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Definitions

• A CM field is a totally imaginary number field E that is a

quadratic extension of a totally real field F . E is a unitary CM

field if E contains an imaginary quadratic field k.

• A CM type of E is a subset Φ ⊆ Hom(E,C) such that

Φ ∪ Φ = Hom(E,C), Φ ∩ Φ = ∅.

• If E = kF is a unitary CM field of degree 2n and Φ is a CM

type of E, then the signature of Φ is (n − ε, ε) if n − ε of the

embeddings of Φ restrict to the identity k ↪→ C.

• LetX be an abelian variety with everywhere good reduction over

a number field L with Neron model X and zero section ε. Take a

nonzero α ∈ ω := ε∗(Ωn
X/OL) and define the Faltings height by

hFal(X) :=
−1

2[L : Q]

∑
σ:L↪→C

log
∣∣∣ ∫

Xσ(C)

ασ ∧ ασ
∣∣∣ + log

∣∣∣ω/αOL∣∣∣.
Colmez’s Constructions

• Let (E,Φ) be a CM pair and view Φ as a map Φ : Hom(E,C)→
{0, 1} and extend it to Φc : Gal(Ec/Q)→ {0, 1}.
• Let Φ̃c be the reflex CM type of Φc and let AΦ := Φc ∗ Φ̃c be the

convolution of Φc with Φ̃c.

• Let A0
Φ =

∑
χ

aχχ be the projection of AΦ onto the space of

class functions on Gal(Ec/Q) and define Z(s, A0
Φ) by

Z(s, A0
Φ) =

∑
χ

aχ

(
L′(s, χ)

L(s, χ)
+

1

2
log fχ

)
.

The Colmez Conjecture

Conjecture 1 (Colmez).Let E be a CM field, Φ a CM type of

E, and XΦ an abelian variety with CM by (OE,Φ). Then,

hFal(Φ) :=
1

[E : Q]
hFal(XΦ) = −Z(0, A0

Φ).

Reduction in the Unitary Case

Theorem 1 (P.). Let E = kF be a unitary CM field. Then

the Colmez conjecture holds for all CM types of E if and only

if it holds for all CM types of signature (n− 2, 2).

CM Types and Equivalence

• Let E = kF be a unitary CM field of degree 2n and let

{σ1, . . . , σn} = Hom(F,C). Subsets of {1, . . . , n} of size ε

parametrize CM types of E of signature (n− ε, ε) in the following

manner. For example, take {1, 2} ⊆ {1, . . . , n}.

{1, 2} ↔ Φ{1,2} := {σ1, σ2, σ3, . . . , σn}

• Let Ec denote the Galois closure of E. There is a natural

Gal(Ec/Q) action on the CM types of E.

• If Φ1 and Φ2 are CM types equivalent under the Galois action,

then hFal(Φ1) = hFal(Φ2) and A0
Φ1

= A0
Φ2

.

• The Galois action on CM types of signature (n− ε, ε) is equiv-

alent to the action of G on ε many elements of G/H , where

G = Gal(F c/Q) and H = Gal(F c/F ).

Average amongst Signatures

• Recent work of Yang and Yin has computed the average Faltings

height amongst CM abelian varieties with the same signature.

Theorem 2 (Yang-Yin).Let E = kF be a unitary CM field of

degree 2n and denote by Φ(E)ε the set of all CM types of E of

signature (n− ε, ε). Then,∑
Φ∈Φ(E)ε

hFal(Φ) =
∑

Φ∈Φ(E)ε

−Z(0, A0
Φ)

=
−1

4

(
n

ε

)
Z(0, ζk) +

(
n− 2

ε− 1

)
Z(0, χk/Q)

− 1

n

(
n− 2

ε− 1

)
Z(0, χE/F ).

Dealing with A0
Φ

Proposition 1 (P.). Let E = kF be a unitary CM field, let

S ⊆ {1, . . . , n}, and let ΦS be the CM type of E corresponding

to S. Then,

A0
ΦS

=
∑
{i,j}⊆S

A0
Φ{i,j}
− (ε− 2)

∑
i∈S

A0
Φ{i}

+
(ε− 1)(ε− 2)

2
A0

Φ{∅}
.

• A reformulation of the Chowla-Selberg formula implies that the

Colmez conjecture holds for Φ{∅}.

• Any group G acts transitively on G/H for any subgroup H ≤
G. Therefore, the result of Yang-Yin implies that the Colmez

conjecture holds for Φ{i} for any i ∈ S.

• Yang and Yin’s theorem, Proposition 1, and the above known

cases of the Colmez conjecture imply the following.

Proposition 2 (P.). Let E = kF be a unitary CM field, let

G = Gal(F c/Q) and H = Gal(F c/F ). If G acts doubly transi-

tively on G/H, then the Colmez conjecture holds for any CM

type of E.

Colmez for Unitary PSL2 CM fields

• LetB be the Borel subgroup of PSL2(Fq) where q is an odd prime

power. The action of PSL2(Fq) on PSL2(Fq)/B is isomorphic to

the action of PSL2(Fq) on P1(Fq) and is doubly transitive.

Theorem 3 (P.).Let F be a totally real number field such that

Gal(F c/Q) ∼= PSL2(Fq) and Gal(F c/F ) ∼= B. Then for any

imaginary quadratic field k and any CM type Φ of E = kF ,

the Colmez conjecture holds for Φ.
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