in periodic domains with tw
transition layers, yield very similar results for comparab
values ofg away from pinchoff and reconnection. This
likely due to the fact that because of the periodic bound
conditions, there are no boundary layers in the HSCH ca
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. Evolution to the stably stratified equilibrium.B525, g50.1, andg50.1. ~a! Concentration at timest50 ~solid curve!, t50.5 ~dashed curve!, t
51.0 ~dotted–dashed curve! and t51.5 ~dotted curve!; ~b! components of the flux att51.5 marked as in Fig. 3;~c! close up of the components near th
boundary pointy522.5.
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V. LINEAR STABILITY ANALYSIS

In this section, we consider the linear stability of th
equilibrium solutions we obtained in the preceding secti
We focus primarily on the two cases for which we have ex
formulas for the equilibrium solution~1! the stability of ho-
mogeneous solutions at rest for the HSCH and BHSCH m
els and~2! the stability of the unstably stratified 1D equilib
Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to A
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rium solution to two-dimensional perturbations in th
BHSCH model. Since we do not have an analytical or n
merical representation of an unstably stratified 1D equi
rium solution for the HSCH model, we make a practic
comparison between the growth rates for the two models
the end of this section, by solving the full equations nume
cally in the linear regime.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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A. Linear stability of homogeneous solutions

Let us consider solutions to the HSCH Eqs.~2.18!–
~2.21! of the form

c~x,t !5 c̄1e c̃~x,t !, ~5.1!

u~x,t !501eũ~x,t !, ~5.2!

q~x,t !5q̄1eq̃~x,t !, ~5.3!

m~x,t !5m̄1em̃~x,t !, ~5.4!

where c̄ is a constant, q̄5G̃r( c̄)y and m̄5m0( c̄)
1aMG̃r( c̄)y are the equilibrium values of concentratio
pressure, and chemical potential, respectively. Gravity is
sumed to be in they direction. Plugging Eqs.~5.1!–~5.4! into
the HSCH system, keeping terms proportional toe and re-
writing the resulting linear system as a single equation forc̃,
we obtain the advection–diffusion equation

c̃t1v l c̃y5DlD@ f 09~ c̄!c̃2CD c̃#, ~5.5!

where the advection velocityv l is given by

v l5r~ c̄!
a2Mh~ c̄!

Pe112a2Mh~ c̄!
G̃, ~5.6!

and we have used the simple mixture formula~2.24! for the
density. The diffusion coefficientDl is given by

Dl5
1

r~ c̄!@Pe112a2Mh~ c̄!#
. ~5.7!

The advection velocity arises from the dependence of
chemical potential on the pressure. Observe that as a co
quence, there is flow in the direction of gravity. This mak
sense physically and is consistent with the 1D evolution
investigated in the previous section for the HSCH mod
Using the scaling~3.2! the advection velocity isO(a2g2G̃)
which vanishes as the interface thicknessg→0.

Looking for a solution of Eq.~5.5! in the form of a
normal modec̃5eik•x1st, we obtain the following disper-
sion relation between the wave numberk5(k1 ,k2) and the
growth rates :

s52v l ik21CDl uku2~kC
2 2uku2!, ~5.8!

wherekC is the critical wave number

kC
2 52 f 09~ c̄!/C, ~5.9!

which was first identified in the context of the spinodal d
composition for binary alloys~e.g., see Ref. 88!. From Eqs.
~5.8! and~5.9!, we see that growth may occur for those wa
numbersk such thatuku,kC if f 09( c̄),0. Otherwise, the so
lutions decay.

The linearized equation forc̃ in the BHSCH model is
obtained by simply settinga50 andr( c̄)51 in Eqs.~5.5!–
~5.7!. This gives

c̃t5
1

Pe
D@ f 09~ c̄!c̃2CD c̃#. ~5.10!
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Note that there is no flow. Equation~5.10! is identical to the
classical Cahn–Hilliard equation46 linearized about a con
stant state~again see Ref. 88!. The growth rate of a norma
mode is

s5
1

Pe
uku2~kC

2 2uku2!, ~5.11!

and thus the condition for growth or decay of modes is
same as that in the HSCH model.

B. Linear stability of the 1D BHSCH equilibrium
solution

We now consider the linear stability of the unstab
stratified 1D equilibrium solution of the BHSCH model t
two-dimensional perturbations. In this section, we pres
equations governing the linear growth rates of the pertur
tions. We solve these equations numerically and compare
resulting growth rates to those from the sharp interfa
model given in Sec. II A. We demonstrate the linear conv
gence of the two growth rates as the interface thicknes
taken to zero~following the scaling in Sec. III!. Through this
comparison, we study the effect of thePe, C, andM num-
bers on the linear growth rates. We then use this knowle
later in our numerical simulations of the full equations.

We focus on the unstably stratified case because the
the potential for perturbations to grow, in contrast to t
decay found in the stably stratified case. Thus, the stabiliz
effects of the chemical diffusion and interface thickness
easy to identify. For simplicity, we suppose that the viscos
h is constant.

Let us consider the solution to Eqs.~4.2!–~4.4! with the
quartic free energyf 0(c) given in ~4.5! with D54, c151,
andc250. For the density, we take

r̃~c!512agc, ~5.12!

whereag is a positive constant. Therefore 15 r̃(0). r̃(1)
512ag . The unstably stratified equilibrium solution is the
either given by Eq.~4.6! with G̃,0 ~gravity pointing in
negativey direction! or by reversing the roles ofc1 andc2 in
~4.6! and keepingG̃.0. In the results we present below, w
take the former approach.

Next we consider the following perturbations of the 1
BHSCH equilibrium:

u~x,y,t !501eû~y!eikx1st,

c~x,y,t !5 c̄~y!1e ĉ~y!eikx1st,

q~x,y,t !5q̄~y!1eq̂~y!eikx1st,

where c̄(y) is given in Eq.~4.6! and q̄(y) is obtained by
using c̄(y) in Eq. ~4.2!.

The linearized equations for the perturbations are

ikû1 v̂y50, ~5.13!

212hû5 ikS q̂1
C

M
~ c̄yyĉ2 c̄yĉy! D , ~5.14!

212h v̂5q̂y2k2
C

M
c̄yĉ1G̃r8~ c̄!ĉ, ~5.15!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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s ĉ1 c̄yv̂5
1

PeS d2

dy22k2D S m08~ c̄!ĉ2CS d2

dy22k2D ĉD .

~5.16!

Equations~5.13!–~5.16! can be reduced to a coupled syste
consisting of a second order equation forq̂ and a fourth order
equation forĉ as follows:

q̂yy5k2q̂12k2
C

M
c̄yyĉ1agG̃ĉy ~5.17!

and

ĉyyyy5
Pe

12hC
c̄yq̂y1

2

C
m09~ c̄!c̄yĉy1S 1

C
m08~ c̄!12k2D ĉyy

1F2k41
1

C
~m0-~ c̄!c̄y

21m09~ c̄!c̄yy2k2m08~ c̄!!

2s
Pe

C
2

Pe

12hC
c̄yS k2

C

M
c̄y1agG̃D G ĉ. ~5.18!

The boundary conditions for these equations are

q̂→0, ĉ→0 as y→6`. ~5.19!

Next, observe from Eq.~4.6! that c̄(y)2 1
2 is an odd function

of y, and thus

m08~ c̄!5
D

2
@4~ c̄2 1

2!
212~~ c̄2 1

2!
22 1

4!#

even,

m09~ c̄!53D~2c̄21!

is odd, and

m0-~ c̄!56D

is even. These facts lead us to expect symmetric solut
~odd q̂ and evenĉ! to Eqs.~5.17! and~5.18!. Our numerical
method will take advantage of this symmetry and we so
Eqs.~5.17! and ~5.18! on only half of the domain.

Before concluding this section, we present the sharp
terface growth rate for this flow for purposes of comparis

s052
t

24h
~ uku31Buku!, ~5.20!

where t is the surface tension andB is the bond number
~2.5!. Therefore, whenB,0 there is a range of unstab
modes neark50 due to unstable density stratification.

Although we do not present it here, we have perform
matched asymptotic expansions for Eqs.~5.17! and~5.18! for
the scaling and general procedure outlined in Sec. III.
obtained the sharp interface growth rates0 at leading order,
but we were unable to calculate the next order correction
closed form. Consequently, we solve the full Eqs.~5.17! and
~5.18! numerically to compares with s0 .

1. Numerical methods for linear growth rates

We solve Eqs.~5.17!–~5.19! on a large, but finite inter-
val @2a,a#. The transition region is centered aroundy50
and our matched asymptotic expansions suggest that th
lutions decay exponentially fast inuyu away from this layer.
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This is confirmed by numerical experiments and the co
puted linear growth rates are insensitive to the size of
interval @2a,a# as long asa@AC.

To take advantage of the symmetry of the solutions,
solve Eqs.~5.17!–~5.19! on the half interval@0,a# and we
prescribe the following boundary conditions aty50:

q̂50, ĉy50, ĉyyy50, ĉ5b, at y50, ~5.21!

whereb is a numerical parameter which is discussed belo
At y5a, we pose

kq̂~a!1q̂y~a!50, ĉyy~a!50, ~5.22!

where the first term in~5.22! is suggested by the outer lead
ing order equations in the matched asymptotic expansion
Eqs.~5.17!–~5.19!. We account for the exponential decay
q̂ and notĉ because the rate of decay ofq̂ depends on the
wave numberk. Henceq̂ decays slowly for smallk. In con-
trast, the rate of decay ofĉ is independent ofk.

Although there are six boundary conditions in total, t
condition ĉyy(a)50 does not imply thatĉ(a)50. Conse-
quently, solutions can be found for all values ofs with
boundary conditions~5.21! and ~5.22! but there is only one
value of s for which ĉ(a)50 in addition. Note that if the
domain is large enough,ĉ(a)50 implies ĉyy(a)'0 with
the' becoming5 in the infinite domain limit.

Following Ref. 89, we use a version of Keller
method90 in which the growth rate is determined as the val
of s which produces the correct boundary valueĉ50 at y
5a. Let ĉ(y,k,s) represent the solution of Eqs.~5.17!–
~5.19! for a givenk ands. For eachk, starting with an initial
guess forsk,0 , we generate a sequence$sk,i% converging to
the root of

ĉ~a,k,sk!50

using an iterative root finding method. To compu
ĉ(a,k,sk,i) for eachsk,i , we solve the boundary value prob
lem ~5.17!–~5.19! using the FORTRAN routine COLNEW
and we use Brent’s method to find the root. Both routines
available fromNETLIB. The numerical constantb in ~5.21! is
set to a nonzero number in order to obtain a nontrivial so
tion ĉ.

2. Numerical linear growth rates

We take a52.5, b51023 and use 800 grid points in
solving the boundary value problem~5.17!–~5.19!. For C,
M , andPe numbers, we take the values given in~3.2! with
g50.05. The viscosity ish51/2, the surface tension ist
5&/6 and gravityG̃ is determined from the Bond numbe
B5225 andag50.091 via Eqs.~5.12! and ~4.25!.

We begin by considering the effect ofPe. In Fig. 5~a!,
the linear growth rates are shown for the sharp interf
model@solid curve;s0 from Eq. ~5.20!#, the BHSCH model
with Pe51/g ~s! and with Pe51 ~1!. The growth rates
from the BHSCH model withPe51/g are much closer tos0

than are the growth rates withPe51. Decreasing thePe
number increases dissipation and decreases the linear gr
rate. So, even though our asymptotic analysis in Sec.
indicates that both scalings ofPe yield the classical sharp
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. Sharp and diffuse interface growth rates in Boussinesq approximation.B5225, a50.1 ~a!. Sharp interface~solid curve!, BHSCH withPe51/g ~s
curve!, BHSCH withPe51 ~1 curve!. In BHSCH,g50.05.~b! Sharp interface~solid curve!, BHSCH withPe51/g ~s curve!, BHSCH withPe50.5/g ~1
curve!, BHSCH withPe50.2/g ~3 curve!. Again,g50.05.~c! Sharp interface~solid curve!. BHSCH withPe51/g, g50.04 ~s curve!, g50.05: 1 curve,
g50.06 ~3 curve!. ~d! Difference between sharp and BHSCH growth rates.s0.052s0.04 ~s curve!, s0.062s0.04 ~1 curve!, 2(s0.052s0.04) ~3 curve!.
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interface model at leading order asg→0, this graph suggest
that for a fixed value ofg, thePe51/g scaling yields a close
approximation to the sharp interface. Consequently, we
this scaling in our simulations of the full BHSCH and HSC
models presented in paper II.2

Figure 5~a! also indicates that thePe51/g growth rates
become less negative thans0 for wave numbersk.5.8 sug-
gesting that the BHSCH model is less dissipative than
sharp interface model at those wave numbers. In a simula
of the full equations with initial data containing linearly un
stable modes, it is difficult to observe the lowered dissipat
since growth dominates. Nevertheless, one can modify
Pe, still keepingPe5O(1/g), so as to increase damping
high wave numbers. This is shown in Fig. 5~b! where s0

~solid curve! and the growth rates withPe51/g ~s! Pe
50.5/g ~1!, Pe50.2/g ~3! are shown. Not surprisingly, ob
serve that decreasingPe tends to affect the behavior at hig
wave numbers much more than at low wave numbers. In
estingly, the diffuse interface model of Folchet al.83 seems
to produce a qualitatively similar dispersion relation
shown here for the BHSCH model withPe51/g. We find
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this a little surprising given that our model equations se
quite different.

Next, we consider the effect ofg on the linear growth
rates. In Fig. 5~c!, we takePe51/g and consider the growth
rates wheng50.06 ~3!, 0.05 ~1!, and 0.04~s!. For com-
parison,s0 is also shown~solid curve!. The growth rates are
seen to be increasing functions ofg and approach thes0

curve. To measure the rate of approach, consider the di
ences between the different growth rates at different val
of g. This is shown in Fig. 5~d!. Observe that the conver
gence is linear ing at small wave numbers. This is consiste
with the matched asymptotics presented in Sec. III. Decre
ing g further leads to a larger region of linear convergenc

Finally, we comment on the effect of other paramete
on the BHSCH growth rates. LettingC5g2, this parameter
measures the closeness of the sharp and BHSCH gro
rates. LettingM5M0g, the parameterM0 can be used to
adjust both the wave numberkm and magnitude of the maxi
mum growing mode by effectively modifying the surfac
tension. The initial slope, neark50, can be altered by chang
ing B ~i.e., gravity!. Since our asymptotic analysis and n
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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merical results predict linear convergence of the BHSCH
sharp interface growth rates, we can modifyM0 from Eq.
~3.2! and B by an O(g) amount and still achieve the sam
leading order sharp interface growth rate. We can take
vantage of this fact as follows.

By modifying M0 , B, and Pe by an O(g) amount to
better match the growth rates of the BHSCH and sharp
terface models at finite values ofg, we may achieve bette
agreement between the solutions of the fully nonlinear s
tems. This idea is quite general and, in spirit, is analogou
the improvements in a phase field model for solidificatio
suggested by Karma and Rappel,91 in which the phase-field
equations are modified to remove first order effects of in
face kinetics in the sharp interface limit. In our case, we c
try to match the growth rates of all the unstable wave nu
bers or we can try to match only the growth rate of the m
unstable wave number or perhaps just the most unst
wave number present in an initial condition.

We have investigated all of these approaches and fo
that while they all yield better approximations of the sha
interface model~measured from simulations of the fu
BHSCH/HSCH equations! than the original values ofM0 , B,
and Pe, the best agreement between the BHSCH~and
HSCH! and sharp interface models is achieved when
growth rate of the most unstable wave number in an ini
condition is matched. On the one hand, this is a little uns
isfactory because this suggests that the appropriate BHS
~and HSCH! parameters are initial data dependent. On
other hand, the parameters may be precalculated without
erence to the specific initial condition; the parameters o
depend on which wave numbers are present, the inter
thickness and the physical constants governing the flow.
are unable to explain fully why matching more than the m
unstable wave number in an initial condition does not yiel
better result. Perhaps the answer lies in the fact that
attempts to match the growth rates of a band of unsta
modes are only approximate and in that band no growth r
are matched exactly—they are all uniformly approximat
With a single wave number, however, we can exactly ma
the growth rate. Thus, it may be that the choices ofM0 , B,
andPe, we used in our attempt to match the band of unsta
modes, were not optimal.

In paper II,2 we present several simulations of the ful
nonlinear BHSCH and HSCH models with different initia
data in which the growth rates at wave numbers 1 and 3
matched tos0 , respectively, with each corresponding to t
most unstable wave number in the initial condition. In prep
ration for these simulations, we indicate how matching
growth rates atk51 andk53 may be achieved by modify
ing only B. Let B5225(11bg), Pe51/g and all other pa-
rameters as before. From Fig. 6~a!, we conclude that the
BHSCH growth rates depend linearly onb. We then use lin-
ear interpolation to determine the values ofb5bk,g required
to match the growth rates for a given wave numberk and
interface thicknessg. This is shown in Fig. 6~b! for k51 and
g50.05, 0.04. We obtainb1,.0551.4148 andb1,.0451.4025.
Analogously, we obtainb3,.0553.3782 andb3,.0453.2101 at
wave numberk53. Observe thatbk,g is a decreasing func
tion of g for these two wave numbers.
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C. Practical comparison between BHSCH and HSCH
linear growth rates

In this section, we compare the linear growth rates
the BHSCH and HSCH models. Since we do not have
unstably stratified 1D equilibrium solution available for th
HSCH model, we use simulations of the full equations
motion in the linear regime for both the BHSC and HSCH
determine the growth of perturbations from a 1D~flat! inter-
face. Although we postpone a detailed discussion of our
merical algorithm until paper II,2 we discuss a few relevan

FIG. 6. ~a! Linear relation betweenb and the growth rates withg50.05 and
B5225* (11bg). s(b51)2s(b50) ~s curve!, s(b52)2s(b51)
~triangle curve!, 2(s(b51)2s(b50)) ~inverted triangle curve!; ~b! values
of b at which the BHSCH growth rate matches the sharp interface gro
rate atk51. g50.04 ~s curve!, g50.05 ~box curve!.
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FIG. 7. Initial data for concentration~a! and its slice atx5p ~b! wheng50.05.
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features of the method here. The geometry we use is peri
in x andy (V5@0,2p#2) and in each periodic box, there a
two interface layers rather than one as we have been con
ering up to now. Because of the periodicity, no bound
layers develop in the HSCH case. The initial interface po
tions are (x,y1(x,0)) and (x,y2(x,0)) where

y1~x,0!5p2~0.51e cos~kx!!,

y2~x,0!5p1~0.51e cos~kx!!, 0<x<2p, ~5.23!

andk denotes the wave number of the perturbation. The
tial concentration fieldc(x,y,0)5c0(x,y) is given by

c0~x,y!5 1
4~11tanh~~y2y1~x!!/~2A~2* C/D!!!)* ~1

2tanh~~y2y2~x!!/~2A~2C/D!!!). ~5.24!

The density of the BHSCH model is as before~5.12! and the
density in the HSCH model is given by Eq.~2.24! with r2

51 anda50.1 since relatinga andag by

a5
ag

12ag
~5.25!

matchesr(c) and r̃(c) at c50 andc51. Thus, the initial
data correspond to the situation of a light layer of fluid s
rounded by a heavier one. See Fig. 7 for thek51 initial data;
the upper interface (x,y2(x,t)) is unstable while the lowe
interface (x,y1(x,t)) is stable.

In order to compare our results with those in the prec
ing section, we use the quartic free energyf 0(c) from Eq.
~4.5! in our simulations of the full HSCH and BHSCH mod
els. Unlike the 1D equilibrium case, we encounter no di
culties in using the quartic free energy in the HSCH mod
This is likely due to the periodic flow geometry. We find th
the HSCH solutionc(x,t) typically lies within an O(g2)
neighborhood of@0, 1#. Additionally, we takeD54 andc1

51, c250 and the parametersG̃, t, h, C are the same as in
the BHSCH case we considered previously. In the HS
case,M is appropriately modified according to Eq.~3.2!.
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Because there are two interfaces, we note that even
e50, the initial datac0(x,y) are only an approximation o
the corresponding equilibrium solution for the BHSC
model and hencec0(x,y) is not an equilibrium solution for
either model. In contrast, flat interfaces are equilibrium
lutions of the sharp interface model.

To calculate the numerical approximation of the line
growth rates, we suppose at timet, the interface positions are
given by

y1~x,t !5p2~0.51e exp~s1,kt !cos~kx!!,

y2~x,t !5p1~0.51e exp~s2,kt !cos~kx!!.

The growth rate of the unstable interfaces2,k is then com-
puted by

sk5
1

T
log~~y2~0,T!2~p10.5!!/e!, ~5.26!

where we determine the positiony2(0,T) using the height of
the correspondingc50.5 contour line at its intersection with
the y-axis. We additionally usee50.05 andT50.1.

In Fig. 8, the growth ratess2,k are shown for the BH-
SCH and HSCH models withPe51/g, Pe51, and g
50.05. The BHSCH growth rates are denoted bys (Pe
51/g) andL (Pe51). The HSCH growth rates are denote
by 1 (Pe51/g) and3 (Pe51). For comparison, the shar
interface growth rates0 ~solid curve! is shown together with
the BHSCH growth rates obtained in the preceding sect
Pe51/g ~dashed curve! and Pe51 ~dotted–dashed curve!.
There are three main conclusions we draw from this figu
First, the BHSCH growth rates we calculate from the f
equations and from the preceding section are consist
there are slight differences but this is to be expected since
flow geometries are not the same. Second, the HSCH gro
rates are consistently less than the BHSCH growth rates
dicating more dissipation in the HSCH model. This is like
due to the fact that the initial datac0(x,y) is a better approxi-
mation of the BHSCH equilibrium than the HSCH equilib
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. A comparison of growth rates
obtained from simulations of the full
HSCH and BHSCH models~symbols!
with those from the sharp interface
and 1D BHSCH linear stability equa
tions ~5.17! and ~5.18!. Solid curve,
sharp interface; dashed curve, 1
BHSCH growth rate withPe51/g,
dotted–dashed curve, 1D BHSCH
growth rate with Pe51; s curve,
growth rate from full BHSCH model
with Pe51/g; diamond curve, growth
rate from full BHSCH model withPe
51, 1 curve, growth rate from full
HSCH model withPe51/g; 3 curve,
growth rate from full HSCH model
with Pe51.
e
s
re
C

o
e-
ng
em
uid
e
id

m

le

le
ar
ee
ie
il

lly
on
lly
th
rd
n
o
w

ace
sis-
ore
fy
CH
this
a-
the
fi-
and
that
face
d
in-
H/

the
es
tion

in
c-
p
by
ore
is
btle
ay
d-
ty
in-
ss-
le,
rium. Naturally, this effect is more pronounced at smallerPe
numbers. Third, in thePe51/g case, the growth rates of th
BHSCH and HSCH models are quite similar. This sugge
that the analysis of the BHSCH linear growth rates we p
sented in the preceding section is relevant also to the HS
model in periodic geometries.

VI. CONCLUSIONS

In this first paper of a two part series, the behavior
two model systems, to study binary fluid flow in a Hel
Shaw cell, is investigated. The equations are obtained usi
simplification, for the Hele-Shaw setting, of a general syst
of equations describing the motion of a binary viscous fl
~NSCH equations1!. This system takes into account th
chemical diffusivity between different components of a flu
mixture and the extra fluid stresses induced by the inho
geneity of the mixture~van der Waals type stresses55!. In one
of the models~HSCH!, the binary fluid may be compressib
due to diffusion. In the other model~BHSCH!, a Boussinesq
approximation is used and the binary fluid is incompressib

The models are calibrated to yield the classical sh
interface model as a limiting case. The differences betw
the HSCH, BHSCH and sharp interface models are stud
by considering equilibrium solutions and their linear stab
ity. Somewhat surprisingly, the gravitational field actua
affects the internal structure of the equilibrium transiti
layer and an equilibrium solution is obtained numerica
only for the stably stratified case. Boundary layers in
equilibrium solution are observed and the evolution towa
the stably stratified equilibrium simulated in one dimensio

The linear stability of unstably stratified equilibria is als
analyzed. Linear convergence to the sharp interface gro
Downloaded 31 Jul 2003 to 128.200.248.203. Redistribution subject to A
ts
-
H

f

a

o-

.
p
n
d

-

e
s
.

th

rates is observed in a parameter controlling the interf
thickness. The BHSCH and HSCH growth rates are con
tent although the HSCH system is seen to be slightly m
diffusive than the BHSCH system. In addition, we identi
the effect that each of the parameters, in the HSCH/BHS
models, has on the linear growth rates. We then use
information to suggest a modified set of HSCH/BHSCH p
rameters for which a better match is obtained between
HSCH/BHSCH and sharp interface linear growth rates at
nite interface thicknesses. This approach is quite general
has application beyond the current context. We suggest
agreement between the HSCH/BHSCH and sharp inter
models may be improved by simply modifying the bon
number by an amount approximately proportional to the
terface thickness in order to match the sharp and BHSC
HSCH growth rates at the most unstable wave number in
initial condition. There may be other, more optimal choic
of parameters however. Evidence supporting our conten
of improved agreement may be found in paper II.

In paper II,2 we focus on the behavior of the models
the fully nonlinear regime through pinchoff and reconne
tion. To briefly preview that work, we find that the breaku
of an unstably stratified fluid layer is smoothly captured
both models. Moreover, because the HSCH model is m
diffusive than the BHSCH model, an earlier pinchoff time
predicted at finite interface thicknesses which causes su
differences between the two in the pinchoff region. Aw
from the pinchoff region, both the HSCH and BHSCH mo
els yield nearly identical results. At pinchoff, compressibili
effects do not vanish in the sharp interface limit. This dist
guishes the HSCH model from all others in which compre
ibility effects are neglected. It may turn out, for examp
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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512 Phys. Fluids, Vol. 14, No. 2, February 2002 Lee, Lowengrub, and Goodman
that characterizing the limiting effect of compressibility at
topological transition may suggest a physically based se
tion mechanism for cutting and reconnecting sharp in
faces. In paper II, the effects of buoyancy, viscous, dif
sional and surface tension forces are also investigated.
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