Nonabelian Cohen-Lenstra Moments for the Quaternion Group

Brandon Alberts

University of Wisconsin-Madison
Featuring joint work with Jack Klys (University of Toronto)

1 Introduction and Background

1.1 Nonabelian Cohen-Lenstra heuristics

For a field k, let $C l(k)$ denote the class group of the field. Write $C l_{p}(k)$ for the Sylow p-subgroup of $C l(k)$, called the p-part of the class group.
Conjecture 1 (Cohen-Lenstra [4]). Fix an odd prime p and a finite abelian p-group A. The probability that $C l(\mathbb{Q}(\sqrt{ \pm} d))$ p is isomorphic to A as $\pm d$ varies over negative (respectively positive) quadratic discriminants is

$$
\begin{aligned}
\operatorname{Prob}\left(C l_{p}(\mathbb{Q}(\sqrt{-d})) \cong A\right) & =c^{-} \frac{1}{\# \operatorname{Aut}(A)} \\
\operatorname{Prob}\left(C l_{p}(\mathbb{Q}(\sqrt{d})) \cong A\right) & =c^{+} \frac{1}{\# A \# \operatorname{Aut}(A)}
\end{aligned}
$$

For a pair of groups G and $G^{\prime} \subset G 2 S_{2}$ Melanie Wood gave a generalization of Cohen-Lenstra heuristics by defining the Cohen-Lenstra Moment to be

if the limit exists.
Conjecture 2 (Wood [9]). For an admissible, good pair (G, G^{\prime})

$$
E^{-}\left(G, G^{\prime}\right)=\frac{\# H_{2}\left(G^{\prime}, c\right)[2]}{\# \operatorname{Aut}_{G^{\prime}}(G)} \quad E^{+}\left(G, G^{\prime}\right)=\frac{\# H_{2}\left(G^{\prime}, c\right)[2]}{\# c \# \operatorname{Aut}_{G}^{\prime}(G)}
$$

and for an admissible, not good pair $\left(G, G^{\prime}\right), E^{ \pm}\left(G, G^{\prime}\right)=\infty$.
1.2 Quaternion Group

$$
H_{8}=\left\langle a, b, z: a^{2}=b^{2}=[a, b]=z, z^{2}=[a, z]=[b, z]=1\right\rangle
$$

For any positive integer k, there exists a unique group $G_{k}^{\prime} \subset H_{8}^{k} 乙 S_{2}$ up to isomorphism with $\left[G_{k}^{\prime}, H_{8}^{k}\right]=2$ making $\left(H_{8}^{k}, G_{k}^{\prime}\right)$ an admissible pair

$$
G_{k}^{\prime}=H_{8}^{k} \rtimes S_{2}
$$

This pair is not good.
Theorem 3 (A. (k=1), A.-Klys).

$$
E^{ \pm}\left(H_{8}^{k}, H_{8}^{k} \rtimes S_{2}\right)=\infty
$$

Theorem 4 (Lemmermeyer $[7])$. There exists an unramified extension $M / \mathbb{Q}(\sqrt{d})$ Theorem $4($ Lemmermeyer [7]). There exists an unramified extension $M / \mathbb{Q}(\sqrt{d})$
with $\operatorname{Gal}(M / \mathbb{Q}(\sqrt{d})) \cong H_{8}$ and $\operatorname{Gal}(M / \mathbb{Q}) \cong H_{8} \rtimes S_{2}$ if and only if there is a factorization ${ }^{\text {with }} \mathrm{Gal}(M / \mathbb{Q}(\sqrt{ } d))$
$\bullet d_{1}, d_{2}, d_{3}$ are coprime quadratic discriminants, at most one of which is negative.

- $\left(\frac{d_{d} d_{2}}{p_{3}}\right)=\left(\frac{d_{1} d_{3}}{p_{2}}\right)=\left(\frac{d_{2} d_{3}}{p_{1}}\right)=1$ for primes $p_{i} \mid d_{i}$

Moreover, for each factorization there are exactly $2^{\omega(d)-3}$ such extensions.
$2 E^{ \pm}\left(H_{8}^{k}, H_{8}^{k} \rtimes S_{2}\right)$
$2.1 k=1$
Fix d_{1} and d_{2} and vary $d_{3}=m$ to find the expected value of

$$
a_{d_{1}, d_{2}, m}=\frac{1}{8} \sum_{d=d_{1} d_{2} m} \prod_{p \mid d}\left(1+\left(\frac{d_{1} d_{2}}{p}\right)\right)\left(1+\left(\frac{d_{1} m}{p}\right)\right)\left(1+\left(\frac{d_{2} m}{p}\right)\right)
$$

Lemma 5.

$$
\sum_{m s q f} a_{d_{1}, d_{2}, m} m^{-s}
$$

has a meromorphic continuation to \mathbb{C} with no poles or zeroes in an open neighborhood of $R e(s) \geq 1$ except for a simple pole at $s=1$ with an explicit residue.
A Tauberian Theorem implies that

$$
\sum_{d_{1} d_{2} m<X} a_{d_{1}, d_{2}, m} \sim \frac{c_{d_{1}, d_{2}}}{d_{1} d_{2}} X
$$

which we can then sum over d_{1}, d_{2} to show $E^{ \pm}\left(H_{8}, H_{8} \rtimes S_{2}\right)=\infty$.
2.2 Asymptotic Count implying $k \geq 1$

For an admissible pair (G, G^{\prime}) and a quadratic discriminant define
$f_{G, G^{\prime}}(d)=\#\left\{L / \mathbb{Q}(\sqrt{d})\right.$ unram. $\left.: \operatorname{Gal}(L / \mathbb{Q}(\sqrt{d})) \cong G, \operatorname{Gal}(\widetilde{L} / \mathbb{Q}) \cong G^{\prime}\right\}$
Define the numerator of the fraction in $E^{ \pm}\left(G, G^{\prime}\right)$ to be

$$
N^{ \pm}\left(G, G^{\prime} ; X\right)=\sum_{0< \pm d<X} f_{G, G^{\prime}(d)}
$$

Theorem 6 (A.-Klys [3]).

$$
\begin{aligned}
& N^{-}\left(H_{8}^{k}, H_{8}^{k} \rtimes S_{2} ; X\right) \sim \frac{1}{4^{k} \# \operatorname{Aut}_{\sigma}\left(H_{8}^{k}\right)} \sum_{0<-d<X} 3^{k \omega(d)} \\
& N^{+}\left(H_{8}^{k}, H_{8}^{k} \rtimes S_{2} ; X\right) \sim \frac{1}{24^{k} \# \operatorname{Aut}_{\sigma}\left(H_{8}^{k}\right)} \sum_{0<d<X} 3^{k \omega \omega(d)}
\end{aligned}
$$

This implies $E^{ \pm}\left(H_{8}^{k}, H_{8}^{k} \rtimes S_{2}\right)=\infty$ as a corollary. We also prove that normalized $k^{\text {th }}$ moments are finite:
Theorem 7 (A.-Klys [3]).

$$
E^{-}\left(\left(\frac{f_{H_{8}, H_{H} \times S_{2}}(d)}{3_{w}(d)}\right)^{k}\right)=\frac{1}{32^{k}} \quad E^{+}\left(\left(\frac{f_{H_{8}, H_{H} \times S_{2}}(d)}{3 \omega(d)}\right)^{k}\right)=\frac{1}{192^{k}}
$$

Use the same sieve as Fouvry-Klüners [5] did when finding the average value of the 4 -rank of the class group of quadratic fields.
BIG IDEA: the main term only comes from those terms which cancel out completely by quadratic reciprocity, i.e. if $D_{u}, D_{v} \neq 1$ then $\Phi_{k}(u, v)=\Phi_{k}(v, u)$ so that the main term is

$$
f(d)^{k}=\sum_{d=\prod_{D_{u}} u, v} \prod\left(\frac{D_{u}}{D_{v}}\right)^{\Phi_{k}(u, v)} \sim \sum_{d=\Pi^{\prime} D_{u}} \prod(-1)^{\Phi_{k}(u, v) \frac{D_{u}-1}{2} \frac{D_{v-1}}{2}}
$$

3 Other Work in the Area
3.1 Other Results By Methods Related to the Ones in this Poster

- $\left(D_{4}, D_{4} \times C_{2}\right)$ for D_{4} the dihedral group of order 8. (A. [1])
- $\left(G, G^{\prime}\right)$ for $\left[G^{\prime}: G\right]=2$ and G^{\prime} a central C_{2} extension of C_{2}^{n} not containing a $C_{2} \times D_{4}$ with
$G \cap\left(C_{2} \times D_{4}\right)=C_{2} \times C_{4}$. (Klys [6])
- $\left(A, A \rtimes S_{2}\right)$ for A a finite abelian 2 group of exponent 8 , and in a more recent preprint any finite abelian 2 -group (Smith [8])
In a recent preprint [2], I generalize Lemmermeyer's key theorem classifying unramified H_{8} factorizations $d=d_{1} d_{2} d_{3}$ to classify unramified G-extensions $Z\left(G^{\prime}\right)$.
This result can be used to do the case:
- (Upcoming) $\left(G, G^{\prime}\right)$ for $\left[G^{\prime}: G\right]=2$ and G^{\prime} any central C_{2}^{m} extension of C_{2}^{n}

3.2 Future Directions

- Expected numbers of G-extensions M / K as K varies over abelian number fields with Galois group A with $\operatorname{Gal}(M / K)=G^{\prime}$. My generalization of Lemmermeyer's conditions apply in this case for admissible pairs $\left(G, G^{\prime}\right)$ with $\left[G^{\prime}, G^{\prime}\right] \leq Z\left(G^{\prime}\right)$, suggesting that a similar sie will work here too.
- Investigating the possibility that Smith's methods for $\left(A, A \rtimes S_{2}\right)$ for A an abelian 2-group can be applied to $\left(G, G^{\prime}\right)$ for G any finite 2 -group.
What should we expect the main term of $N^{ \pm}\left(G, G^{\prime} ; X\right)$ to look like for not good pairs? This would be an expansion of Wood's conjecture.

Acknowledgements I would like to thank my PhD advisor Nigel Boston, my coauthor Jack Klys, and Melanie Matchett Wood for many helpfur conversations and contributions. I would also like to thank the organizers of the Southern California Number Theory Day or having me here to rpesent this poster. This work was done with the support of Nation Sciene Foundation grant DMS-1502553

References

1. B. Alberts. Cohen-lenstra moments for some nonabelian groups, Aug 2016. Preprint available at https://arxiv.org/abs/1606.07867.
2. A. Alberts. Certain unramified metabelian extensions using Lemmermeyer factorizations, Oct 2017. Preprint available at https://arxiv/abs/1710.00900.
[3] B. Alberts and J. Klys. The distribution of H_{8}-extensions of quadratic fields, Jun 2017 Preprint available at https://arxiv.org/abs/1611.05595
[4] H. Cohen and H. W. Lenstra. Heuristics on class groups of number fields. Lecture Notes in Mathematics Number Theory Noordwijkerhout 1983, page 3362, 1984.
[5] E. Fouvry and J. Kliuners. On the 4 -rank of class groups of quadratic number fields. Inven iones Mathematicae, 167(3):455513, 2006.
[6] J. Klys. Moments of unramified 2-group extensions of quadratic fields, Oct 2017. Preprin available at https://arxiv.org/abs/1710.00793
$[7]$ F. Lemmermeyer. Unramified quaternion extensions of quadratic number fields. Journal de Théorie des Nombres de Bordeaux, 9(1):5168, 1997.
[8] A. Smith. 2^{∞}-selmer groups, 2^{∞}-class groups, and goldfeld's conjecture, Feb 2017. Preprint available at https://arxiv.org/abs/1702.02325.
9] M. M. Wood. Nonabelian Cohen-Lenstra moments, Feb 2017. Preprint available at https //arxiv.org/abs/1702.04644.
