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1 Introduction and Background

1.1 Nonabelian Cohen-Lenstra heuristics

For a field k, let Cl(k) denote the class group of the field. Write Clp(k) for the Sylow p-subgroup
of Cl(k), called the p-part of the class group.

Conjecture 1 (Cohen-Lenstra [4]).Fix an odd prime p and a finite abelian p-group
A. The probability that Cl(Q(

√
±d))p is isomorphic to A as ±d varies over negative

(respectively positive) quadratic discriminants is

Prob(Clp(Q(
√
−d)) ∼= A) = c−

1

#Aut(A)

Prob(Clp(Q(
√
d)) ∼= A) = c+ 1

#A#Aut(A)

For a pair of groups G and G′ ⊂ G oS2 Melanie Wood gave a generalization of Cohen-Lenstra
heuristics by defining the Cohen-Lenstra Moment to be

E±(G,G′) = lim
X→∞

∑
0<±d<X

#{L/Q(
√
d) unram. : Gal(L/Q(

√
d)) ∼= G,Gal(L̃/Q) ∼= G′}∑

0<±d<X
1

if the limit exists.

Conjecture 2 (Wood [9]). For an admissible, good pair (G,G′)

E−(G,G′) =
#H2(G′, c)[2]

#AutG′(G)
E+(G,G′) =

#H2(G′, c)[2]

#c#Aut′G(G)

and for an admissible, not good pair (G,G′), E±(G,G′) =∞.

1.2 Quaternion Group

H8 = 〈a, b, z : a2 = b2 = [a, b] = z, z2 = [a, z] = [b, z] = 1〉

For any positive integer k, there exists a unique group G′k ⊂ Hk
8 o S2 up to isomorphism with

[G′k, H
k
8 ] = 2 making (Hk

8 , G
′
k) an admissible pair

G′k = Hk
8 o S2

This pair is not good.

Theorem 3 (A. (k=1), A.-Klys).

E±(Hk
8 , H

k
8 o S2) =∞

Theorem 4 (Lemmermeyer [7]). There exists an unramified extension M/Q(
√
d)

with Gal(M/Q(
√
d)) ∼= H8 and Gal(M/Q) ∼= H8oS2 if and only if there is a factorization

d = d1d2d3 satisfying

• d1, d2, d3 are coprime quadratic discriminants, at most one of which is negative.

•
(
d1d2
p3

)
=
(
d1d3
p2

)
=
(
d2d3
p1

)
= 1 for primes pi | di

Moreover, for each factorization there are exactly 2ω(d)−3 such extensions.

2 E±(Hk
8 , H

k
8 o S2)

2.1 k = 1

Fix d1 and d2 and vary d3 = m to find the expected value of

ad1,d2,m =
1

8

∑
d=d1d2m

∏
p|d

(
1 +

(
d1d2

p

))(
1 +

(
d1m

p

))(
1 +

(
d2m

p

))

Lemma 5. ∑
m sqf

ad1,d2,mm
−s

has a meromorphic continuation to C with no poles or zeroes in an open neighborhood of
Re(s) ≥ 1 except for a simple pole at s = 1 with an explicit residue.

A Tauberian Theorem implies that∑
d1d2m<X

ad1,d2,m ∼
cd1,d2
d1d2

X

which we can then sum over d1, d2 to show E±(H8, H8 o S2) =∞.

2.2 Asymptotic Count implying k ≥ 1

For an admissible pair (G,G′) and a quadratic discriminant define

fG,G′(d) = #{L/Q(
√
d) unram. : Gal(L/Q(

√
d)) ∼= G,Gal(L̃/Q) ∼= G′}

Define the numerator of the fraction in E±(G,G′) to be

N±(G,G′;X) =
∑

0<±d<X
fG,G′(d)

Theorem 6 (A.-Klys [3]).

N−(Hk
8 , H

k
8 o S2;X) ∼ 1

4k#Autσ(Hk
8 )

∑
0<−d<X

3kω(d)

N+(Hk
8 , H

k
8 o S2;X) ∼ 1

24k#Autσ(Hk
8 )

∑
0<d<X

3kω(d)

This implies E±(Hk
8 , H

k
8 o S2) = ∞ as a corollary. We also prove that normalized kth

moments are finite:

Theorem 7 (A.-Klys [3]).

E−
((

fH8,H8oS2
(d)

3ω(d)

)k)
=

1

32k
E+

((
fH8,H8oS2

(d)

3ω(d)

)k)
=

1

192k

Use the same sieve as Fouvry-Klüners [5] did when finding the average value of the 4-rank of
the class group of quadratic fields.
BIG IDEA: the main term only comes from those terms which cancel out completely by

quadratic reciprocity, i.e. if Du, Dv 6= 1 then Φk(u, v) = Φk(v, u) so that the main term is

f (d)k =
∑

d=
∏
Du

∏
u,v

(
Du
Dv

)Φk(u,v)

∼
∑

d=
∏′Du

∏
(−1)Φk(u,v)Du−12

Dv−1
2

3 Other Work in the Area

3.1 Other Results By Methods Related to the Ones in this
Poster

• (D4, D4 × C2) for D4 the dihedral group of order 8. (A. [1])

• (G,G′) for [G′ : G] = 2 and G′ a central C2 extension of Cn2 not containing a C2×D4 with
G ∩ (C2 ×D4) = C2 × C4. (Klys [6])

• (A,Ao S2) for A a finite abelian 2-group of exponent 8, and in a more recent preprint any
finite abelian 2-group (Smith [8])

In a recent preprint [2], I generalize Lemmermeyer’s key theorem classifying unramified H8-
extensions of Q(

√
d) by certain factorizations d = d1d2d3 to classify unramified G-extensions

M/K of an abelian extensionK/Q with Gal(M/K) = G′ for pairs (G,G′) such that [G′, G′] ≤
Z(G′).

This result can be used to do the case:

• (Upcoming) (G,G′) for [G′ : G] = 2 and G′ any central Cm2 extension of Cn2

3.2 Future Directions

• Expected numbers of G-extensions M/K as K varies over abelian number fields with Galois
group A with Gal(M/K) = G′. My generalization of Lemmermeyer’s conditions apply in
this case for admissible pairs (G,G′) with [G′, G′] ≤ Z(G′), suggesting that a similar sieve
will work here too.

• Investigating the possibility that Smith’s methods for (A,Ao S2) for A an abelian 2-group
can be applied to (G,G′) for G any finite 2-group.

•What should we expect the main term of N±(G,G′;X) to look like for not good pairs? This
would be an expansion of Wood’s conjecture.
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