Abstract

We obtain a lower bound on the number of quadratic Dirichlet L-functions over the rational function field which vanish at the central point s = 1/2. The approach is based on the observation that vanishing at the central point can be interpreted geometrically, as the existence of a map to a fixed abelian variety from the hyperelliptic curve associated to the character.

Motivation: Chowla's conjecture

Conjecture 1 (Chowla, 1965). For any quadratic Dirichlet character χ , $L(s, \chi) \neq 0$ for all $s \in (0, 1)$. In particular, $L(1/2, \chi) \neq 0$.

Theorem 1 (Soundrarajan, 2000). At least 87.5% of odd squarefree integers d > 0 have the property that $L(1/2, \chi_{8d}) \neq d$ 0 where χ_{8d} denotes the real quadratic character with conductor 8d.

Function Field Analogy

Number field	Function field
\mathbb{Q}	$\mathbb{F}_q(x)$
\mathbb{Z}	$\mathbb{F}_q[x]$
positive primes	monic, irreducible polyne
n	$ f = q^{\deg f}$
quadratic characters	monic, squarefree polync

Definiton 2. Let \mathbb{F}_q be a finite field with odd characteristic. Define

 $g(N) = \{ D \in \mathbb{F}_q[x], monic, squarefree : |D| < N, L(1/2, \chi_D) = 0 \}$

Question: Is g(N) equal to 0?

Theorem 3 (Bui–Florea, 2016). With the notation above, $|g(N)| \le 0.037N + o(N)$ for any $N = q^{2g+1}$ where $g \in \mathbb{Z}$.

Vanishing of Hyperelliptic L-Functions at the Central Point

Wanlin Li – University of Wisconsin - Madison

omials

omials

The Main Result

Theorem 4 (L., 2017). • When q is a square, for any $\epsilon > 0$, $|g(N)| \geq B_{\epsilon} N^{1/2-\epsilon}$ with some nonzero constant B_{ϵ} and $N > N_{\epsilon}$. • When q is not a square and $q \neq 3$, for any $\epsilon > 0$, $|g(N)| \geq B_{\epsilon} N^{1/3-\epsilon}$ with some nonzero constant B_{ϵ} and $N > N_{\epsilon}$. • When q = 3, for any $\epsilon > 0$, $|g(N)| \ge B_{\epsilon} N^{1/5-\epsilon}$ with some nonzero

- constant B_{ϵ} and $N > N_{\epsilon}$.

Although Chowla's conjecture does not hold over $\mathbb{F}_q(t)$, it may hold for almost all quadratic characters, i.e. it may be the case that $|g(N)|/N \to 0$ as $N \to \infty$.

Geometric Interpretation

Let D be a monic, squarefree polynomial. Let $P(x) \in \mathbb{Z}[x]$ be the characteristic polynomial of geometric Frobenius acting on the Jacobian of the hyperelliptic curve defined by $y^2 = D$.

> $L(1/2, \chi_D) = 0 \iff P(q)$ $P(q^{-1/2}) = 0 \iff \alpha_i = \sqrt{q}$ for some α_i

when q is a square, there exists an elliptic curve E_0 over \mathbb{F}_q which admits \sqrt{q} as a Frobenius eigenvalue.

$$P(q^{-1/2}) = 0 \iff J(C) \sim E_0 \times A$$
 for

By composing with a map $C \to J(C)$, we get the existence of a dominant map $C \to E_0$.

Proposition 5 (L., 2017). Let C_0 be a genus g hyperelliptic curve defined over \mathbb{F}_q . There exists a positive constant B_{ϵ} such that the number of monic squarefree polynomials $D \in \mathbb{F}_q[x]$ satisfying |1.|D| < N2. $C: y^2 = D$ admits a dominant map to C_0 is at least $B_{\epsilon}N^{\frac{1}{g+1}-\epsilon}$ for any $\epsilon > 0$.

$$q^{-1/2}) = 0.$$

some abelian variety A

Application to Ranks of Elliptic Curves

From E_0 : $y^2 = f(x)$ over \mathbb{F}_q , we construct the constant elliptic curve over the rational function field $E = E_0 \times_{\mathbb{F}_q} \mathbb{F}_q(x)$. Denote E_D as the quadratic twist of E by $D \in \mathbb{F}_q[x]$. Let C be a hyperelliptic curved defined by $y^2 = D$.

 $rank(E_D) = |\{\phi : C \to E_0, \text{ dominant map}\}| \cdot (rank(End(E_0)))$

elliptic curve over $\mathbb{F}_{a}(x)$. $R_m(N) = \{ D \in P(N) : E_D \text{ has even rank } \geq m \}.$ Then there exists a nonzero constant B_{ϵ} such that

$$\lim_{N \to \infty} \frac{|R_2|}{|P|}$$

 $R_2(N)$ replaced by $R_4(N)$.

Data

\mathbb{F}_9						
Degree d	$g(9^d)$	$9^d - 9^{d-1}$	$g(9^d)/(9^d - 9^{d-1})$	$1/(9^d)^{1/2}$	$1/(9^d)^{1/4}$	
3	6	648	0.9%	3.7%	19.2%	
4	18	5832	0.3%	1.2%	11.1%	
5	216	52488	0.4%	0.4%	6.4%	
6	180	472392	0.038%	0.1%	3.7%	
7	8658	4251528	0.2%	0.045%	2.1%	
8(sample)	2660	5000000	0.05%	0.015%	1.2%	
9(sample)	3262	5000000	0.065%	0.005%	0.7%	
10(sample)	532	5000000	0.01%	0.002%	0.4%	

References

- 10.2307/2939253. MR1080648
- MR1881757
- 03-11826-8. MR1980998

Corollary 6 (L., 2017). Let $E = E_0 \times \mathbb{F}_q(x)$ be a constant Let $P(N) = \{ D \in \mathbb{F}_q[x] : monic, squarefree, |D| < N \}.$ $\frac{R_2(N)|}{P(N)|} \ge B_{\epsilon} N^{1/2 - \epsilon}$ Moreover, if E_0 is supersingular, then the statement holds with

[1] F. Gouvêa and B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc. 4 (1991), no. 1, 1–23, DOI [2] Karl Rubin and Alice Silverberg, Rank frequencies for quadratic twists of elliptic curves, Experiment. Math. 10 (2001), no. 4, 559–569. [3] Bjorn Poonen, Squarefree values of multivariable polynomials, Duke Math. J. 118 (2003), no. 2, 353–373, DOI 10.1215/S0012-7094-