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Motivation: untilting perfectoid fields [3]

Let K be a nonarchimedean field, complete with respect to the mul-
tiplicative norm | · | and with residue characteristic p. Then K is
perfectoid if the value group |K×| is non-discrete and the p-th power
Frobenius map on oK/p is surjective.

The p-adic completions of Qp(p
1/p∞) and Qp(µp∞) are examples of per-

fectoid fields. Every perfectoid field of characteristic p is perfect, a
basic example of this is Fp((t1/p

∞
)) - the completion of the perfection of

Fp((t)).
Given any perfectoid field K, define the tilt K[ as lim

x 7→xp
K. This is a

perfectoid field of characteristic p.

All three of the above examples tilt to Fp((t1/p
∞

)).

For any perfectoid field K, the absolute Galois groups of K and K[

are isomorphic.

Let L be a perfectoid field of characteristic p and K a characteristic 0
untilt of L, so K[ ∼= L. There is a surjection Θ : W (oL)[1

p] → K with
kernel generated by an element ξ which is the Witt vector analogue of
a linear polynomial. In this way, untilts of L correspond to maximal
ideals of W (oL)[1

p].

The Fargues-Fontaine curve is a geometric object acting as a ”moduli
space of untilts”. We study the Fargues-Fontaine curve via the rings
it is built out of: the extended Robba rings.

The adic Fargues-Fontaine curve [3]

Fix a prime p and a power q of p. Let L be a perfectoid field con-
taining Fq with pseudo-uniformizer π, let E be a complete discretely
valued field with residue field containing Fq and uniformizer $. Let
YL,E = Spa(W (oL)⊗W (Fq) oE) \ {|$[π]| = 0}. Frobenius on oL induces
a properly discontinuous automorphism φ on YL,E.

The adic Fargues-Fontaine curve is XL,E := YL,E/φ.

The Fargues-Fontaine curve geometrizes many important concepts
from p-adic Hodge theory. The closed points correspond to the untilts of
L containing E. Vector bundles over the Fargues-Fontaine curve relate
to (φ,Γ)-modules, which are used to study p-adic Galois representa-
tions.

An analogy: Tate’s elliptic curve [1]

Let k be a nonarchimedean field with norm | · |, choose an element
q ∈ k× with |q| < 1. The quotient Eq = Gm,k/(q) makes sense in
the category of rigid analytic spaces, it is the analytification of an el-
liptic curve. The rigid space Gm,k can be covered by annuli A(r, s)

centered at the origin for intervals [r, s] ⊂ (0,∞) - these are affi-
noid rigid spaces corresponding to the affinoid algebras k〈r/X,X/s〉 ∼=
k〈T1, T2〉/(T1T2− r/s). When r/s < |q|, the quotient Gm,k → Eq maps
A(r, s) isomorphically to its image. We can learn about Eq by studying
the affinoid algebras that it is built out of, which we can understand by
studying the Tate algebra k〈T1, T2〉.

The extended Robba rings [2]

The adic space YL,E is covered by rational subspaces YIL,E corre-
sponding to intervals I = [a, b] ⊂ (0,∞) defined by the inequalities
{[πb] ≤ |$| ≤ [πa]. These subspaces are affinoid adic spaces corre-
sponding to the extended Robba rings BI

L,E.

For sufficiently small intervals I , the quotient YL,E → XL,E maps YIL,E
isomorphically to its image. We can learn about the Fargues-Fontaine
curve by studying the extended Robba rings BI

L,E and the somewhat
simpler rings Ar

L,E which are analogues of the Tate algebra.
The ring Ar

L,E is the subring of W (L)⊗W (Fq) oE consisting of elements
∞∑
i=0

$i[xi] satisfying a convergence condition involving r. It is com-

plete for a multiplicative norm and has a degree function analogous to
the Gauss norm and degree function of the Tate algebra k〈T 〉.
In particular, Ar

L,E is a Euclidean domain for its degree function and
is therefore a principal ideal domain.

This is a crucial input to the proof that Ar
L,E is strongly noetherian,

that is that for any ρ1, . . . , ρn > 0 the ring Ar
L,E{T1/ρ1, . . . , Tn/ρn}

is noetherian. This result extends to the rings BI
L,E and étale exten-

sions C of these rings as they can all be written as quotients of some
Ar
L,E{T1/ρ1, . . . , Tn/ρn}. This implies that the structure presheaf on
XL,E is a sheaf, and therefore that XL,E is an adic space.
All of our results are obtained in a similar way - we work directly with
the ring Ar

L,E and extend to the rings BI
L,E and C by taking quotients

of weighted Tate algebras over Ar
L,E.

Results

Throughout this section, let (BI
L,E, B

I,+
L,E) → (C,C+) be a morphism of

adic Banach rings which is étale in the sense of Huber. All results are
already new in the case C = BI

L,E

We give a classification of the points of Spa(C,C+) into types 1-
5, analogously to the classification of the points of Spa(k〈t〉, ok〈t〉).
Types 1-4 correspond to the points of the Berkovich spectrumM(C),
type 1 points correspond to the points of MaxSpec(C).

To show this, we first extend Kedlaya’s classification ofM(W (R)) into
types 1-4 by checking that the proofs still work for generalized Witt vec-
tors. We then show that all higher rank points must be clustered around
points of type 2, the argument is analogous to the equivalent statement
for the adic unit disc.

We show that a finite collection of rational subspaces of Spa(C,C◦)

forms a covering if and only if their intersections with MaxSpec(C)

do. We see that a rational subspace of Spa(C,C◦) is determined by its
intersection withM(C), then show that for any rational localization
Spa(C,C◦)→ Spa(D,D+) we have D+ = D◦.

For these proofs, our classification gives us a good understanding of
how the higher rank points behave. Rational localizations of adic spaces
are defined by inequalities, and we can show that inequalities satisfied
by type-5 valuations are also satisfied by nearby type-2 valuations.

We show that for a ”dense set of rings C” and a ”dense set of
ρ1, . . . , ρn > 0”, the ring C{T1/ρ1, . . . , Tn/ρn} is regular and excel-
lent.

The key step in the proof of regularity is a version of the Nullstellen-
satz: we show that every maximal ideal m of Ar

L,E{T1/ρ1, . . . , Tn/ρn}
restricts to a maximal ideal of Ar

L,E. This lemma forces the restrictions
on C and the ρi.
To show excellence in characteristic 0, we first show that
Ar
L,E{T1/ρ1, . . . , Tn/ρn} ⊗Ar

L,E
Frac(Ar

L,E) is excellent because it satis-
fies the ”weak Jacobian condition”. Roughly, this is because it is regular
of dimension n and there are n independent derivations ∂

∂Ti
.
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