Definitions

• A CM field is a totally imaginary number field E that is a quadratic extension of a totally real field F. E is a **unitary CM field** if E contains an imaginary quadratic field k.

• A CM type of E is a subset $\Phi \subseteq \operatorname{Hom}(E, \mathbb{C})$ such that

$$\Phi \cup \overline{\Phi} = \operatorname{Hom}(E, \mathbb{C}), \qquad \Phi \cap \overline{\Phi} = \emptyset.$$

• If E = kF is a unitary CM field of degree 2n and Φ is a CM type of E, then the **signature** of Φ is $(n - \epsilon, \epsilon)$ if $n - \epsilon$ of the embeddings of Φ restrict to the identity $k \hookrightarrow \mathbb{C}$.

• Let X be an abelian variety with everywhere good reduction over a number field L with Neron model \mathcal{X} and zero section ϵ . Take a nonzero $\alpha \in \omega := \epsilon^*(\Omega^n_{\mathcal{X}/\mathcal{O}_I})$ and define the **Faltings height** by

$$h_{\text{Fal}}(X) := \frac{-1}{2[L:\mathbb{Q}]} \sum_{\sigma: L \hookrightarrow \mathbb{C}} \log \left| \int_{X^{\sigma}(\mathbb{C})} \alpha^{\sigma} \wedge \overline{\alpha^{\sigma}} \right| + \log$$

Colmez's Constructions

• Let (E, Φ) be a CM pair and view Φ as a map Φ : Hom $(E, \mathbb{C}) \to \mathbb{C}$ $\{0,1\}$ and extend it to $\Phi^c : \operatorname{Gal}(E^c/\mathbb{Q}) \to \{0,1\}.$

• Let $\widetilde{\Phi^c}$ be the reflex CM type of Φ^c and let $A_{\Phi} := \Phi^c * \widetilde{\Phi^c}$ be the convolution of Φ^c with Φ^c .

• Let $A^0_{\Phi} = \sum a_{\chi} \chi$ be the projection of A_{Φ} onto the space of class functions on $\operatorname{Gal}(E^c/\mathbb{Q})$ and define $Z(s, A_{\Phi}^0)$ by

$$Z(s, A_{\Phi}^0) = \sum_{\chi} a_{\chi} \left(\frac{L'(s, \chi)}{L(s, \chi)} + \frac{1}{2} \log f_{\chi} \right).$$

The Colmez Conjecture

Conjecture 1 (Colmez). Let E be a CM field, Φ a CM type of E, and X_{Φ} an abelian variety with CM by (\mathcal{O}_E, Φ) . Then,

$$\mathbf{h}_{\mathrm{Fal}}(\Phi) := \frac{1}{[E:\mathbb{Q}]} \mathbf{h}_{\mathrm{Fal}}(X_{\Phi}) = -Z(0, A_{\Phi}^{0})$$

Unitary PSL₂ CM Fields and the Colmez Conjecture

Solly Parenti University of Wisconsin-Madison

Reduction in the Unitary Case

Theorem 1 (P.). Let E = kF be a unitary CM field. Then the Colmez conjecture holds for all CM types of E if and only if it holds for all CM types of signature (n-2,2).

CM Types and Equivalence

• Let E = kF be a unitary CM field of degree 2n and let $\{\sigma_1, \ldots, \sigma_n\} = \operatorname{Hom}(F, \mathbb{C}).$ Subsets of $\{1, \ldots, n\}$ of size ϵ parametrize CM types of E of signature $(n - \epsilon, \epsilon)$ in the following manner. For example, take $\{1, 2\} \subseteq \{1, \ldots, n\}$.

 $\{1,2\} \leftrightarrow \Phi_{\{1,2\}} := \{\overline{\sigma_1}, \overline{\sigma_2}, \sigma_3, \dots, \sigma_n\}$

• Let E^c denote the Galois closure of E. There is a natural $\operatorname{Gal}(E^c/\mathbb{Q})$ action on the CM types of E. • If Φ_1 and Φ_2 are CM types equivalent under the Galois action, then $h_{Fal}(\Phi_1) = h_{Fal}(\Phi_2)$ and $A^0_{\Phi_1} = A^0_{\Phi_2}$.

• The Galois action on CM types of signature $(n - \epsilon, \epsilon)$ is equivalent to the action of G on ϵ many elements of G/H, where $G = \operatorname{Gal}(F^c/\mathbb{Q})$ and $H = \operatorname{Gal}(F^c/F)$.

Average amongst Signatures

• Recent work of Yang and Yin has computed the average Faltings height amongst CM abelian varieties with the same signature.

Theorem 2 (Yang-Yin). Let E = kF be a unitary CM field of degree 2n and denote by $\Phi(E)_{\epsilon}$ the set of all CM types of E of signature $(n - \epsilon, \epsilon)$. Then,

$$\sum_{\Phi \in \Phi(E)_{\epsilon}} h_{\text{Fal}}(\Phi) = \sum_{\Phi \in \Phi(E)_{\epsilon}} -Z(0, A_{\Phi}^{0})$$
$$= \frac{-1}{4} \binom{n}{\epsilon} Z(0, \zeta_{k}) + \binom{n-2}{\epsilon-1} Z(0, \chi_{k/\mathbb{Q}})$$
$$- \frac{1}{n} \binom{n-2}{\epsilon-1} Z(0, \chi_{E/F}).$$

 $|\omega/\alpha \mathcal{O}_L|.$

Dealing with A^0_{Φ}

Proposition 1 (P.). Let E = kF be a unitary CM field, let $S \subseteq \{1, \ldots, n\}$, and let Φ_S be the CM type of E corresponding to S. Then,

$$A_{\Phi_S}^0 = \sum_{\{i,j\}\subseteq S} A_{\Phi_{\{i,j\}}}^0 - (\epsilon - 2) \sum_{i\in S} A_{\Phi_{\{i\}}}^0 + \frac{(\epsilon - 1)(\epsilon - 2)}{2} A_{\Phi_{\{\varnothing\}}}^0.$$

Colmez conjecture holds for $\Phi_{\{\emptyset\}}$.

• Any group G acts transitively on G/H for any subgroup $H \leq$ G. Therefore, the result of Yang-Yin implies that the Colmez conjecture holds for $\Phi_{\{i\}}$ for any $i \in S$.

cases of the Colmez conjecture imply the following.

type of E.

Colmez for Unitary PSL₂ CM fields

• Let B be the Borel subgroup of $PSL_2(\mathbb{F}_q)$ where q is an odd prime power. The action of $\mathrm{PSL}_2(\mathbb{F}_q)$ on $\mathrm{PSL}_2(\mathbb{F}_q)/B$ is isomorphic to the action of $PSL_2(\mathbb{F}_q)$ on $\mathbb{P}^1(\mathbb{F}_q)$ and is doubly transitive.

the Colmez conjecture holds for Φ .

Acknowledgments

The author thanks Tonghai Yang for all of his help. The author would also like to thank Alisha Zachariah and Shamgar Gurevich for their help and references regarding $PSL_2(\mathbb{F}_q)$. Finally, the author would like to thank Juliette Bruce for her valuable feedback. This work was done with the support of National Science Foundation grant DMS-1502553.

• A reformulation of the Chowla-Selberg formula implies that the

• Yang and Yin's theorem, Proposition 1, and the above known

Proposition 2 (P.). Let E = kF be a unitary CM field, let $G = \operatorname{Gal}(F^c/\mathbb{Q})$ and $H = \operatorname{Gal}(F^c/F)$. If G acts doubly transitively on G/H, then the Colmez conjecture holds for any CM

Theorem 3 (P.). Let F be a totally real number field such that $\operatorname{Gal}(F^c/\mathbb{Q}) \cong \operatorname{PSL}_2(\mathbb{F}_q)$ and $\operatorname{Gal}(F^c/F) \cong B$. Then for any imaginary quadratic field k and any CM type Φ of E = kF,