Math 194

October 22, 2015

1. Show that

$$
\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k}=\frac{2^{n+1}-1}{n+1}
$$

2. Suppose x_{1}, x_{2}, \ldots is a sequence of positive real numbers satisfying $x_{n+1} \leq x_{n}+1 / n^{2}$ for all $n \geq 1$. Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists.
3. Show that

$$
F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1
$$

where F_{n} is the n-th Fibonacci number.
4. Evaluate

$$
S_{1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

5. Express $\prod_{n=0}^{\infty}\left(1+x^{2^{n}}\right)$ as a rational function of x (a quotient of polynomials).
