Math 194

October 29, 2015

1. Prove that the polynomial $x^{3}-3 x^{2}+1$ has exactly one zero in the interval $[0,1]$.
2. (a) Suppose f is a continuous function from the closed interval $[0,1]$ to $[0,1]$. Prove that there is some c such that $f(c)=c$.
(b) Find a continuous function f from the open interval $(0,1)$ to $(0,1)$ such that there is no c satisfying $f(c)=c$.
3. For any pair of triangles, prove that there exists a line that bisects them (divides each one into two equal areas) simultaneously.
4. Suppose $f(x)=a_{1} \sin (x)+a_{2} \sin (2 x)+\cdots+a_{n} \sin (n x)$ with real numbers a_{1}, \ldots, a_{n}, and $|f(x)| \leq|\sin (x)|$ for every x. Show that $\left|a_{1}+2 a_{2}+\cdots+n a_{n}\right| \leq 1$.
5. Suppose f is a differentiable function and $a \in \mathbf{R}$. Show that between any two zeros of f there is an x such that $f^{\prime}(x)=a f(x)$.
