Monogenic Fields Arising from Torsion on Elliptic Curves

T. Alden Gassert, Hanson Smith, and Katherine E. Stange

arXiv id: 1708.03953, presenter email: hanson.smith@colorado.edu

OBJECTIVE AND BACKGROUND

The connection between torsion points on elliptic curves with complex multiplication and class fields is well-documented. We investigated whether number fields obtained by adjoining torsion points of elliptic curves without complex multiplication have unique properties. Specifically, we discover a family of number fields arising from elliptic curves with rational 4-torsion that is monogenic, i.e. the ring of integers admits a power basis.
The problem of describing all monogenic number fields is called Hasse's problem. Since it was posed in the 1960's there has been a good deal of work put into the problem; however, this seems to be the first time that elliptic curves have been used as a method of attack.

TERMINOLOGY

Tate's normal form of an elliptic curve with a rational point of order 4 is given by
$E: y^{2}+(\alpha+8 \beta) x y+\beta(\alpha+8 \beta)^{2} y=x^{3}+\beta(\alpha+8 \beta) x^{2}$
where $\alpha, \beta \in \mathbb{Q}$ and $(0,0)$ is the point of order 4 . By changing coordinates, we may assume $\alpha, \beta \in \mathbb{Z}$ are coprime. The invariants are

$$
\Delta=\beta^{4}(\alpha-8 \beta)(\alpha+8 \beta)^{7}, \quad j=\frac{\left(\alpha^{2}-48 \beta^{2}\right)^{3}}{\beta^{4}(\alpha-8 \beta)(\alpha+8 \beta)}
$$

Let $E[n]$ be the group of n-torsion points on E. Suppose n is odd. We define the nth division polynomial to be

$$
\Psi_{n}(x)=n \prod_{P \in E[n] \backslash\{\mathcal{O}\}}^{\prime}(x-x(P))
$$

where the prime indicates we only include one of each pair P and $-P$ in the product.
Let K be the number field obtained by adjoining a root, θ, of some irreducible polynomial $f(x)$ of degree n. Suppose the ring of integers of K, \mathcal{O}_{K}, admits the basis $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$. A basis of this form is called a power basis and in this case we say K is monogenic. In other words we have $\mathcal{O}_{K}=\mathbb{Z}[\theta]$.

AN EXAMPLE

Consider the elliptic curve in Tate Normal form

$$
E: y^{2}+23 x y+23^{2} y=x^{3}+23 x^{2}
$$

Here $\alpha=15$ and $\beta=1$, so $\Delta=7 \cdot 23^{7}$ and $j=\frac{\left(15^{2}-48\right)^{3}}{7 \cdot 23}$. Further, we have
$\Psi_{3}(x)=3 x^{4}+621 x^{3}+36501 x^{2}+839523 x+6436343$.
Let θ be a root of $\Psi_{3}(x)$. Our result shows that $K=\mathbb{Q}(\theta)$ is monogenic. However, $\mathbb{Z}[\theta]$ does not yield all of \mathcal{O}_{K}. To find a generator of our power

ReSUlTS

Let E be an elliptic curve defined over \mathbb{Q} such that some twist E^{\prime} of E has a 4-torsion point defined over \mathbb{Q}. Then the following are equivalent:

- E^{\prime} has reduction types I_{1}^{*} and I_{1} only;
- E has j-invariant with squarefree denominator except a possible factor of 4 .
- E has j-invariant $j=\frac{\left(\alpha^{2}-48\right)^{3}}{(\alpha-8)(\alpha+8)}$, where $\alpha \in \mathbb{Z}, \alpha \pm 8$ are squarefree.

Let K_{n} be the field defined by adjoining the x-coordinate of an n-torsion point of E. If any of the above hypotheses holds, then K_{3} is monogenic with a generator given by a root of $T^{4}-6 T^{2}-\alpha T-3$. In particular, the field K_{3} has discriminant $-27(\alpha-8)^{2}(\alpha+8)^{2}$.

Methods

We consider an arbitrary elliptic curve E with a rational point of order 4 in Tate normal form. Let p be a prime of bad reduction. First, we apply Tate's algorithm to determine the Kodaira type of E. Now, we use a paper by the third author [2] or an explicit computation to find the p-adic valuation of the odd division polynomials, $\Psi_{n}(x)$, evaluated at the singular point modulo p.
Next we change coordinates to the Fueter form [1] of E. Applying

$$
(x, y)=\left(\frac{a \beta}{T}-a \beta, \frac{1}{2}\left(\frac{(a \beta)^{\frac{3}{2}} T_{1}}{T^{2}}-\frac{a^{2} \beta}{T}\right)\right)
$$

one obtains

$$
T_{1}^{2}=T\left(4 T^{2}+\frac{\alpha}{\beta} T+4\right)
$$

Under this change of coordinates $\Psi_{3}(x)$ becomes

$$
F_{3}(T)=T^{4}-6 T^{2}-\frac{\alpha}{\beta} T-3
$$

Let τ be a root of $F_{3}(T)$ and let $K=\mathbb{Q}(\tau)$. Here we apply the Montes algorithm. The Montes algorithm computes $v_{p}\left(\left[\mathcal{O}_{K}: \mathbb{Z}[\tau]\right]\right)$ by counting lattice points below certain Newton polygons. Noting the degree of $F_{3}(T)$ and the fact that reduction modulo $p \neq 3$ is injective on $E[3]$ if E is nonsingular modulo p, we consider only $p=2,3$ and p for which E has bad reduction. Requiring that $\beta=1$ and $\alpha \pm 8$ are squarefree ensures that $v_{p}\left(\left[\mathcal{O}_{K}: \mathbb{Z}[\tau]\right]\right)=0$ for all p dividing the discriminant of $F_{3}(T)$. Thus we conclude K is monogenic.

REFERENCES

[1] Ph. Cassou-Noguès and M. J. Taylor. Elliptic functions and rings of integers, volume 66 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1987.
[2] Katherine E. Stange. Integral points on elliptic curves and explicit valuations of division polynomials. Canad. J. Math., 68(5):1120-1158, 2016.

