Abstract

We obtain a lower bound on the number of quadratic Dirichlet L-functions over the rational function field which vanish at the central point $s=1 / 2$. The approach is based on the observation that vanishing at the central point can be interpreted geometrically, as the existence of a map to a fixed abelian variety from the hyperelliptic curve associated to the character.

Motivation: Chowla's conjecture
Conjecture 1 (Chowla, 1965). For any quadratic Dirichlet character $\chi, L(s, \chi) \neq 0$ for all $s \in(0,1)$.
In particular, $L(1 / 2, \chi) \neq 0$.
Theorem 1 (Soundrarajan, 2000). At least 87.5% of odd squarefree integers $d>0$ have the property that $L\left(1 / 2, \chi_{8 d}\right) \neq$ 0 where $\chi_{8 d}$ denotes the real quadratic character with conductor $8 d$.

Function Field Analogy

Number field	Function field
\mathbb{Q}	$\mathbb{F}_{q}(x)$
\mathbb{Z}	$\mathbb{F}_{q}[x]$
positive primes	monic, irreducible polynomials
$\|n\|$	$\|f\|=q^{\operatorname{deg} f}$
quadratic characters	monic, squarefree polynomials

Definiton 2. Let \mathbb{F}_{q} be a finite field with odd characteristic

 Define$g(N)=\left\{D \in \mathbb{F}_{q}[x]\right.$, monic, squarefree : $\left.|D|<N, L\left(1 / 2, \chi_{D}\right)=0\right\}$
Question: Is $g(N)$ equal to 0 ?
Theorem 3 (Bui-Florea, 2016). With the notation above,

$$
|g(N)| \leq 0.037 N+o(N)
$$

for any $N=q^{2 g+1}$ where $g \in \mathbb{Z}$.

The Main Result

Theorem 4 (L., 2017). •When q is a square, for any $\epsilon>0$, $|g(N)| \geq B_{\epsilon} N^{1 / 2-\epsilon}$ with some nonzero constant B_{ϵ} and $N>N_{\epsilon}$.

- When q is not a square and $q \neq 3$, for any $\epsilon>0,|g(N)| \geq B_{\epsilon} N^{1 / 3-\epsilon}$ with some nonzero constant B_{ϵ} and $N>N_{\epsilon}$.
- When $q=3$, for any $\epsilon>0,|g(N)| \geq B_{\epsilon} N^{1 / 5-\epsilon}$ with some nonzero constant B_{ϵ} and $N>N_{\epsilon}$

Although Chowla's conjecture does not hold over $\mathbb{F}_{q}(t)$, it may hold for almost all quadratic characters, i.e. it may be the case that $|g(N)| / N \rightarrow 0$ as $N \rightarrow \infty$.

Geometric Interpretation
Let D be a monic, squarefree polynomial. Let $P(x) \in \mathbb{Z}[x]$ be the characteristic polynomial of geometric Frobenius acting on the Jacobian of the hyperelliptic curve defined by $y^{2}=D$.

$$
\begin{gathered}
L\left(1 / 2, \chi_{D}\right)=0 \Longleftrightarrow P\left(q^{-1 / 2}\right)=0 \\
P\left(q^{-1 / 2}\right)=0 \Longleftrightarrow \alpha_{j}=\sqrt{q} \text { for some } \alpha_{j}
\end{gathered}
$$

when q is a square, there exists an elliptic curve E_{0} over \mathbb{F}_{q} which admits \sqrt{q} as a Frobenius eigenvalue.

$$
P\left(q^{-1 / 2}\right)=0 \Longleftrightarrow J(C) \sim E_{0} \times A \text { for some abelian variety } \mathrm{A}
$$

By composing with a map $C \rightarrow J(C)$, we get the existence of a dominant map $C \rightarrow E_{0}$.
Proposition 5 (L., 2017). Let C_{0} be a genus g hyperelliptic curve defined over \mathbb{F}_{q}. There exists a positive constant B_{ϵ} such that the number of monic squarefree polynomials $D \in \mathbb{F}_{q}[x]$ satisfying

1. $|D|<N$
2. $C: y^{2}=D$ admits a dominant map to C_{0}
is at least $B_{\epsilon} N^{\frac{1}{g+1}-\epsilon}$ for any $\epsilon>0$.

Application to Ranks of Elliptic Curves
From $E_{0}: y^{2}=f(x)$ over \mathbb{F}_{q}, we construct the constant elliptic curve over the rational function field $E=E_{0} \times_{\mathbb{F}_{q}} \mathbb{F}_{q}(x)$. Denote E_{D} as the quadratic twist of E by $D \in \mathbb{F}_{q}[x]$. Let C be a hyperelliptic curved defined by $y^{2}=D$.
$\operatorname{rank}\left(E_{D}\right)=\mid\left\{\phi: C \rightarrow E_{0}\right.$, dominant map $\} \mid \cdot\left(\operatorname{rank}\left(\operatorname{End}\left(E_{0}\right)\right)\right)$

Corollary 6 (L., 2017). Let $E=E_{0} \times \mathbb{F}_{q}(x)$ be a constant

 elliptic curve over $\mathbb{F}_{q}(x)$.Let $P(N)=\left\{D \in \mathbb{F}_{q}[x]\right.$: monic, squarefree, $\left.|D|<N\right\}$.
$R_{m}(N)=\left\{D \in P(N): E_{D}\right.$ has even rank $\left.\geq m\right\}$.
Then there exists a nonzero constant B_{ϵ} such that

$$
\lim _{N \rightarrow \infty} \frac{\left|R_{2}(N)\right|}{|P(N)|} \geq B_{\epsilon} N^{1 / 2-\epsilon}
$$

Moreover, if E_{0} is supersingular, then the statement holds with $R_{2}(N)$ replaced by $R_{4}(N)$.

Data

\mathbb{F}_{9}					
Degree d	$g\left(9^{d}\right)$	$9^{d}-9^{d-1}$	$g\left(9^{d}\right) /\left(9^{d}-9^{d-1}\right)$	$1 /\left(9^{d}\right)^{1 / 2}$	$1 /\left(9^{d}\right)^{1 / 4}$
3	6	648	0.9%	3.7%	19.2%
4	18	5832	0.3%	1.2%	11.1%
5	216	52488	0.4%	0.4%	6.4%
6	180	472392	0.038%	0.1%	3.7%
7	8658	4251528	0.2%	0.045%	2.1%
8(sample)	2660	5000000	0.05%	0.015%	1.2%
9 (sample)	3262	5000000	0.065%	0.005%	0.7%
10 (sample)	532	5000000	0.01%	0.002%	0.4%

References

(1) F. Gaveve and B. Mazur. The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc. 4 (1991), no. 1, 1-23, DoI
 MR1881757

